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Abstract: It is of great significance to understand the drivers of PM2.5 and fire carbon emission (FCE)
and the relationship between them for the prevention, control, and policy formulation of severe PM2.5

exposure in areas where biomass burning is a major source. In this study, we considered northern
Laos as the area of research, and we utilized space cluster analysis to present the spatial pattern of
PM2.5 and FCE from 2003–2019. With the use of a random forest and structural equation model, we
explored the relationship between PM2.5 and FCE and their drivers. The key results during the target
period of the study were as follows: (1) the HH (high/high) clusters of PM2.5 concentration and FCE
were very similar and distributed in the west of the study area; (2) compared with the contribution
of climate variables, the contribution of FCE to PM2.5 was weak but statistically significant. The
standardized coefficients were 0.5 for drought index, 0.32 for diurnal temperature range, and 0.22
for FCE; (3) climate factors are the main drivers of PM2.5 and FCE in northern Laos, among which
drought and diurnal temperature range are the most influential factors. We believe that, as the
heat intensifies driven by climate in tropical rainforests, this exploration and discovery can help
regulators and researchers better integrate drought and diurnal temperature range into FCE and
PM2.5 predictive models in order to develop effective measures to prevent and control air pollution
in areas affected by biomass combustion.

Keywords: PM2.5 drivers; fire carbon emissions; climate factor; spatial distribution; tropical rainforest

1. Introduction

PM2.5 (equivalent diameter less than 2.5 µm in aerodynamics for particulate matter)
has been regarded as the most important air pollutant all over the world during the past
two decades, especially in tropical Southeast Asia (SEA) with frequent open-air biomass
burning (OBB), which includes wildfires and agricultural burning (i.e., burning of crop
residues and land clearing) [1]. About one million wildfires occur worldwide annually,
affecting around 3.5 million square kilometers of vegetation along with carbon emissions
equivalent to one-third of fossil fuel burning [2]. Nearly 70% of these wildfires occur
in tropical forest ecosystems on both sides of the equator. Several studies reported that
global carbon emissions caused by wildfires were about 2 PgC/year during 1997–2015,
of which the net CO2 emissions from tropical deforestation and peatland incineration
were about 0.5 PgC/year, contributing significantly to the increased atmospheric CO2
concentrations [3–5]. To make matters worse, there are about 3.3 million people worldwide
dying prematurely from poor air quality; 5% to 8% of these deaths are attributed to
air pollution caused by fires, which is the main cause of the increased mortality and
environmental threats in tropical regions [4].

The tropics, which have two-thirds of the world’s terrestrial biodiversity, have been
threatened by disasters, including wildfires, exacerbated by climate change and manmade
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disturbances [6]. The Indochina Peninsula in SEA is one of the most important tropical
rainforests on Earth. Under the influence of the South Asian monsoon, the abundant
precipitation and suitable temperature in the rainy season establish high coverage in
the heavily forested region [7]. However, this region is suffering from varying degrees
of damage; the rapid development of agriculture has brought about the cultivation of
previously forested areas. At the same time, a large amount of biomass combustion also
provides an important source of haze pollution in this area [7]. A large number of studies
and satellite maps have confirmed that SEA is one of the regions with the most serious
biomass combustion and air pollution in the world, especially in Laos and Thailand. These
regions distributed numerous active fires and had high concentrations of PM2.5 and fire
carbon emission (FCE) [5,8]. Almost every January to April, severe particulate matter
problems arise in the north of Laos and Thailand with the help of two major contributors:
wildfires and agricultural burning [9]. Several studies also mentioned that, in addition to
negatively affecting local air quality, the emissions from open-air biomass combustion can
have an adverse regional and global impact [10,11]. Therefore, an in-depth study of the
relationship between PM2.5 and FCE, as well as their long-term distribution, is of great
significance for a better understanding of the evolution and origin of PM2.5 in the rainforest
of the northern tropics. PM2.5 can be discharged directly or formed by pollutant precursors
in the atmosphere. The latter form of PM2.5 is influenced by climate; climate change may,
therefore, change the concentration and distribution of PM2.5 [12,13].

