Fire Protection Principles and Recommendations in Disturbed Forest Areas in Central Europe: A Review
Abstract
:1. Introduction
2. Forest Disturbances in Central Europe
3. Increasing Forest Fire Danger after Disturbance
4. Managed Forest Stands after Disturbance
4.1. Salvage Logging
- Provide security at power lines in cooperation with the relevant services.
- Provide safety next to buildings (removal of trees hanging next to buildings).
- Process timber from disturbed areas starting in the places with the greatest fire danger, depending on the natural conditions, the composition of tree species, or the volume of the damaged timber.
- Ensure that all forest roads are passible in the entire disturbed area and verify access to and cleaning of all water courses and other water supply points.
- ○
- If there is a “main” water supply point nearby that could be used as a source of water for suppression, focus primarily on making (most important) the forest road network to this supply point passable; immediately afterward, make other water supply points in the disturbed area available.
- ○
- For critical locations with inaccessible or remote water supply points, it is appropriate to secure an alternative source of water for potential suppression (temporary small dams on waterways in the area of the disturbance and in its vicinity or portable water supply points such as tanks).
- Process timber in the disturbed area once all forest roads are made available and all streams and water supply points are clear.
4.2. After Salvage Logging
4.3. Planting a New Forest
4.4. After Planting a New Forest
5. Spontaneously Developing (Unmanaged) Forests after Disturbance
5.1. Prolonging Fire Danger
5.2. Recommendations for Decreasing Fire Danger in Spontaneously Developed Forests
6. Fire Protection of Spontaneously Developed Forests in Central Europe
6.1. Poland
6.2. Czech Republic
6.3. Slovakia
6.4. Austria
6.5. Germany
7. Maximize Prevention and Preparedness
- Develop or apply existing systems for monitoring fire danger in disturbed areas.
- Limit the access of people to the forest and ensure the safety of bystanders.
- Evaluate the coverage of the disturbance area by communication signals.
- Protect particularly endangered fragments by making additional firebreaks.
- Notify the territorial competent fire units of the fire hazard.
- Re-evaluate the number of technical means intended for fire protection and their numerical increase in the disturbed area.
- Equip members of the fire brigade with maps of forest roads and water supply points or ensure GIS data of these roads and water supply points.
- Analyze the possibility of using aerial firefighting (determination of landing and handling areas)
8. When Forest Fire Occurred
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [PubMed] [Green Version]
- Patacca, M.; Lindner, M.; Lucas-Borja, M.E.; Cordonnier, T.; Fidej, G.; Gardiner, B.; Hauf, Y.; Jasinevičius, G.; Labonne, S.; Linkevičius, E.; et al. Significant increase in natural disturbance impacts on European forests since 1950. Glob. Chang. Biol. 2023, 29, 1359–1376. [Google Scholar] [CrossRef]
- Seidl, R.; Schelhaas, M.-J.; Rammer, W.; Verkerk, P.J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Chang. 2014, 4, 806–810. [Google Scholar] [PubMed] [Green Version]
- Reyer, C.P.; Bathgate, S.; Blennow, K.; Borges, J.G.; Bugmann, H.; Delzon, S.; Faias, S.P.; Garcia-Gonzalo, J.; Gardiner, B.; Gonzalez-Olabarria, J.R.; et al. Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests? Environ. Res. Lett. 2017, 12, 034027. [Google Scholar] [CrossRef]
- Schelhaas, M.-J.; Nabuurs, G.-J.; Schuck, A. Natural disturbances in the European forests in the 19th and 20th centuries: Natural disturbances in the European forests. Glob. Chang. Biol. 2003, 9, 1620–1633. [Google Scholar] [CrossRef]
