Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = Forest Fire Prevention Regulations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4520 KiB  
Article
Towards Integrated Fire Management: Strengthening Forest Fire Legislation and Policies in the Andean Community of Nations
by Liliana Correa-Quezada, Víctor Carrión-Correa, Carolina López, Daniel Segura and Vinicio Carrión-Paladines
Fire 2025, 8(7), 266; https://doi.org/10.3390/fire8070266 - 4 Jul 2025
Viewed by 1324
Abstract
This study analyzes forest fire legislation and policies in the Andean Community of Nations (ACN)—Colombia, Ecuador, Peru, and Bolivia—focusing on prevention and control. Using a comparative law approach, similarities, differences, and implementation challenges were identified. Ecuador and Peru have more comprehensive legal structures, [...] Read more.
This study analyzes forest fire legislation and policies in the Andean Community of Nations (ACN)—Colombia, Ecuador, Peru, and Bolivia—focusing on prevention and control. Using a comparative law approach, similarities, differences, and implementation challenges were identified. Ecuador and Peru have more comprehensive legal structures, while Colombia’s is simpler, and Bolivia falls in between. To address these gaps, this study proposes an Andean Directive for Integrated Fire Management (ADIFM) to harmonize policies and incorporate fire ecology, ancestral knowledge, education, monitoring technologies, and post-fire restoration. This regulatory framework, tailored to Andean ecological and sociocultural conditions, would optimize fire management and strengthen ecosystem resilience. Additionally, harmonizing sanctions and regulations at the regional level would ensure more coherent and effective governance. The ADIFM would provide strategic guidance for policymakers, fostering sustainable fire management and environmental restoration across Andean ecosystems. Full article
Show Figures

Figure 1

20 pages, 3441 KiB  
Article
Land Cover and Wildfire Risk: A Multi-Buffer Spatial Analysis of the Relationship Between Housing Destruction and Land Cover in Chile’s Bío-Bío Region in 2023
by Benedikt Hora, Constanza González-Mathiesen, Natalia Aravena-Solís and Tomás Tapia
Sustainability 2025, 17(10), 4416; https://doi.org/10.3390/su17104416 - 13 May 2025
Viewed by 644
Abstract
Wildfires pose increasing risks to human settlements, particularly in the Wildland–Urban Interface (WUI). This study examines the relationship between land cover (LC) characteristics and housing destruction during the 2023 wildfires in Chile’s Bío-Bío region. Using high-resolution remote sensing data and GIS-based multi-buffer spatial [...] Read more.
Wildfires pose increasing risks to human settlements, particularly in the Wildland–Urban Interface (WUI). This study examines the relationship between land cover (LC) characteristics and housing destruction during the 2023 wildfires in Chile’s Bío-Bío region. Using high-resolution remote sensing data and GIS-based multi-buffer spatial analysis (30 m and 100 m), we assessed LC patterns around affected and unaffected rural houses. Results indicate that the proximity of forest plantations significantly increased housing loss, with a notably higher presence of plantations within 30 m of destroyed houses. In contrast, agricultural and pasture mosaics demonstrated a protective function by reducing fire spread. Shrublands also showed moderate protection, albeit with statistical uncertainty. The findings highlight the critical role of immediate LC in determining wildfire impact, emphasizing the need for integrating LC considerations into wildfire risk management, land-use planning, and policy interventions. Strategies such as creating defensible spaces, enforcing zoning regulations, and promoting fire-resistant landscapes can help mitigate future wildfire damage. This research provides spatially explicit insights that contribute to wildfire risk reduction theory and inform targeted prevention and resilience-building strategies in Chile and other fire-prone regions. Full article
(This article belongs to the Special Issue Land Use Strategies for Sustainable Development)
Show Figures