Vegetation in tropical regions has reduced adaptability to climate change and seasonal
conditions relative to vegetation in other regions [6]. Thus, climate change may have greater
effects on the FCE and air quality in the tropics than elsewhere. Climate is a major driver of
wildfires, subsequently affecting carbon emissions by regulating vegetation productivity
and fuel moisture [14]. On the other hand, climate change and FCE significantly exacerbate
air pollution and complicate its control [8]. Yet many recent studies focused on the effects
of pollutants on local climate (e.g., air temperature, radiation forcing, and precipitation)
or the impact of weather conditions on pollutants in the short term [15,16]. Fewer studies
have assessed how the long-term climate affected air quality in turn, especially in tropical
rainforests that alternate between dry and wet seasons. For instance, PM2.5 concentrations
in the dry season were higher than in the rainy season due to the reduced precipitation and
the increased biomass combustion, which greatly affected the annual average pollutant
concentration level [7,17]. It is well known that the increase in carbon emissions aggravates
the greenhouse effect and raises the ambient temperature, while the higher temperature is
one of the factors affecting the dispersion of PM2.5. The complex influence of temperature
on PM2.5 is an open area of research [18]. Therefore, it is not enough to carry out air quality
management without a sufficient understanding of the impact of climate change and FCE
on air quality.

Given that the control of open biomass combustion has become an important in-
vestment in air quality management, and that the fire risk due to climate change and
anthropogenic activity is expected to increase, efficiently identifying the drivers of PM2.5
and FCE is becoming increasingly important. In boreal forest, PM2.5 produced by fire
emissions has been widely studied. A complex feedback circuit has been formed between
climate warming and increased lightning, increased fires, and increased pollutant emis-
sions, which has led to increasing forest fires in this area [19,20]. In tropical Southeast Asia,
however, deforestation, grazing, and burning have increased fire frequency. Meanwhile,
some underdeveloped countries do not have enough funds to support fire prevention
infrastructure and equipment; hence, it is difficult to effectively control fire when a fire
breaks out, which expands its spread while increasing fire emission [21,22]. However,
little remains known about the effects of climate change and human disturbance on PM2.5
and carbon emissions arising from fires in tropical regions. To this end, the following
objectives are proposed in this research: (1) to understand the spatial distribution of PM2.5
and FCE in tropical rainforests of northern hemispheres, (2) to understand the contribution
of fire-driven carbon emissions to PM2.5 in tropical rainforests of northern hemispheres,
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and (3) to identify the drivers of PM2.5 and FCE in tropical regions. These explorations and
findings will facilitate the understanding of climate and residents’ control of PM2.5 and FCE
in SEA, the establishment of predictive models for PM2.5 and FCE, and the improvement of
environmental quality in SEA countries.

2. Materials and Methods
2.1. Study Area

SEA is an important source of global biomass burning (BB) emissions [23], and Laos is
one of the major emitters. The study area is located in the tropical rainforest of northern
Laos (NL: 17.5◦–22.5◦N, 100◦–105◦E) (Figure 1) and has a tropical monsoon climate. The
climate is characterized by high annual temperatures (average ~26 ◦C) with obvious dry
and wet seasons in a year. The wet season is from May to October, with the southwest
monsoon prevailing, and the dry season is from November to April of the following year,
with a prevailing northeast wind. The whole region has abundant annual rainfall, with
an annual precipitation of 1250–3750 mm. Due to the humid tropical climate in Southeast
Asia, this region has formed highly dense tropical forests. About 80% of the whole region
constitutes mountains and plateaus, most of which are covered by forests, and the terrain in
the east (Khouang Plateau) is slightly higher than that in the west. According to active fire
data and PM2.5 data in the period of 2003 to 2019 provided by the National Aeronautics and
Space Administration (NASA), we believe that a large number of cases of biomass burning
in the entire SEA tropical may have been associated with particulate matter emissions.
According to the MODIS fire data, the average number of fires in Laos was 39,666 annually
in 2003–2016, most of which were artificial [24].
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Figure 1. Study area. (a–d) Vegetation types, PM2.5 (average from 2003 to 2019), fire carbon emission
(average from 2003 to 2019), and altitude distribution map in the study area, respectively.
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2.2. Data Collection and Process
2.2.1. PM2.5 Data

The PM2.5 data in this study came from the NASA Socioeconomic Data and Applica-
tions Center (SEDAC) (https://sedac.ciesin.columbia.edu/ (accessed on 13 March 2022)).
These PM2.5 estimates were translated from aerosol optical depth (AOD) retrievals obtained
by combining the NASA Moderate Resolution Imaging Spectroradiometer Collection 6.1
(MODIS C6.1), Multiangle Imaging SpectroRadiometer Version 23 (MISRv23), MODIS
Multi-Angle Implementation of Atmospheric Correction Collection 6 (MAIAC C6), and the
SeaViewing Wide Field-of-View Sensor (SeaWiFS) satellite algorithms. After that, the AOD
data were correlated with surface PM2.5 using the GEOS-Chem chemical transport model
and combining geographically weighted regression (GWR) to adjust the PM2.5 bias of each
pixel in the satellite’s initial values [25]. Since this method has been used to create long-term
PM2.5 data records with relatively fine spatial resolutions (~1–10 km), many scholars have
used them to study various spatial scales or long-term regularities [26]. The temporal and
spatial resolutions of the global annual PM2.5 grid data are annual and 0.01◦, respectively.