- Seidl, R.; Schelhaas, M.-J.; Lexer, M.J. Unraveling the drivers of intensifying forest disturbance regimes in Europe. Glob. Chang. Biol. 2011, 17, 2842–2852. [Google Scholar] [CrossRef]
- Gregow, H.; Laaksonen, A.; Alper, M.E. Increasing large scale windstorm damage in Western, central and northern European forests, 1951–2010. Sci. Rep. 2017, 7, 46397. [Google Scholar] [CrossRef] [Green Version]
- Ikonen, V.-P.; Kilpeläinen, A.; Zubizarreta-Gerendiain, A.; Strandman, H.; Asikainen, A.; Venäläinen, A.; Kaurola, J.; Kangas, J.; Peltola, H. Regional risks of wind damage in boreal forests under changing management and climate projections. Can. J. For. Res. 2017, 47, 1632–1645. [Google Scholar]
- Senf, C.; Buras, A.; Zang, C.S.; Rammig, A.; Seidl, R. Excess forest mortality is consistently linked to drought across Europe. Nat. Commun. 2020, 11, 6200. [Google Scholar] [CrossRef]
- Hlásny, T.; König, L.; Krokene, P.; Lindner, M.; Montagné-Huck, C.; Müller, J.; Seidl, R. Bark beetle outbreaks in Europe: State of knowledge and ways forward for management. Curr. For. Rep. 2021, 7, 138–165. [Google Scholar] [CrossRef]
- Hlásny, T.; Zimová, S.; Merganičová, K.; Štěpánek, P.; Modlinger, R.; Turčáni, M. Devastating outbreak of bark beetles in the Czech Republic: Drivers, impacts, and management implications. For. Ecol. Manag. 2021, 490, 119075. [Google Scholar] [CrossRef]
- Hlásny, T.; Krokene, P.; Liebhold, A.; Montagné-Huck, C.; Müller, J.; Qin, H.; Raffa, K.; Schelhaas, M.J.; Seidl, R.; Svoboda, M.; et al. Living with Bark Beetles: Impacts, Outlook and Management Options From Science to Policy 8; European Forest Institute: Joensuu, Finland, 2019. [Google Scholar]
- Sommerfeld, A.; Rammer, W.; Heurich, M.; Hilmers, T.; Müller, J.; Seidl, R. Do bark beetle outbreaks amplify or dampen future bark beetle disturbances in Central Europe? J. Ecol. 2021, 109, 737–749. [Google Scholar] [CrossRef]
- Zatloukal, V. Historical and current factors of the bark beetle calamity in the Šumava National Park. Silva Gabreta 1998, 2, 327–357. [Google Scholar]
- Thom, D.; Seidl, R.; Steyrer, G.; Krehan, H.; Formayer, H. Slow and fast drivers of the natural disturbance regime in Central European forest ecosystems. For. Ecol. Manag. 2013, 307, 293–302. [Google Scholar] [CrossRef]
- Stadelmann, G.; Bugmann, H.; Meier, F.; Wermelinger, B.; Bigler, C. Effects of salvage logging and sanitation felling on bark beetle (Ips typographus L.) infestations. For. Ecol. Manag. 2013, 305, 273–281. [Google Scholar] [CrossRef]
- Panayotov, M.; Bebi, P.; Tsvetanov, N.; Alexandrov, N.; Laranjeiro, L.; Kulakowski, D. The disturbance regime of Norway spruce forests in Bulgaria. Can. J. For. Res. 2015, 45, 1143–1153. [Google Scholar] [CrossRef]
- Holeksa, J.; Jaloviar, P.; Kucbel, S.; Saniga, M.; Svoboda, M.; Szewczyk, J.; Szwagrzyk, J.; Zielonka, T.; Żywiec, M. Models of disturbance driven dynamics in the West Carpathian spruce forests. For. Ecol. Manag. 2017, 388, 79–89. [Google Scholar] [CrossRef]
- Janda, P.; Trotsiuk, V.; Mikoláš, M.; Bače, R.; Nagel, T.A.; Seidl, R.; Seedre, M.; Morrissey, R.C.; Kucbel, S.; Jaloviar, P.; et al. The historical disturbance regime of mountain Norway spruce forests in the Western Carpathians and its influence on current forest structure and composition. For. Ecol. Manag. 2017, 388, 67–78. [Google Scholar] [CrossRef] [Green Version]
- Don, A.; Bärwolff, M.; Kalbitz, K.; Andruschkewitsch, R.; Jungkunst, H.F.; Schulze, E.-D. No rapid soil carbon loss after a windthrow event in the High Tatra. For. Ecol. Manag. 2012, 276, 239–246. [Google Scholar] [CrossRef]
- Vanická, H.; Holuša, J.; Resnerová, K.; Ferenčík, J.; Potterf, M.; Véle, A.; Grodzki, W. Interventions have limited effects on the population dynamics of Ips typographus and its natural enemies in the Western Carpathians (Central Europe). For. Ecol. Manag. 2020, 470, 118209. [Google Scholar] [CrossRef]