Figure 1

29 pages, 16950 KiB  
Article
Wildfire Risk Assessment in Ambato, Ecuador: Drought Impacts, Fuel Dynamics, and Wildland–Urban Interface Vulnerability
by Andrés Hidalgo, Luis Contreras-Vásquez, Verónica Nuñez and Bolivar Paredes-Beltran
Fire 2025, 8(4), 130; https://doi.org/10.3390/fire8040130 - 27 Mar 2025
Viewed by 1259
Abstract
Wildfires represent an increasing threat to ecosystems and communities, driven by climate change, fuel dynamics, and human activities. In Ambato, Ecuador, a city in the Andean highlands, these risks are exacerbated by prolonged droughts, vegetation dryness, and urban expansion into fire-prone areas within [...] Read more.
Wildfires represent an increasing threat to ecosystems and communities, driven by climate change, fuel dynamics, and human activities. In Ambato, Ecuador, a city in the Andean highlands, these risks are exacerbated by prolonged droughts, vegetation dryness, and urban expansion into fire-prone areas within the Wildland–Urban Interface (WUI). This study integrates climatic, ecological, and socio-economic data from 2017 to 2023 to assess wildfire risks, employing advanced geospatial tools, thematic mapping, and machine learning models, including Multinomial Logistic Regression (MLR), Random Forest, and XGBoost. By segmenting the study area into 1 km2 grid cells, microscale risk variations were captured, enabling classification into five categories: ‘Very Low’, ‘Low’, ‘Moderate’, ‘High’, and ‘Very High’. Results indicate that temperature anomalies, reduced fuel moisture, and anthropogenic factors such as waste burning and unregulated land-use changes significantly increase fire susceptibility. Predictive models achieved accuracies of 76.04% (MLR), 77.6% (Random Forest), and 76.5% (XGBoost), effectively identifying high-risk zones. The highest-risk areas were found in Izamba, Pasa, and San Fernando, where over 884.9 ha were burned between 2017 and 2023. The year 2020 recorded the most severe wildfire season (1500 ha burned), coinciding with extended droughts and COVID-19 lockdowns. Findings emphasize the urgent need for enhanced land-use regulations, improved firefighting infrastructure, and community-driven prevention strategies. This research provides a replicable framework for wildfire risk assessment, applicable to other Andean regions and beyond. By integrating data-driven methodologies with policy recommendations, this study contributes to evidence-based wildfire mitigation and resilience planning in climate-sensitive environments. Full article
Show Figures

Figure 1

19 pages, 5155 KiB  
Article
Designing UAV Charging Framework for Forest Area with Microgrid
by Ming Yu
Energies 2024, 17(23), 6109; https://doi.org/10.3390/en17236109 - 4 Dec 2024
Viewed by 772
Abstract
Unmanned aerial vehicles (UAVs) are suitable for forest fire monitoring, which is critical to prevent unexpected hazards. However, a lack of charging measures is the bottleneck restricting the development of surveillance drones in forest areas. This paper envisions a hierarchical charging framework of [...] Read more.
Unmanned aerial vehicles (UAVs) are suitable for forest fire monitoring, which is critical to prevent unexpected hazards. However, a lack of charging measures is the bottleneck restricting the development of surveillance drones in forest areas. This paper envisions a hierarchical charging framework of heterogeneous drones for forest fire surveillance based on a microgrid with renewable energy. Different replenishment methods of heterogeneous drones, as well as the coordination control strategy of the microgrid in a forest, which are designed to support continuous surveillance, are specified. To improve the transient stability as well as the capacity of fault ride-through in a forest microgrid for the multiple charging of fire surveillance drones, coordination control with a speed regulation strategy for a forest microgrid is proposed in which the substantial kinetic energy generated by the rotation of wind turbines is utilized to mitigate power fluctuations in a timely manner. Simulations are conducted under typical working conditions to verify the effectiveness of the method. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