2.2.2. The Fire Carbon Emission (FCE) Data

FCE data (unit: gCm−2·month−1) used in the study came from the fourth version of
the Global Fire Emissions Database (GFED4s), which combines satellite information on fire
activity and vegetation productivity to estimate monthly burn area and fire emissions [5].
GFED4 has been used in large-scale atmospheric and biogeochemical studies [27,28]. The
spatial and temporal resolution of these data are 0.25◦ and monthly, respectively, and they
are available from http://www.globalfiredata.org (accessed on 14 March 2022).

2.2.3. Climate Data

CRU TS (Climatic Research Unit gridded Time Series) is one of the most widely
used meteorological datasets produced by the UK’s National Center for Atmospheric
Sciences (NCAS) [29]. CRU TS provided our study with monthly mean temperature
(TMP; 2 m above the surface), diurnal temperature range (DTR; 2 m above the surface),
precipitation, and potential evapotranspiration data with 0.5◦ resolution from 1901 to 2020
(https://crudata.uea.ac.uk/cru/data/hrg/ (accessed on 17 March 2022)). The availability
of these datasets including previous and current versions (updated to Version 4) was
discussed in [29,30].

Severe drought and the subsequent increase in wildfires have been confirmed as key
processes of climate change [31]. The general definition of drought is based on the aridity
index (AI), i.e., the ratio of annual average precipitation (P) to potential evapotranspiration
(PET). Therefore, AI was calculated using the precipitation and potential evapotranspiration
variables in the above datasets.

The information on soil moisture is the volume of water in the soil surface layer
(0–7 cm) provided by the ECMWF Integrated Forecasting System (downloaded from
https://cds.climate.copernicus.eu/(accessed on 18 March 2022)). It is a post-processed
subset of the full ERA5-Land dataset [32]. The soil moisture content changes are associated
with meteorological factors (mainly precipitation), soil characteristics (porosity, weight,
permeability, etc.), vegetation conditions, and human activities [33,34]. In turn, the lack
of water in the soil leads to insufficient moisture absorption by plant roots and plant
transpiration also makes plants lose a lot of water, resulting in plant moisture loss and
dryness, which increases the flammability of fuel [34].

2.2.4. Vegetation and Topography Data

Leaf area index (LAI), also known as leaf area coefficient, refers to the projected area
of leaves over per unit ground surface (m2·m−2). It plays a vital role in energy (including
radiation) and matter exchange between the crown and atmosphere. LAI is an important
structural property of vegetation and is used to characterize vegetation productivity and
eco-hydrological information. Furthermore, LAI has been identified by researchers as one
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of the influencing factors for forest regulation of PM2.5 and wildfires [31,35]. LAI datasets
used in this study came from the Copernicus Climate Change Service (C3S) Data Platform
(https://cds.climate.copernicus.eu/ (accessed on 18 March 2022)).

Elevation data, which can be found at https://pubs.er.usgs.gov/ (accessed on 18
March 2022), were sourced from the Global Multi-resolution Terrain Elevation Data 2010
(GMTED2010) jointly produced by the United States Geological Survey (USGS) and the
National Geospatial Intelligence Agency (NGA) [36]. The elevation data are available at
three different resolutions (about 1000, 500, and 250 m). We used the highest resolution
(i.e., 250 m) for our study.

2.2.5. Anthropic Factors

Anthropic factors are very important in wildfire prediction and fire risk assessment.
Especially in the tropics, the majority of wildfires are caused by human activities, through
accidents, negligence, or intentional fire acts influenced by indigenous fire culture [37].
With the increasing impact of human activities on the tropical rainforest ecosystem, human
activities with more complex internal factors challenge the traditional single indicator to
describe the impact of human activities. In this study, we used the human footprint and
degree of hemeroby (a method to assess the naturalness of vegetation) to characterize and
quantify the intensity of human activities according to the research results of Liu et al. [38].
Six spatial data indicators (population density, land use, grazing density, nighttime lighting
data, and railway and highway buffer zone) were used to establish the human footprint
index of the study area from 2003 to 2019, and the data of the protected areas, lakes,
and reservoirs and other points of interest were corrected [39]. The human interference
degree is based on the hemeroby scale to evaluate the impact of human activities on the
ecosystem by assigning different interference types (land-use types) (see Beyhan et al. [40]
for assignment criteria.).