- Fink, A.H.; Brücher, T.; Ermert, V.; Krüger, A.; Pinto, J.G. The European storm Kyrill in January 2007: Synoptic evolution, meteorological impacts and some considerations with respect to climate change. Nat. Hazards Earth Syst. Sci. 2009, 9, 405–423. [Google Scholar] [CrossRef] [Green Version]
- Nikolov, C.; Konôpka, B.; Kajba, M.; Galko, J.; Kunca, A.; Janský, L. Post-disaster Forest Management and Bark Beetle Outbreak in Tatra National Park, Slovakia. Mt. Res. Dev. 2014, 34, 326–335. [Google Scholar] [CrossRef]
- Cohen, J. Preventing disaster—Home ignitability in the wildland-urban interface. J. For. 2000, 98, 15–21. [Google Scholar]
- Franklin, J.F.; Agee, J.K. Forging a science-based national forest fire policy. Issues Sci. Technol. 2003, 20, 59–66. [Google Scholar]
- Jenkins, M.J.; Hebertson, E.; Page, W.; Jorgensen, C.A. Bark beetles, fuels, fires and implications for forest management in the Intermountain West. For. Ecol. Manag. 2008, 254, 16–34. [Google Scholar] [CrossRef]
- Black, S.H.; Kulakowski, D.; Noon, B.R.; DellaSala, D.A. Do Bark Beetle Outbreaks Increase Wildfire Risks in the Central U.S. Rocky Mountains? Implications from Recent Research. Nat. Areas J. 2013, 33, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Omi, P.N. Theory and Practice of Wildland Fuels Management. Curr. For. Rep. 2015, 1, 100–117. [Google Scholar] [CrossRef] [Green Version]
- Müller, M.M.; Vilà-Vilardell, L.; Vacik, H.; Mayer, C.; Mayr, S.; Carrega, P.; Maier, H. Forest Fires in the Alps: State of Knowledge, Future Challenges and Options for an Integrated Fire Management; EUSALP Action Group: Nice, France, 2020. [Google Scholar]
- Bruchwald, A.; Dmyterko, E. Zastosowanie modelu ryzyka uszkodzenia drzewostanu przez wiatr do oceny prawdopodobieństwa lokalizacji szkód w lasach Regionalnej Dyrekcji Lasów Państwowych w Białymstoku. Sylwan 2019, 163, 629–636. [Google Scholar] [CrossRef]
- Forzieri, G.; Girardello, M.; Ceccherini, G.; Spinoni, J.; Feyen, L.; Hartmann, H.; Beck, P.S.A.; Camps-Valls, G.; Chirici, G.; Mauri, A.; et al. Emergent vulnerability to climate-driven disturbances in European forests. Nat. Commun. 2021, 12, 1081. [Google Scholar] [CrossRef]
- Klimo, E.; Hager, H.; Kulhavý, J. Spruce Monocultures in Central Europe: Problems and Prospects; European Forest Institute: Joensuu, Finland, 2000; Volume 33. [Google Scholar]
- Hansen, J.; Spiecker, H. Conversion of Norway spruce (Picea abies [L.] Karst.) forests in Europe. In Restoration of Boreal and Temperate Forests; Stanturf, J.A., Ed.; CRC Press: Boca Raton, FL, USA, 2005; pp. 339–347. [Google Scholar]
- Sierota, Z.; Grodzki, W.; Szczepkowski, A. Abiotic and Biotic Disturbances Affecting Forest Health in Poland over the past 30 Years: Impacts of Climate and Forest Management. Forests 2019, 10, 75. [Google Scholar] [CrossRef] [Green Version]
- Frolking, S.; Palace, M.W.; Clark, D.B.; Chambers, J.Q.; Shugart, H.H.; Hurtt, G.C. Forest disturbance and recovery: A general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure. J. Geophys. Res. Biogeosci. 2009, 114, 1–27. [Google Scholar] [CrossRef]
- Nagel, T.A.; Mikac, S.; Dolinar, M.; Klopcic, M.; Keren, S.; Svoboda, M.; Diaci, J.; Boncina, A.; Paulic, V. The natural disturbance regime in forests of the Dinaric Mountains: A synthesis of evi-dence. For. Ecol. Manag. 2017, 388, 29–42. [Google Scholar] [CrossRef]
- Bebi, P.S.E.P.; Seidl, R.; Motta, R.; Fuhr, M.; Firm, D.; Krumm, F.; Kulakowski, D. Changes of forest cover and disturbance regimes in the mountain forests of the Alps. For. Ecol. Manag. 2017, 388, 43–56. [Google Scholar] [CrossRef] [Green Version]
- De Cárcer, P.S.; Mederski, P.S.; Magagnotti, N.; Spinelli, R.; Engler, B.; Seidl, R.; Eriksson, A.; Eggers, J.; Bont, L.G.; Schweier, J. The Management Response to Wind Disturbances in European Forests. Curr. For. Rep. 2021, 7, 167–180. [Google Scholar] [CrossRef]