16 pages, 4307 KiB  
Article
Effects of Fuel Removal on the Flammability of Surface Fuels in Betula platyphylla in the Wildland–Urban Interface
by Xintong Chen, Mingyu Wang, Baozhong Li, Lixuan Wang, Jibin Ning, Guang Yang and Hongzhou Yu
Fire 2024, 7(7), 261; https://doi.org/10.3390/fire7070261 - 22 Jul 2024
Cited by 1 | Viewed by 1384
Abstract
This paper aimed to provide technical support for fuel management by exploring different strengths of fuel removal on the physical and chemical properties and flammability of Betula platyphylla forests in the wildland–urban interface. After investigating the northeastern region during the forest fire prevention [...] Read more.
This paper aimed to provide technical support for fuel management by exploring different strengths of fuel removal on the physical and chemical properties and flammability of Betula platyphylla forests in the wildland–urban interface. After investigating the northeastern region during the forest fire prevention period in May 2023, a typical WUI area was selected, and three different treatment strengths, combined with a control, were set up to carry out indoor and outdoor experiments for 27 weeks. Compared with previous studies, this study mainly investigated and analyzed the dynamic changes in the physical and chemical properties and fuel flammability after different intensities of treatments on a time scale. By processing and analyzing the data, the following results were obtained. Significant differences existed in the fuel loading of different time-lag fuels over time (p < 0.05). The ash and ignition point of 1 h time-lag fuel after different treatment intensities generally increased first and then decreased, and the higher heat value and ash-free calorific value generally decreased first and then increased. The physical and chemical properties of 10 h and 100 h time-lag fuel fluctuated with time, but the overall change was insignificant. The indicator that had the greatest impact on the combustion comprehensive score for different time-lag fuels was fuel loading. The change in the flammability of dead surface fuel with time varied significantly, and different treatment intensities effectively reduced the fuel’s flammability. The reduction effects, presented in descending order, were as follows: medium-strength treatment > low-strength treatment > high-strength treatment > control check. In conclusion, different treatment intensities have significant effects on the flammability of the fuel, and the medium-strength treatment has the best effect. Considering the ecological and economic benefits, adopting the medium-strength treatment for the WUI to regulate the fuel is recommended. Full article
(This article belongs to the Special Issue Forest Fuel Treatment and Fire Risk Assessment)
Show Figures

Figure 1

10 pages, 2199 KiB  
Review
Climate Change, Air Pollution, and Human Health in the Kruger to Canyons Biosphere Region, South Africa, and Amazonas, Brazil: A Narrative Review
by Monika dos Santos
Atmosphere 2024, 15(5), 562; https://doi.org/10.3390/atmos15050562 - 30 Apr 2024
Cited by 1 | Viewed by 2204
Abstract
There is a 50% possibility that global temperatures will have risen by more than 5 °C by the year 2100. As demands on Earth’s systems grow more unsustainable, human security is clearly at stake. This narrative review provides an overview and synthesis of [...] Read more.
There is a 50% possibility that global temperatures will have risen by more than 5 °C by the year 2100. As demands on Earth’s systems grow more unsustainable, human security is clearly at stake. This narrative review provides an overview and synthesis of findings in relation to climate change, air pollution, and human health within the Global South context, focusing on case study geographic locations in South Africa and Brazil. Two case study regions—the Kruger to Canyons Biosphere region of South Africa and the Amazon region of Brazil—were the subjects of PubMed literature searches. Technical reports, policy briefs, and grey literature were also narratively synthesized. The burning of wood for fuel, as witnessed in Agincourt, and forest fires, such as those seen in the Amazon rainforest, release air pollutants such as methane and black carbon, which are strong short-lived climate pollutants (SLCPs) which fuel climate change and adversely affect human health. SLCPs have a brief lifetime in the atmosphere, but they frequently have a far larger potential for global warming than carbon dioxide (CO2). Most air pollution in geographic case study areas, that are home to human settlements, is due to the burning of wood and other biomasses that are pollutants. These areas are seen to be important for climate and health responses, and if constructive action is taken to switch to other modes of electricity generation (such as solar power) and the prevention of deforestation, the worst of the impacts may still be mitigated in these regions. Authorities should also establish a monitoring strategy for air quality, as well as enforce air quality regulations that safeguard public health. Full article
Show Figures