2.2.6. Scale of Study Cell

In order to have a unified spatial scale, ArcGIS 10.6 software was adopted to divide
the study area into 6690 5 × 5 km grid cells. Then, all data variables were redistributed
to these cells. This task was performed using the “zonal statistics as table” tool in ArcGIS.
Summary statistics of all variables are given in Table 1.

Table 1. Global Moran’s I of PM2.5 concentration and fire carbon emission in the study area.

Variables Region Global Moran’s I z-Score p-Value

PM2.5 concentration NL 0.996 112.664 <0.0001
Fire carbon emission NL 0.963 110.963 <0.0001

2.3. Data Analysis
2.3.1. Spatial Analysis

We conducted a spatial autocorrelation analysis using ArcGIS 10.6 to explain the
spatial correlation among all PM2.5 concentrations and carbon emission from wildfire units
in the study area. The global Moran’s I, z-score, and p-values were used to describe the
spatial correlation degree and significance of all cells for PM2.5 concentrations and carbon
emission in the study area. The global Moran’s I is defined as follows [41,42]:

I =
n

n
∑

i=1

n
∑

j=1
wi,j

.

n
∑

i=1

n
∑

j=1
wi,j(Xi − X)(Xj − X)

n
∑

i=1
(Xi − X)

2
, (1)

where Xi and Xj denote the observed values of the variable under study at locations i and
j, respectively, X is the average of Xi over the n locations, and wij is the spatial weight

https://cds.climate.copernicus.eu/
https://pubs.er.usgs.gov/
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measured within a given distance or bandwidth. If location j is a neighbor of the subject
location i, wij = 1; otherwise, wij = 0. A value of I > 0 indicates spatial positive correlation,
while I < 0 indicates a spatial negative correlation, and I = 0 reflects that the space is random.

In addition, the z-score of global autocorrelation statistical data is calculated as follows:

zI =
I − E[I]√

V[I]
, (2)

where E[I] = − 1
n−1 and V[I] = E[I2]− E[I]2 represent the expectation and variance of the

global Moran’s I, respectively.
Corresponding to the global Moran’s I is the local Moran’s I. It can be clearly seen

that the global Moran’s I is the mean of the local Moran’s I to i (see Equation (3), where
parameter interpretation is the same as for Equation (1)) [42,43]. The local Moran’s I reflects
the spatial autocorrelation of the units in the study area, i.e., the correlation between a
certain spatial unit and its adjacent spatial unit. We used the cluster/outlier analysis
(Anselin local Moran’s I) in ArcGIS 10.6 to understand the spatial correlation patterns of
PM2.5 concentrations and wildfire carbon emissions in different spatial locations. The tool
has the ability to identify spatial clusters of high- or low-value cells and determine spatial
outliers (high value surrounded by a low value or low value surrounded by a high value).
Clustering/outlier analysis can also yield local Moran’s I, accompanied by the z-score
(Equation (4)) and p-value to explain the statistical significance of local Moran’s I.

Ii =

n(Xi − X)
n
∑

j=1,j 6=i
wi,j(Xj − X)

n
∑

i=1
(Xi − X)

, (3)

zIi =
Ii − E[Ii]√

V[Ii]
m (4)

where E[Ii] = −

n
∑

j=1,j 6=i
wi,j

n−1 and V[Ii] = E[Ii
2]− E[Ii]

2 represent the expectation and variance
of the local Moran’s I, respectively.

2.3.2. Random Forest (RF) Regression

We used an established technique, namely, random forest (RF), to build predictive
models and analyze the relationship between predictors and PM2.5 and FCE. RF can perform
classification or regression predictions depending on whether the target variable type is
categorical or continuous [44]. Assuming that the number of samples and variables in the
training set is N and M, respectively, the algorithm of RF is as follows: (1) N samples are
randomly selected from a training set to generate a regression tree; (2) randomly selected
m (<M) variables are selected on each node as candidate variables to split this node. The
number of variables on each node needs to be consistent; (3) the results of each regression
tree are integrated to generate the predicted values; (4) the response variables corresponding
to the sample points that are not used when generating the tree can be estimated by the
generated tree, and the out-of-bag (OOB) error can be obtained by comparing with the true
value [45]. This is a major advantage of RF when test sets are not available. In addition, the
RF algorithm can calculate the relative importance of explanatory variables. These reasons
led us to consider RF to perform the statistical analysis of this study. It has the highest
accuracy among all the similar algorithms (decision tree) at present and can effectively
process the data with many missing data [45,46]. This is why RF has been widely used in
past studies to identify factors contributing to wildfires and air pollution [47,48].