- Křístek, Š.; Holuša, J. Historical abiotic damage to forests in the Moravian-Silesian Beskids (Czech Republic). For. J. 2015, 61, 196–202. [Google Scholar] [CrossRef] [Green Version]
- Ginszt, T.; Laskowska-Ginszt, A. Ten years (2012–2021) of spruce bark beetle Ips typographus (L.) activity in the Bi-alowieza Forest District of the Bialowieza Primeval Forest. Sylwan 2022, 166, 183–193. [Google Scholar]
- Raffa, K.F.; Aukema, B.H.; Bentz, B.J.; Carroll, A.L.; Hicke, J.A.; Turner, M.G.; Romme, W.H. Cross-scale Drivers of Natural Disturbances Prone to Anthropogenic Amplification: The Dynamics of Bark Beetle Eruptions. BioScience 2008, 58, 501–517. [Google Scholar] [CrossRef] [Green Version]
- Baier, P.; Pennerstorfer, J.; Schopf, A. PHENIPS—A comprehensive phenology model of Ips typographus (L.) (Col., Scolytinae) as a tool for hazard rating of bark beetle infestation. For. Ecol. Manag. 2007, 249, 171–186. [Google Scholar] [CrossRef]
- Berec, L.; Doležal, P.; Hais, M. Population dynamics of Ips typographus in the Bohemian Forest (Czech Republic): Validation of the phenology model PHENIPS and impacts of climate change. For. Ecol. Manag. 2013, 292, 1–9. [Google Scholar] [CrossRef]
- Jönsson, A.M.; Appelberg, G.; Harding, S.; Bärring, L. Spatio-temporal impact of climate change on the activity and voltinism of the spruce bark beetle, Ips typographus. Glob. Chang. Biol. 2009, 15, 486–499. [Google Scholar] [CrossRef]
- Jakoby, O.; Lischke, H.; Wermelinger, B. Climate change alters elevational phenology patterns of the European spruce bark beetle ( Ips typographus). Glob. Chang. Biol. 2019, 25, 4048–4063. [Google Scholar] [CrossRef]
- Huang, J.; Kautz, M.; Trowbridge, A.M.; Hammerbacher, A.; Raffa, K.F.; Adams, H.D.; Goodsman, D.W.; Xu, C.; Meddens, A.J.H.; Kandasamy, D.; et al. Tree defence and bark beetles in a drying world: Carbon partitioning, functioning and modelling. N. Phytol. 2019, 225, 26–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthews, B.; Netherer, S.; Katzensteiner, K.; Pennerstorfer, J.; Blackwell, E.; Henschke, P.; Schopf, A. Transpiration deficits increase host susceptibility to bark beetle attack: Experimental observations and practical outcomes for Ips typographus hazard assessment. Agric. For. Meteorol. 2018, 263, 69–89. [Google Scholar] [CrossRef]
- Collins, B.; Rhoades, C.; Battaglia, M.; Hubbard, R. The effects of bark beetle outbreaks on forest development, fuel loads and potential fire behavior in salvage logged and untreated lodgepole pine forests. For. Ecol. Manag. 2012, 284, 260–268. [Google Scholar] [CrossRef]
- Jenkins, M.J.; Runyon, J.B.; Fettig, C.J.; Page, W.G.; Bentz, B.J. Interactions among the Mountain Pine Beetle, Fires, and Fuels. For. Sci. 2014, 60, 489–501. [Google Scholar] [CrossRef] [Green Version]
- Hlaváč, P.; Chromek, I.; Majlingová, A.; Osvald, A. Projekt Protipožiarnej Ochrany na Území Vysokých Tatier po Vetrovej Kalamite: Realizačný Projekt; Technical University Zvolen: Zvolen, Slovakia, 2005. [Google Scholar]
- Jenkins, M.J.; Hebertson, E.G.; Page, W.G.; Lindquist, W.E. Resources for Managing the Impact of Bark Beetle Activity on Conifer Fuels and Fire Behavior; Utah State University: Logan, UT, USA, 2011. [Google Scholar]
- Page, W.; Jenkins, M.J. Predicted fire behavior in selected mountain pine beetle–infested lodgepole pine. For. Sci. 2007, 53, 662–674. [Google Scholar]
- Billings, R.F.; Clarke, S.R.; Espino-Mendoza, V.; Cordón Cabrera, P.; Meléndez Figueroa, B.; Ramón Campos, J.; Baeza, G. Bark beetle outbreaks and fire: A devastating combination for Central America’s pine forests. Unasylva 2004, 55, 7. [Google Scholar]