Figure 1

20 pages, 9112 KiB  
Article
Peatmass Change and Water Level Influencing Regenerated Melaleuca Forest after a Fire in U Minh Thuong National Park, Vietnam
by Luom Thanh Thai, Thang Van Tran, Khai Viet Le and Maja Flörke Staats
Sustainability 2024, 16(2), 620; https://doi.org/10.3390/su16020620 - 10 Jan 2024
Viewed by 1650
Abstract
Following the largest forest fire in Vietnam in 2002, various activities were undertaken to sustain the mangrove forest on peat soil remnants in the Mekong Delta region. These activities included promoting natural regeneration, afforestation, and rapid forest restoration measures, in addition to other [...] Read more.
Following the largest forest fire in Vietnam in 2002, various activities were undertaken to sustain the mangrove forest on peat soil remnants in the Mekong Delta region. These activities included promoting natural regeneration, afforestation, and rapid forest restoration measures, in addition to other protective measures such as rainwater retention to maintain moisture levels for fire prevention. However, two critical challenges emerged: allowing the forest to naturally regenerate would lead to annual forest fires but maintaining a constant water level through year-round water retention would harm biodiversity. The study was conducted in U Minh Thuong National Park to address forest regeneration. After a major forest fire in Vietnam, various measures were taken to promote forest regeneration, including afforestation, silvicultural solutions, and hydrological techniques such as rainwater storage to maintain humidity and prevent future fires. A hand drill was used to collect samples, and a total of 15 plots were set up to survey the growth of the forest at three peat thickness levels. At each of the three collection sites, samples of one kg were collected and labeled according to the site as UTM1, UTM2, and UTM3. The samples were then sent to the laboratory of the Southern Institute of Forestry Science for analysis. There was a relationship between the chemical indicators of peat and the evolution of the Melaleuca forest. Peat thickness and flooding regime significantly influenced the growth of the Melaleuca forest, while another identified relationship was between peat chemical indicators and forest growth. The chemical composition of peat water changed significantly due to the rainy and dry seasons, with nutrient content and pH affecting forest growth. Peat thickness and flooding regime were essential in regulating forest growth. These studies highlight the importance of considering multiple factors, such as peat thickness and chemical properties, when developing effective forest restoration strategies. By understanding the relationship between peat thickness, chemical properties, and forest growth, forest managers can develop targeted strategies to promote regeneration while minimizing negative impacts on biodiversity. Full article
(This article belongs to the Special Issue Sustainable Forest Management and Natural Hazards Prevention)
Show Figures

Figure 1

18 pages, 6074 KiB  
Review
Fire Protection Principles and Recommendations in Disturbed Forest Areas in Central Europe: A Review
by Roman Berčák, Jaroslav Holuša, Jan Kaczmarowski, Łukasz Tyburski, Ryszard Szczygieł, Alexander Held, Harald Vacik, Ján Slivinský and Ivan Chromek
Fire 2023, 6(8), 310; https://doi.org/10.3390/fire6080310 - 12 Aug 2023
Cited by 11 | Viewed by 3272
Abstract
Forest fires are becoming a more significant problem in Central Europe, but their danger is not as high as that in Southern Europe. The exception, however, is forest fires occurring in disturbed areas (windthrow and bark beetle outbreak areas), which are comparable in [...] Read more.
Forest fires are becoming a more significant problem in Central Europe, but their danger is not as high as that in Southern Europe. The exception, however, is forest fires occurring in disturbed areas (windthrow and bark beetle outbreak areas), which are comparable in severity and danger to the most serious forest fires. In this study, we describe the current situation in Central European countries in terms of fire protection for disturbed areas in managed forests and forest stands left to spontaneously develop (secondary succession). If a country has regulations and strategies in this area, they are often only published in the local language. In this review, we combine information from all Central European countries and summarize it in a unified international language, provide an opportunity for local authorities to express their own experiences, and integrate data from worldwide scientific research. Thus, this paper may be considered a universal guide for managing fire protection and preparedness in disturbed areas and can serve as a reference for the establishment of strict legislative rules at the state level. These laws must be obligatory for all stakeholders in individual countries. The motivation for this study was two large forest fires in an area left to spontaneously develop in the Bohemian Switzerland National Park in the Czech Republic and Harz Mountains in Germany in the summer of 2022. These incidents revealed that fire prevention legislation was inadequate or nonexistent in these areas. The strategy of the European Union is to increase the size of protected areas and spontaneous development areas. Therefore, we consider it necessary to provide governments with relevant information on this topic to create conditions for better management of these destructive events. Full article
Show Figures