It is worth noting that two important parameters, i.e., the number of regression
trees (ntree) and the number of optimal competitive variables of nodes (mtry), need to be
determined in the calculation of RF. With the increase in the number of regression trees,
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the error of a random forest will decrease until it tends to be stable, signifying an optimal
value. The parameter ntree is calculated after determining mtry. When the errors in the
model are stable, the minimum value of ntree is used as the parameter to train the model
(the calculation result is shown in Result.). For the value of mtry, we refer to the suggestion
of Liaw and Wiener [49] to select mtry = M/3 for RF regression, where M is the number
of variables.

2.3.3. Assessment of Variable Importance

By using the variable importance measure of the random forest algorithm, the impor-
tance of features can be ranked, and the features with higher importance can be selected. In
the RF model, the common evaluation indicators of variable importance measurement are
the increase in mean square error (IncMSE) and the increase in node purity (IncNodePu-
rity). IncMSE refers to the increase in the error estimated by the RF model relative to the
original error after the random value of the variable. A larger IncMSE value indicates
a more important variable. IncNodePurity refers to the influence degree of the variable
on each decision tree node. A greater value indicates a more important variable, while a
lower value indicates relative unimportance. In this study, IncNodePurity was used as the
evaluation index of variable importance.

2.3.4. Evaluation of RF

Several parameters that have been widely used in previous studies were considered as
model evaluation indicators in this study. The coefficient of determination R-squared was
used to describe the fitting effect between observed and RF algorithm estimated response
variables. Mean absolute error (MAE) is the average of the absolute value of the error
between the predicted value and the real value. It was used to describe the error between
the observed and predicted fire density. Root-mean-square error (RMSE) was also used to
measure the error rate of the regression model, which can detect the dispersion of error.
However, RMSE could be dominated by some large values to bring deviation to many
values because of the wide range of predicted values in our research. In order to solve
this problem of RMSE evaluation, root-mean-square logarithmic error (RMSLE), whereby
the predicted and the observed values were logarithmized before calculating the RMSE,
was utilized. In addition, RF technology provides users with an index (percentage of the
variable explained, % Var.explained) of the explanatory ability of the model composed of
predictive variables to the changes of target variables.

In this study, we carried out RF regression analysis in R environment software through
the “rfPermute” package, which can calculate the significance of predictors’ importance.
Meanwhile, the significance of the model was evaluated using the “A3” package in R [50].

2.3.5. Structural Equation Model (SEM)

The structural equation model was used to test the direct and indirect effects of
potential factors on PM2.5 and FCE. Structural equation modeling (SEM) is a method of
establishing, estimating, and testing causal relationship models among variables, also
known as covariance structure analysis. This method is a combination of factor analysis
and multiple regression analysis, which is used to analyze the structural relationship
between response variables and predictors. Due to the ability to estimate the dependencies
among multiple interrelated variables in one analysis [51], SEM has gradually become the
highlight of articles in various fields, serving for the systematic summary and analysis
of the ideas and results of articles [51,52]. In this study, the modeling of the path and the
structural relationship of variables were realized using the “lavaan” package in R. According
to previous studies, the validity and parsimony of the model were judged using the root-
mean-square error of approximation index (RMSEA < 0.05), standardized root-mean-square
residual index (SRMR < 0.08), goodness-of-fit index (GFI > 0.90), and comparative fit index
(CFI > 0.90) [52].
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3. Results
3.1. Spatial and Temporal Distribution of FCE and PM2.5