- Schoennagel, T.; Veblen, T.T.; Negron, J.F.; Smith, J.M. Effects of Mountain Pine Beetle on Fuels and Expected Fire Behavior in Lodgepole Pine Forests, Colorado, USA. PLoS ONE 2012, 7, e30002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, H.E. Heat transfer and fire spread. In Intermountain Forest and Range Experiment Station; Forest Service, US Department of Agriculture: Washington, DC, USA, 1969; Volume 69. [Google Scholar]
- Thomas, P.A.; McAlpine, R.S.; Hobson, P. Fire in the Forest; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Byram, G.M. Combustion of forest fuels. In Forest fire: Control and Use; McGraw-Hill: NewYork, NK, USA, 1959; pp. 61–89. [Google Scholar]
- Alexander, M.E.; Cruz, M.G. Fireline intensity. In Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–8. [Google Scholar]
- Rossi, J.L.; Chatelon, F.J.; Marcelli, T. Fire intensity. In Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires; Springer International Publishing: Cham, Switzerland, 2020; pp. 391–397. [Google Scholar]
- Fischer, A.; Fischer, H.S.; Kopecký, M.; Macek, M.; Wild, J. Small changes in species composition despite stand-replacing bark beetle outbreak in Picea abies mountain forests. Can. J. For. Res. 2015, 45, 1164–1171. [Google Scholar] [CrossRef]
- Kéérik, A.A. Decomposition of wood. In Biology of Plant Litter Decomposition; Dickinson, C.H., Pugh, G.J.F., Eds.; Academic Press: New York, NY, USA, 2012; pp. 129–174. [Google Scholar]
- Platt, W.J.; Gottschalk, R.M. Effects of exotic grasses on potential fine fuel loads in the groundcover of south Florida slash pine savannas. Int. J. Wildland Fire 2001, 10, 155–159. [Google Scholar] [CrossRef]
- Brooks, M.L.; D’Antonio, C.M.; Richardson, D.M.; Grace, J.B.; Keeley, J.E.; DiTomaso, J.M.; Hobbs, R.J.; Pellant, M.; Pyke, D. Effects of Invasive Alien Plants on Fire Regimes. Bioscience 2004, 54, 677–688. [Google Scholar] [CrossRef] [Green Version]
- McDonald, C.J.; McPherson, G.R. Creating Hotter Fires in the Sonoran Desert: Buffelgrass Produces Copious Fuels and High Fire Temperatures. Fire Ecol. 2013, 9, 26–39. [Google Scholar] [CrossRef]
- Wilson, J.B.; Agnew, A.D. Positive-feedback Switches in Plant Communities. In Advances in Ecological Research; Academic Press: New York, NY, USA, 1992; pp. 263–336. [Google Scholar]
- Cannon, J.B.; O’brien, J.J.; Loudermilk, E.L.; Dickinson, M.B.; Peterson, C.J. The influence of experimental wind disturbance on forest fuels and fire characteristics. For. Ecol. Manag. 2014, 330, 294–303. [Google Scholar] [CrossRef]
- Hlaváč, P.; Chromek, I.; Majlingová, A.; Osvald, A. Od Projektu Protipožiarnej Ochrany Lesa vo Vysokých Tatrách po Vetrovej Kalamite po Zmenu Legislatívy v Oblasti Ochrany Lesa pred Požiarmi v Podmienkach Slovenskej Republiky; Technical University Zvolen: Zvolen, Slovakia, 2009. [Google Scholar]
- Hlásny, T.; Augustynczik, A.L.; Dobor, L. Time matters: Resilience of a post-disturbance forest landscape. Sci. Total. Environ. 2021, 799, 149377. [Google Scholar] [CrossRef]
- Dvořák, J.; Bystrický, R.; Hošková, P.; Hrib, M.; Jarkovská, M.; Kováč, J.; Krilek, J.; Natov, P.; Natovová, L. The Use of Harvester Technology in Production Forests; Lesnická práce: Kostelec nad Černými lesy, Czech Republic, 2011. [Google Scholar]
- Szewczyk, G.; Sowa, J.M.; Grzebieniowski, W.; Kormanek, M.; Kulak, D.; Stańczykiewicz, A. Sequencing of har-vester work during standard cuttings and in areas with windbreaks. Silva Fenn. 2014, 48, 1159. [Google Scholar] [CrossRef] [Green Version]
- Ganteaume, A.; Camia, A.; Jappiot, M.; San-Miguel-Ayanz, J.; Long-Fournel, M.; Lampin, C. A Review of the Main Driving Factors of Forest Fire Ignition Over Europe. Environ. Manag. 2012, 51, 651–662. [Google Scholar] [CrossRef] [Green Version]