Figure 1

15 pages, 2205 KiB  
Article
Assessment of Biological and Environmental Factors Influence on Fire Hazard in Pine Forests: A Case Study in Central Forest-Steppe of the East European Plain
by Vasiliy Slavskiy, Daria Litovchenko, Sergey Matveev, Sergey Sheshnitsan and Maxim V. Larionov
Land 2023, 12(1), 103; https://doi.org/10.3390/land12010103 - 28 Dec 2022
Cited by 5 | Viewed by 2050
Abstract
Vast forest areas are spreaded in Russia and perform environment-forming, nature-protective and climate-regulating functions, including carbon sequestration. At the same time, increasing of destructive forest fires scale in recent decades has led to depletion of forest resources. To combat forest fires, it is [...] Read more.
Vast forest areas are spreaded in Russia and perform environment-forming, nature-protective and climate-regulating functions, including carbon sequestration. At the same time, increasing of destructive forest fires scale in recent decades has led to depletion of forest resources. To combat forest fires, it is necessary to develop preventive measures to reduce the number and severity of forest fires and establish reliable evaluation criteria for fire hazard assessment in forestry. However, indices of fire hazard assessment that exist in Russia are not always allowed to determine the degree of fire hazard reliably. The studies were performed in pine forests on the territory of the Central Forest-Steppe. The key forestry factors influencing the fire hazard situation in pine stands are identified: the presence and amount of combustible materials, the state of the stand, as well as the age structure of tree stand. According to burning indices, the highest fire hazard was common for young and middle-aged pine stands, while for ripening, mature and old-growth forests, fire hazard increasing was not observed. A set of parameters that characterize soil moisture and ground cover peculiarities have also a significant impact. Forest growth conditions were shown to be an important indicator for assessment of fire hazard class. Identified factors that have a key impact on the fire hazard in forests will make it possible to improve methodological approach for monitoring and preservation of forests. Full article
Show Figures

Figure 1

27 pages, 15169 KiB  
Article
Effects of Forest Fire Prevention Policies on Probability and Drivers of Forest Fires in the Boreal Forests of China during Different Periods
by Qing Zhou, Heng Zhang and Zhiwei Wu
Remote Sens. 2022, 14(22), 5724; https://doi.org/10.3390/rs14225724 - 12 Nov 2022
Cited by 18 | Viewed by 4188
Abstract
Fire prevention policies during different periods may lead to changes in the drivers of forest fires. Here, we use historical fire data and apply the boosted regression tree (BRT) model to analyze the spatial patterns and drivers of forest fires in the boreal [...] Read more.
Fire prevention policies during different periods may lead to changes in the drivers of forest fires. Here, we use historical fire data and apply the boosted regression tree (BRT) model to analyze the spatial patterns and drivers of forest fires in the boreal forests of China from 1981 to 2020 (40 years). We divided the fire data into four periods using the old and new Chinese Forest Fire Regulations as a dividing line. Our objectives here were: to explore the influence of key historical events on the drivers of forest fires in northern China, establish a probability model of forest fire occurrence, and draw a probability map of forest fire occurrence and a fire risk zone map, so as to interpret the differences in the drivers of forest fires and fire risk changes over different periods. The results show that: (1) The model results from 1981 to 2020 (all years) did not improve between 2009 and 2020 (the most recent period), indicating the importance of choosing the appropriate modeling time series length and incorporating key historical events in future forest fire modeling; (2) Climate factors are a dominant factor affecting the occurrence of forest fires during different periods. In contrast with previous research, we found that here, it is particularly important to pay attention to the relevant indicators of the autumn fire prevention period (average surface temperature, sunshine hours) in the year before the fire occurrence. In addition, the altitude and the location of watchtowers were considered to have a significant effect on the occurrence of forest fires in the study area. (3) The medium and high fire risk areas in our three chosen time periods (1981–14 March 1988; 15 March 1988–2008; 2009–2020) have changed significantly. Fire risks were higher in the east and southeast areas of the study area in all periods. The northern primeval forest area had fewer medium-risk areas before the new and old regulations were formulated, but the medium-risk areas increased significantly after the old regulations were revised. Our study will help understand the drivers and fire risk distribution of forest fires in the boreal forests of China under the influence of history and will help decision-makers optimize fire management strategies to reduce potential fire risks. Full article
Show Figures