The results of the global spatial autocorrelation analysis show that the global Moran’s
I values of the study areas were greater than 0, and all of them passed the 5% significance
level test (Table 2), which indicates that the spatial correlation of FCE and PM2.5 in the study
area was positive. In order to further explore the spatial association, difference degree, and
aggregation distribution between local and surrounding areas, the research team obtained
the local Moran’s I scatter diagram, in which the spatial patterns of PM2.5 exposure and FCE
in study regions were analyzed using the local spatial statistical technique. The high/high
cluster (HH in Figure 2a,b) indicated that the values of PM2.5 exposure and FCE of this area
were higher than the average values of the whole region, and the values of region around
the high PM2.5 exposure and FCE were also higher than the average values, which reflected
the positive autocorrelation of the variable. Similarly, the low/low cluster exhibited that
the values of PM2.5 exposure and FCE were lower than the average values of the whole
region, and the values of their surrounding area were also lower than the average values,
which was also a positive autocorrelation. Negative autocorrelation included low/high
(LH) and high/low (HL) outliers; however, no negative spatial autocorrelation was found
in our study. According to the spatial clustering degree of PM2.5 concentration, the number
of HH cells was higher than that of LL cells (52.8% > 46.5%, Figure 2a) in NL, but the FCE
was the opposite (HH: 42.3% < LL: 55.7%, Figure 2b).

In view of the fact that the scatter plot cannot intuitively identify the local correlation
types and clusters and their statistical significance, we drew the local indicators spatial
autocorrelation (LISA) cluster map (Figure 2c–f). A LISA diagram is mainly used to
test the local autocorrelation of variables. In terms of the aggregation effect for both
PM2.5 concentration and FCE, the areas with statistical significance were greater than
those without significance in NL. In addition, most of the significant areas belonged to
an extremely significant level (p < 0.001) (Figure 2d,f). As expected, the LISA diagrams
indicated that not all types of clustered areas were significant. Taking the distribution of
PM2.5 exposure as an example, the global Moran’s I scatterplot illustrates that the HH
regions covered 42.3% of cells, but only 22% of the statistically significant areas.

Table 2. The summary statistics of the variables for the studied region. Note: FCE is the fire carbon
emission, AI is the aridity index, TMP is the annual average temperature at 2 m, DTR is the average
daily temperature range, LAI is the vegetation leaf area index, and SM is the soil moisture.

Variables/Unit Minimum 1st Quartile Median Mean 3rd Quartile Maximum

PM2.5 (ug·m−3) 21.35 26.52 29.61 29.26 31.75 37.56
FCE (PgC·year−1) 2.331 52.926 69.417 73.9 89.581 285.239

AI 1 1.265 1.354 1.402 1.545 1.898
TMP (◦C) 20.29 22.38 23.01 23.16 23.76 27.04
DTR (◦C) 7.099 8.571 9.373 9.501 10.476 11.757

Elevation (m) 153.5 579.5 799.8 803.8 1025.2 2234.2
Footprint 0.0951 10.4115 15.696 16.0133 20.4711 57.8405

Hemeroby 0.7017 1.4616 1.7478 1.8271 1.9724 6.4505
LAI 54.07 374.21 450.49 444.06 524.3 814.82
SM 0.274 0.3969 0.407 0.4046 0.4171 0.4512
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Figure 2. Spatial distribution pattern of PM2.5 concentration and FCE in the study area based
on cluster and outlier analysis (Ansel in local Moran’s I). (a,b) Moran’s I scatter plot of PM2.5

concentration and FCE in NL, respectively. The abscissa is the observed value of PM2.5 concentration
and FCE of a spatial unit (after standardization), while the ordinate is the “lagged” value of the
spatial unit, i.e., the average value of the observed PM2.5 concentration and FCE of adjacent units
(after standardization); (c,e) LISA agglomeration of PM2.5 concentration and FCE in study areas;
(d,f) distribution of areas significant or not for LISA agglomeration.

3.2. The Importance of Influencing Factors of PM2.5 and FCE

We employed RFs to describe the relationship between PM2.5 exposure and FCE, as
well as their drivers. The results reveal that the fitting of the RF was statistically significant
(p-value < 0.001 in Figure 3a,b). Figure 4 demonstrates the importance of explanatory
variables affecting PM2.5 and FCE during the entire 17 year period through RF (17 year
average). From the results, it is clear that climate factors had the most important impact
on PM2.5 concentration and FCE in all variables, especially AI and DTR. Among the
explanatory variables of PM2.5 concentration, AI was the most important factor, followed
by the effect of DTR. Differently, DTR was the most important followed by AI in explanatory
variables of FCE. Additionally, the importance of TMP to PM2.5 and FCE in NL was also
very significant. Another variable worthy of attention was SM, which had no significant
importance to PM2.5, but it had outstanding performance among many factors of FCE. At
the same time, it could be known through the local importance diagram that variables
important in the global ranking were also of the most importance in the local importance
ranking, such as AI and DTR (Figure 3c,d).