- Crotteau, J.S.; Keyes, C.R.; Hood, S.M.; Affleck, D.L.R.; Sala, A. Fuel dynamics after a bark beetle outbreak impacts experimental fuel treatments. Fire Ecol. 2018, 14, 13. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Botelho, H.S. A review of prescribed burning effectiveness in fire hazard reduction. Int. J. Wildland Fire 2003, 12, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Loehle, C. Applying landscape principles to fire hazard reduction. For. Ecol. Manag. 2004, 198, 261–267. [Google Scholar] [CrossRef] [Green Version]
- Rummer, R.B. A Strategic Assessment of Forest Biomass and Fuel Reduction Treatments in Western States; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2005. [Google Scholar]
- Knapp, E.E.; Varner, J.M.; Busse, M.D.; Skinner, C.N.; Shestak, C.J. Behaviour and effects of prescribed fire in mas-ticated fuelbeds. Int. J. Wildland Fire 2011, 20, 932–945. [Google Scholar] [CrossRef]
- Swift, M.J.; Healey, I.N.; Hibberd, J.K.; Sykes, J.M.; Bampoe, V.; Nesbitt, M.E. The decomposition of branch-wood in the canopy and floor of a mixed deciduous woodland. Oecologia 1976, 26, 139–149. [Google Scholar] [CrossRef]
- McKeand, S.E.; Abt, R.C.; Allen, H.L.; Li, B.; Catts, G.P. What are the best loblolly pine genotypes worth to landowners? J. For. 2006, 104, 352–358. [Google Scholar]
- Oliveira, T.M.; Barros, A.M.G.; Ager, A.A.; Fernandes, P.M. Assessing the effect of a fuel break network to reduce burnt area and wildfire risk transmission. Int. J. Wildland Fire 2016, 25, 619–632. [Google Scholar] [CrossRef]
- Jones, J.G.; Chew, J.D. Applying simulation and optimization to evaluate the effectiveness of fuel treatments for different fuel conditions at landscape scales. In Proceedings of the Joint Fire Science Conference and Workshop, San Diego, CA, USA, 5–9 April 1999; pp. 89–95. [Google Scholar]
- Finney, M.A. Landscape fire simulation and fuel treatment optimization. In Methods for Integrating Modeling of Landscape Change: Interior Northwest Landscape Analysis System; Gen. Tech. Rep. PNW-GTR-610; US Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2004; pp. 117–131. [Google Scholar]
- Fargione, J.; Haase, D.L.; Burney, O.T.; Kildisheva, O.A.; Edge, G.; Cook-Patton, S.C.; Chapman, T.; Rempel, A.; Hurteau, M.D.; Davis, K.T.; et al. Challenges to the Reforestation Pipeline in the United States. Front. For. Glob. Chang. 2021, 4, 629198. [Google Scholar] [CrossRef]
- King, S.L.; Keeland, B.D. Evaluation of Reforestation in the Lower Mississippi River Alluvial Valley. Restor. Ecol. 1999, 7, 348–359. [Google Scholar] [CrossRef]
- Ouzts, J.; Kolb, T.; Huffman, D.; Meador, A.S. Post-fire ponderosa pine regeneration with and without planting in Arizona and New Mexico. For. Ecol. Manag. 2015, 354, 281–290. [Google Scholar] [CrossRef] [Green Version]
- Omi, P.N.; Martinson, E.J. Effect of fuels treatment on wildfire severity. In Final Report. Joint Fire Science Program Governing Board, Western Forest Fire Research Center; Colorado State University: Fort Collins, CO, USA, 2002. [Google Scholar]
- Kreye, J.K.; Varner, J.M.; Knapp, E.E. Effects of particle fracturing and moisture content on fire behaviour in masticated fuelbeds burned in a laboratory. Int. J. Wildland Fire 2011, 20, 308–317. [Google Scholar] [CrossRef]
- Kilgore, B.M.; Sando, R.W. Crown-fire potential in a sequoia forest after prescribed burning. For. Sci. 1975, 21, 83–87. [Google Scholar]
- Cruz, M.G.; Butler, B.W.; Alexander, M.E.; Forthofer, J.M.; Wakimoto, R.H. Predicting the ignition of crown fuels above a spreading surface fire. Part I: Model idealization. Int. J. Wildland Fire 2006, 15, 47–60. [Google Scholar] [CrossRef]
- Jenkins, M.J.; Page, W.G.; Hebertson, E.G.; Alexander, M.E. Fuels and fire behavior dynamics in bark beetle-attacked forests in Western North America and implications for fire management. For. Ecol. Manag. 2012, 275, 23–34. [Google Scholar] [CrossRef]