Graphical abstract

18 pages, 2990 KiB  
Article
Exploration of the Contribution of Fire Carbon Emissions to PM2.5 and Their Influencing Factors in Laotian Tropical Rainforests
by Zhangwen Su, Zhenhui Xu, Lin Lin, Yimin Chen, Honghao Hu, Shujing Wei and Sisheng Luo
Remote Sens. 2022, 14(16), 4052; https://doi.org/10.3390/rs14164052 - 19 Aug 2022
Cited by 9 | Viewed by 2089
Abstract
It is of great significance to understand the drivers of PM2.5 and fire carbon emission (FCE) and the relationship between them for the prevention, control, and policy formulation of severe PM2.5 exposure in areas where biomass burning is a major source. [...] Read more.
It is of great significance to understand the drivers of PM2.5 and fire carbon emission (FCE) and the relationship between them for the prevention, control, and policy formulation of severe PM2.5 exposure in areas where biomass burning is a major source. In this study, we considered northern Laos as the area of research, and we utilized space cluster analysis to present the spatial pattern of PM2.5 and FCE from 2003–2019. With the use of a random forest and structural equation model, we explored the relationship between PM2.5 and FCE and their drivers. The key results during the target period of the study were as follows: (1) the HH (high/high) clusters of PM2.5 concentration and FCE were very similar and distributed in the west of the study area; (2) compared with the contribution of climate variables, the contribution of FCE to PM2.5 was weak but statistically significant. The standardized coefficients were 0.5 for drought index, 0.32 for diurnal temperature range, and 0.22 for FCE; (3) climate factors are the main drivers of PM2.5 and FCE in northern Laos, among which drought and diurnal temperature range are the most influential factors. We believe that, as the heat intensifies driven by climate in tropical rainforests, this exploration and discovery can help regulators and researchers better integrate drought and diurnal temperature range into FCE and PM2.5 predictive models in order to develop effective measures to prevent and control air pollution in areas affected by biomass combustion. Full article
Show Figures

Graphical abstract

19 pages, 4518 KiB  
Article
Wildfire Monitoring Based on Energy Efficient Clustering Approach for FANETS
by Salil Bharany, Sandeep Sharma, Jaroslav Frnda, Mohammed Shuaib, Muhammad Irfan Khalid, Saddam Hussain, Jawaid Iqbal and Syed Sajid Ullah
Drones 2022, 6(8), 193; https://doi.org/10.3390/drones6080193 - 2 Aug 2022
Cited by 59 | Viewed by 4978
Abstract
Forest fires are a significant threat to the ecological system’s stability. Several attempts have been made to detect forest fires using a variety of approaches, including optical fire sensors, and satellite-based technologies, all of which have been unsuccessful. In today’s world, research on [...] Read more.
Forest fires are a significant threat to the ecological system’s stability. Several attempts have been made to detect forest fires using a variety of approaches, including optical fire sensors, and satellite-based technologies, all of which have been unsuccessful. In today’s world, research on flying ad hoc networks (FANETs) is a thriving field and can be used successfully. This paper describes a unique clustering approach that identifies the presence of a fire zone in a forest and transfers all sensed data to a base station as soon as feasible via wireless communication. The fire department takes the required steps to prevent the spread of the fire. It is proposed in this study that an efficient clustering approach be used to deal with routing and energy challenges to extend the lifetime of an unmanned aerial vehicle (UAV) in case of forest fires. Due to the restricted energy and high mobility, this directly impacts the flying duration and routing of FANET nodes. As a result, it is vital to enhance the lifetime of wireless sensor networks (WSNs) to maintain high system availability. Our proposed algorithm EE-SS regulates the energy usage of nodes while taking into account the features of a disaster region and other factors. For firefighting, sensor nodes are placed throughout the forest zone to collect essential data points for identifying forest fires and dividing them into distinct clusters. All of the sensor nodes in the cluster communicate their packets to the base station continually through the cluster head. When FANET nodes communicate with one another, their transmission range is constantly adjusted to meet their operating requirements. This paper examines the existing clustering techniques for forest fire detection approaches restricted to wireless sensor networks and their limitations. Our newly designed algorithm chooses the most optimum cluster heads (CHs) based on their fitness, reducing the routing overhead and increasing the system’s efficiency. Our proposed method results from simulations are compared with the existing approaches such as LEACH, LEACH-C, PSO-HAS, and SEED. The evaluation is carried out concerning overall energy usage, residual energy, the count of live nodes, the network lifetime, and the time it takes to build a cluster compared to other approaches. As a result, our proposed EE-SS algorithm outperforms all the considered state-of-art algorithms. Full article
Show Figures