In addition, our findings on annual analysis imply that climatological factors main-
tained high importance among the factors affecting PM2.5 concentration and FCE each
year, while human impacts were weak and stable for both PM2.5 and FCE. In NL, the order
of factors was relatively stable each year; AI was the most important influence factor of
PM2.5 concentration in each year, followed by DTR and TMP, which was consistent with the
average result of 17 years (Figure 4a). Similarly, the climate was the dominant influencing
factor of FCE. However, AI’s contribution to FCE was not always the strongest over the
period 2003–2019. The most important factors affecting FCE alternated between AI and
DTR (Figure 4b).



Remote Sens. 2022, 14, 4052 10 of 18

Remote Sens. 2022, 14, x FOR PEER REVIEW 10 of 19 
 

 

effect of DTR. Differently, DTR was the most important followed by AI in explanatory 

variables of FCE. Additionally, the importance of TMP to PM2.5 and FCE in NL was also 

very significant. Another variable worthy of attention was SM, which had no significant 

importance to PM2.5, but it had outstanding performance among many factors of FCE. At 

the same time, it could be known through the local importance diagram that variables 

important in the global ranking were also of the most importance in the local importance 

ranking, such as AI and DTR (Figure 3c,d). 

In addition, our findings on annual analysis imply that climatological factors main-

tained high importance among the factors affecting PM2.5 concentration and FCE each 

year, while human impacts were weak and stable for both PM2.5 and FCE. In NL, the order 

of factors was relatively stable each year; AI was the most important influence factor of 

PM2.5 concentration in each year, followed by DTR and TMP, which was consistent with 

the average result of 17 years (Figure 4a). Similarly, the climate was the dominant influ-

encing factor of FCE. However, AI’s contribution to FCE was not always the strongest 

over the period 2003–2019. The most important factors affecting FCE alternated between 

AI and DTR (Figure 4b). 

 

Figure 3. Variable importance rank (IncNodePurity—increase in node purity) of PM2.5 concentration 

(a) and FCE (b) from RF in NL in 17 years (average). The orange and blue bars represent the signif-

icant (α < 0.05) importance of the variable, while the black bar represents the insignificant im-

portance of the variable. Var explained reflects the overall explanatory rate of predicted variables to 

PM2.5 and FCE related to variance; p-value is the significance of the RF model based on complete 

variables. (c,d) Local importance maps of the PM2.5 concentration and FCE variables, respectively. 

Figure 3. Variable importance rank (IncNodePurity—increase in node purity) of PM2.5 concentration
(a) and FCE (b) from RF in NL in 17 years (average). The orange and blue bars represent the significant
(α < 0.05) importance of the variable, while the black bar represents the insignificant importance
of the variable. Var explained reflects the overall explanatory rate of predicted variables to PM2.5

and FCE related to variance; p-value is the significance of the RF model based on complete variables.
(c,d) Local importance maps of the PM2.5 concentration and FCE variables, respectively.
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3.3. The Variables Selected and Goodness of Fit for RF

According to the characteristic that the error of RF model would decrease with the
increase in the number of regression trees and the number of variables, we calculated
the relationship between the number of trees and the model error (Figure 5a,b), and then
the relationship between the number of variables and the error was verified by 10-fold
cross-validation (Figure 5c,d). The results show that, when the number of trees was greater
than 500, the error rate of the model was basically stable and consistent for both PM2.5 and
FCE fitting. For the data of this study, 500 trees were enough to stabilize the error but not
too many so as to lead to overfitting. In order to shorten the running time of the RF model,
we reduced the number of trees under the condition of ensuring effectiveness; we set the
parameter ntree = 500 for the RF operation.
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Figure 5. Random forest error graphs. (a,b) Relationship between the number of trees and the
error of the RF model for PM2.5 and FCE, respectively; (c,d) relationship between the number of
variables and the error of the RF model for PM2.5 and FCE under 10-fold cross-validation, respectively;
(e,f) relationship between the number of variables and error of RF model for PM2.5 and FCE under
multiple cross-verifications, respectively.

Figure 5c,d reveal that the number of optimal variables was 4 for PM2.5 and FCE.
Furthermore, Figure 5e,f compare the replicate cross-validation curves of PM2.5 and FCE
fitting with environmental factors, which shows that the calculation results were reliable,
especially the fitting results of PM2.5 and explanatory variables. It is worth mentioning that
the order in which variables changed in Figure 5c–f was determined by their importance,
i.e., the first four variables in Figure 3a,b were determined to be the optimal variables (i.e.,
PM2.5: AI, DTR, TMP, FCE; FCE: DTR, AI, TMP, SM) on the basis of the number of variables
corresponding to the minimum error. This finding was consistent with the results at the
significance level.