- Parviainen, J.; Bücking, W.; Vandekerkhove, K.; Schuck, A.; Päivinen, R. Strict forest reserves in Europe: Efforts to enhance biodiversity and research on forests left for free development in Europe (EU-COST-Action E4). For. Int. J. For. Res. 2000, 73, 107–118. [Google Scholar] [CrossRef]
- Carr, E. “Mission 66”: Modernism and the National Park Dilemma in the United States, 1945–1972. Ph.D. Thesis, University of Edinburgh, Edinburgh, Scotland, 2006. [Google Scholar]
- FAO. Fire Management Global Assessment 2006. A Thematic Study Prepared in the Framework of the Global Forest Resources Assessment 2005; Forestry Paper 151; Food and Agriculture Organization of the United Nations: Rome, Italy, 2007. [Google Scholar]
- Peterson, D.L. Forest Structure and Fire Hazard in Dry Forests of the Western United States; US Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2005; Volume 628. [Google Scholar]
- Snowdon, B.; Nielsen, M.; Thompson, R. Wildlife/Dangerous Tree Assessor’s Course Workbook; Ministry of Environment and Climate Change Strategy: Victoria, BC, Canada, 2019. [Google Scholar]
- Mezei, P.; Blaženec, M.; Grodzki, W.; Škvarenina, J.; Jakuš, R. Influence of different forest protection strategies on spruce tree mortality during a bark beetle outbreak. Ann. For. Sci. 2017, 74, 65. [Google Scholar] [CrossRef] [Green Version]
- Agee, J.K.; Skinner, C.N. Basic principles of forest fuel reduction treatments. For. Ecol. Manag. 2005, 211, 83–96. [Google Scholar] [CrossRef]
- Whigham, D.F.; Olmsted, I.; Cano, E.C.; Harmon, M.E. The Impact of Hurricane Gilbert on Trees, Litterfall, and Woody Debris in a Dry Tropical Forest in the Northeastern Yucatan Peninsula. Biotropica 1991, 23, 434. [Google Scholar] [CrossRef] [Green Version]
- Milne-Rostkowska, F.; Holeksa, J.; Bogdziewicz, M.; Piechnik, Ł.; Seget, B.; Kurek, P.; Buda, J.; Żywiec, M. Where can palatable young trees escape herbivore pressure in a protected forest? For. Ecol. Manag. 2020, 472, 118221. [Google Scholar] [CrossRef]
- Binkley, D.; Fisher, R.F. Ecology and Management of Forest Soils; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Szczygieł, R.; Kwiatkowski, M.; Kołakowski, B. Forest Fire Risk at Białowieża Primeval Forest. Bezp. I Tech. Pozar. 2016, 43, 143–160. [Google Scholar]
- Szczygieł, R.; Kwiatkowski, M.; Kolakowski, B. Influence of bark beetle infestation on the forest fire risk in the Białowieża Forest. Sylwan 2018, 162, 955–964. [Google Scholar]
- Szczygieł, R.; Kwiatkowski, M.; Tyburski, Ł. Monitoring of the Fire Hazard of the Białowieża Forest as a Tool for Crisis Management and Regulation; Fire Protection Laboratory: Raszyn, Poland, 2020. [Google Scholar]
- Szczygieł, R.; Kwiatkowski, M.; Tyburski, Ł. Wpływ Rozpadu Drzewostanów w Wyniku Gradacji Kornika Drukarza (Ips typographus) na Zagrożenie Pożarowe Puszczy Białowieskiej; Fire Protection Laboratory: Raszyn, Poland, 2023. [Google Scholar]
- Omi, P.N. Forest Fires: A Reference Handbook; ABC-CLIO: Santa Barbara, CA, USA, 2005. [Google Scholar]
- Intellinews. Off-the-Scale Wildfire Devastates Czech Republic’s Bohemian Switzerland National Park. 2022. Available online: https://www.intellinews.com/off-the-scale-wildfire-devastates-czech-republic-s-bohemian-switzerland-national-park-251816/ (accessed on 27 July 2022).
- DW. Fires “Under Control” in Saxony and Brandenburg. 2022. Available online: https://www.dw.com/en/wildfires-in-saxony-and-brandenburg-under-control/a-62613303 (accessed on 27 July 2022).
- MDR. Waldbrand am Brocken: Streit um Grösse des Feuers. 2022. Available online: https://www.mdr.de/nachrichten/sachsen-anhalt/magdeburg/harz/waldbrand-brocken-streit-betroffene-flaeche-100.html (accessed on 19 September 2022).
- News in Germany. Forest Fire in the Harz Mountains: Italian Fire-Fighting Aircraft Should Help. 2022. Available online: https://newsingermany.com/forest-fire-in-the-harz-mountains-italian-fire-fighting-aircraft-should-help/ (accessed on 19 September 2022).