Figure 1

19 pages, 4935 KiB  
Article
The Footprint of Wildfires on Mediterranean Forest Ecosystem Services in Vesuvius National Park
by Roberto Silvestro, Luigi Saulino, Carla Cavallo, Emilia Allevato, Stefania Pindozzi, Elena Cervelli, Paola Conti, Stefano Mazzoleni and Antonio Saracino
Fire 2021, 4(4), 95; https://doi.org/10.3390/fire4040095 - 14 Dec 2021
Cited by 25 | Viewed by 6876
Abstract
Wildfires are one of the most important natural disturbances in vegetation biomes. In recent decades, both the number and severity of fires have significantly increased in Mediterranean forests, frequently resulting in catastrophic events. In this scenario, we aimed to explore the flow of [...] Read more.
Wildfires are one of the most important natural disturbances in vegetation biomes. In recent decades, both the number and severity of fires have significantly increased in Mediterranean forests, frequently resulting in catastrophic events. In this scenario, we aimed to explore the flow of ecosystem services and their related economic value that was disrupted by human-induced megafires in the Mediterranean forest of Vesuvius National Park in the summer of 2017. We adopted an innovative approach by merging two methodologies: an ecological approach to evaluate the status of the forest ecosystem after the wildfires and an economics methodology to estimate the monetary value of the interruption to ecosystem services. Losses related to the following six services were estimated: woody biomass, soil erosion control, habitat maintenance, pollination, carbon stock, and ecotourism. In 2017, 3350 ha of forest (88% of the total forested area of Vesuvius National Park) burnt over a period of 49 days. The total estimated monetary loss amounted to €14.363 M, 56.9% of which comprised of provisioning ecosystem services, while 34.7% encompassed maintenance and regulation services, and 8.5% were so-called cultural services. Suppression costs accounted for 16% of the total estimated economic loss of ecosystem services. Our results provide useful insights for decision-makers when allocating financial resources, suggesting that they should invest in fire prevention rather than fire suppression and post-fire restoration. This explicit valuation of the footprint of the wildfires, although not exhaustive, can also lead to greater awareness among the public regarding the benefits conferred by Mediterranean forest ecosystems. This is the first study to economically evaluate the interruption of ecosystem services after megafires in the Mediterranean basin. Full article
Show Figures