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. In Youth Opportunities Initiative; European Commission: Brussels, Belgium, 2011. [Google Scholar]
- Kwiatkowski, M.; Szczygieł, R.; Kołakowski, B. Opracowanie Programów Zabezpieczenia Przeciwpożarowego Ter-Enów Poklęskowych dla Nadleśnictw: Czersk, Przymuszewo, Rytel i Szubin (Development of Fire Prevention Programmes for the Post-Disaster Areas the Forest Districts in: Czersk, Przymuszewo, Rytel and Szubin.); Fire Protection Laboratory: Raszyn, Poland, 2020. [Google Scholar]
- Idnes. “Kdo Chce Mít Z Lesa Prales, Potřebuje vyšetřit, řEkl K Požáru v Hřensku Poslanec”. 2022. Available online: https://www.idnes.cz/zpravy/domaci/pozar-ceske-svycarsko-zakon-pozarni-ochrana.A220915_124824_domaci_hovo (accessed on 15 September 2022).
- Bundesministerium. Risikokarte auf Gemeindeebene. 2023. Available online: https://info.bml.gv.at/themen/wald/wald-und-naturgefahren/waldbrand/risikokarte-gemeindeebene.html (accessed on 9 February 2023).
- Bundesministerum. Brennpunkt Wald. Land- und Forstwirtschaft Regionen und Wasserwirtschaft. 2022. Available online: https://info.bml.gv.at/service/publikationen/wald/brennpunkt-wald-aktionsprogramm-waldbrand.html;%20https://www.alpine-region.eu/results/forest-fires-alps-state-knowledge-and-further-challenges (accessed on 15 May 2022).
- Agee, J.K. Monitoring postfire tree mortality in mixed-conifer forests of Crater Lake. Oregon. Nat. Areas J. 2003, 23, 114–120. [Google Scholar]
- Marañón-Jiménez, S.; Castro, J. Effect of decomposing post-fire coarse woody debris on soil fertility and nutrient availability in a Mediterranean ecosystem. Biogeochemistry 2012, 112, 519–535. [Google Scholar] [CrossRef]
- Marañón-Jiménez, S.; Castro, J.; Fernández-Ondoño, E.; Zamora, R. Charred wood remaining after a wildfire as a reservoir of macro- and micronutrients in a Mediterranean pine forest. Int. J. Wildland Fire 2013, 22, 681–695. [Google Scholar] [CrossRef] [Green Version]
- Talucci, A.C.; Meigs, G.W.; Knudby, A.; Krawchuk, M.A. Fire severity and the legacy of mountain pine beetle outbreak: High-severity fire peaks with mixed live and dead vegetation. Environ. Res. Lett. 2022, 17, 124010. [Google Scholar] [CrossRef]
Storm | Year | Country Affected by Storm (•) | ||||
---|---|---|---|---|---|---|
Czech Republic | Slovakia | Austria | Germany | Poland | ||
Vivian | 1990 | • | ||||
Lothar and Martin | 1999 | • | ||||
Elisabeth/Bora | 2004 | • | ||||
Kyrill | 2007 | • | • | • | • | • |
Klaus | 2009 | • | ||||
Xynthia | 2010 | • | • | |||
Nicklas | 2015 | • | • | • | • | • |
Derecho | 2017 | • | ||||
David (Fiederike) | 2018 | • | • | • | ||
Sabine (Ciara) | 2020 | • | • | • |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berčák, R.; Holuša, J.; Kaczmarowski, J.; Tyburski, Ł.; Szczygieł, R.; Held, A.; Vacik, H.; Slivinský, J.; Chromek, I. Fire Protection Principles and Recommendations in Disturbed Forest Areas in Central Europe: A Review. Fire 2023, 6, 310. https://doi.org/10.3390/fire6080310
Berčák R, Holuša J, Kaczmarowski J, Tyburski Ł, Szczygieł R, Held A, Vacik H, Slivinský J, Chromek I. Fire Protection Principles and Recommendations in Disturbed Forest Areas in Central Europe: A Review. Fire. 2023; 6(8):310. https://doi.org/10.3390/fire6080310
Chicago/Turabian StyleBerčák, Roman, Jaroslav Holuša, Jan Kaczmarowski, Łukasz Tyburski, Ryszard Szczygieł, Alexander Held, Harald Vacik, Ján Slivinský, and Ivan Chromek. 2023. "Fire Protection Principles and Recommendations in Disturbed Forest Areas in Central Europe: A Review" Fire 6, no. 8: 310. https://doi.org/10.3390/fire6080310
APA StyleBerčák, R., Holuša, J., Kaczmarowski, J., Tyburski, Ł., Szczygieł, R., Held, A., Vacik, H., Slivinský, J., & Chromek, I. (2023). Fire Protection Principles and Recommendations in Disturbed Forest Areas in Central Europe: A Review. Fire, 6(8), 310. https://doi.org/10.3390/fire6080310