Figure 1

23 pages, 2112 KiB  
Article
Facilitating Prescribed Fire in Northern California through Indigenous Governance and Interagency Partnerships
by Tony Marks-Block and William Tripp
Fire 2021, 4(3), 37; https://doi.org/10.3390/fire4030037 - 16 Jul 2021
Cited by 72 | Viewed by 18863
Abstract
Prescribed burning by Indigenous people was once ubiquitous throughout California. Settler colonialism brought immense investments in fire suppression by the United States Forest Service and the California Department of Forestry and Fire Prevention (CAL FIRE) to protect timber and structures, effectively limiting prescribed [...] Read more.
Prescribed burning by Indigenous people was once ubiquitous throughout California. Settler colonialism brought immense investments in fire suppression by the United States Forest Service and the California Department of Forestry and Fire Prevention (CAL FIRE) to protect timber and structures, effectively limiting prescribed burning in California. Despite this, fire-dependent American Indian communities such as the Karuk and Yurok peoples, stalwartly advocate for expanding prescribed burning as a part of their efforts to revitalize their culture and sovereignty. To examine the political ecology of prescribed burning in Northern California, we coupled participant observation of prescribed burning in Karuk and Yurok territories (2015–2019) with 75 surveys and 18 interviews with Indigenous and non-Indigenous fire managers to identify political structures and material conditions that facilitate and constrain prescribed fire expansion. Managers report that interagency partnerships have provided supplemental funding and personnel to enable burning, and that decentralized prescribed burn associations facilitate prescribed fire. However, land dispossession and centralized state regulations undermine Indigenous and local fire governance. Excessive investment in suppression and the underfunding of prescribed fire produces a scarcity of personnel to implement and plan burns. Where Tribes and local communities have established burning infrastructure, authorities should consider the devolution of decision-making and land repatriation to accelerate prescribed fire expansion. Full article
(This article belongs to the Collection Rethinking Wildland Fire Governance: A Series of Perspectives)
Show Figures

Figure 1

21 pages, 6106 KiB  
Article
Comparison of Machine Learning Algorithms for Wildland-Urban Interface Fuelbreak Planning Integrating ALS and UAV-Borne LiDAR Data and Multispectral Images
by Francisco Rodríguez-Puerta, Rafael Alonso Ponce, Fernando Pérez-Rodríguez, Beatriz Águeda, Saray Martín-García, Raquel Martínez-Rodrigo and Iñigo Lizarralde
Drones 2020, 4(2), 21; https://doi.org/10.3390/drones4020021 - 11 Jun 2020
Cited by 16 | Viewed by 4912
Abstract
Controlling vegetation fuels around human settlements is a crucial strategy for reducing fire severity in forests, buildings and infrastructure, as well as protecting human lives. Each country has its own regulations in this respect, but they all have in common that by reducing [...] Read more.
Controlling vegetation fuels around human settlements is a crucial strategy for reducing fire severity in forests, buildings and infrastructure, as well as protecting human lives. Each country has its own regulations in this respect, but they all have in common that by reducing fuel load, we in turn reduce the intensity and severity of the fire. The use of Unmanned Aerial Vehicles (UAV)-acquired data combined with other passive and active remote sensing data has the greatest performance to planning Wildland-Urban Interface (WUI) fuelbreak through machine learning algorithms. Nine remote sensing data sources (active and passive) and four supervised classification algorithms (Random Forest, Linear and Radial Support Vector Machine and Artificial Neural Networks) were tested to classify five fuel-area types. We used very high-density Light Detection and Ranging (LiDAR) data acquired by UAV (154 returns·m−2 and ortho-mosaic of 5-cm pixel), multispectral data from the satellites Pleiades-1B and Sentinel-2, and low-density LiDAR data acquired by Airborne Laser Scanning (ALS) (0.5 returns·m−2, ortho-mosaic of 25 cm pixels). Through the Variable Selection Using Random Forest (VSURF) procedure, a pre-selection of final variables was carried out to train the model. The four algorithms were compared, and it was concluded that the differences among them in overall accuracy (OA) on training datasets were negligible. Although the highest accuracy in the training step was obtained in SVML (OA=94.46%) and in testing in ANN (OA=91.91%), Random Forest was considered to be the most reliable algorithm, since it produced more consistent predictions due to the smaller differences between training and testing performance. Using a combination of Sentinel-2 and the two LiDAR data (UAV and ALS), Random Forest obtained an OA of 90.66% in training and of 91.80% in testing datasets. The differences in accuracy between the data sources used are much greater than between algorithms. LiDAR growth metrics calculated using point clouds in different dates and multispectral information from different seasons of the year are the most important variables in the classification. Our results support the essential role of UAVs in fuelbreak planning and management and thus, in the prevention of forest fires. Full article
Show Figures

Figure 1

Back to TopTop