Figure 6 displays the relationship between the observed and predicted values of PM2.5
and FCE generated by RF. The R2 values of the regression fitted line between the observed
and predicted PM2.5 exposure and FCE in the study region exceeded 0.98. Moreover, there
was not much difference between the RMSEs in the fitting results of the complete and
optimal variable for the fit of the PM2.5 or FCE, and MAEs were no exception. Meanwhile,
we also found that the variance explained in the RF fitting of PM2.5 and environmental fac-
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tors was higher than the fitting result of FCE and environmental factors (99.47% > 91.81%)
(Figure 3). All evidence suggested that RF had an excellent ability to simulate the relation-
ship among PM2.5 concentration, FCE, and environmental factors in NL.
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3.4. Climate Factors Control on PM2.5 Exposure and FCE

Superior results were seen for the utility of SEM-based on variables selected by RF in
the study area. The fitting indices of the model were all within the range of the specified
values (GIF = 1 > 0.9, CIF = 0.999 > 0.9, RMSEA = 0.045 < 0.05, SRMR = 0.004 < 0.08). The
main results of the relationship path diagram given by SEM were consistent with RF. The
meteorological factors had dominant control over PM2.5 and FCE under standardized data,
but the intensity of the relationships between them was slightly different (Figure 7a). AI
had the strongest direct influence on PM2.5 exposure, followed by DTR and FCE (their
normalized coefficients were 0.32 and 0.22, respectively), while the weakest direct influence
was seen for TMP (Figure 7b). This suggested that AI had the highest contribution of 0.5 to
PM2.5, while TMP had the weakest contribution of 0.17.
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Figure 7. The impacts of meteorological factors on PM2.5 exposure and FCE in NL as estimated
using structural equation modeling (a). Blue and red lines indicate the paths of positive and negative
relationships, respectively. The width of the lines represents the strength of standardized path
coefficients. Gray dotted lines denote the covariance of exogenous variables. Single-head arrows
present the hypothesized direction of causation. The number beside the dotted line is the standardized
path coefficient. (b) Direct and indirect influence of climate and FCE on PM2.5 exposure. The x-axis
represents the standardized effects from SEM. Among them, the direct effect value was directly
obtained from Figure 7a, and the indirect effect was obtained by multiplying two direct effects.

In addition, the indirect effect of the climatological factors on PM2.5 is displayed in
Figure 7b. Among them, the strongest indirect effect on PM2.5 was seen for DTR (the
indirect effect was obtained by multiplying the direct effect of DTR on FCE with the direct
effect of FCE on PM2.5, i.e., 0.43 × 0.22 = 0.0946), followed by TMP (0.0.17 × 0.22 = 0.0374).
Simultaneously, the weak indirect effects of AI and SM on PM2.5 could be observed in
NL. We observed that almost all variables had positive effects on the PM2.5 exposure of
NL besides AI. On the other hand, the direct influence of DTR on the FCE in NL was
much greater than that of the other factors, while TMP had the same effect on FCE as
PM2.5. Moreover, the direct influence of AI and SM on FCE in NL was only 0.04 and
0.03, respectively.

4. Discussion

The spatial autocorrelation technique was used to analyze the spatiotemporal dis-
tribution of PM2.5 concentrations and FCE in the tropical rainforests of northern Laos
from 2003 to 2019. According to the results of spatial cluster analysis, PM2.5 in northern
Laos showed a significant spatial clustering state. The HH and LL clustering of PM2.5
was distributed in the west and east of the study area, respectively. The HH clustering
was also found in the west of the study area similar to the FCE distribution, while its LL
clustering distribution was scattered. Obviously, the HH cluster distribution area of PM2.5
concentration overlapped with that of FCE in a large range (Figure 2). PM2.5 and FCE in
the west of the study area both exceeded the average level of the whole region, and the
adjacent surrounding areas also presented the same situation. This finding is consistent
with some previous research results [7–9]. From the perspective of space, the wet season
ensures that areas with a large number of forests and shrubs (Figure 1a) have sufficient live
or dead combustibles every year, which provides an opportunity for fires to break out in
the following dry season. In addition, we found evidence of their consistent distribution in
remote sensing data, including the distribution of ignition points in MODIS fire activity
products, as well as estimates of FCE and PM2.5 concentration data (Figure 1b,c). From
a temporal point of view, March–April is the last period of the dry season in the study
area, while rising temperatures bring high-frequency wildfires with the help of a large
amount of fuel accumulated in the previous wet season [21]. On the other hand, exotic
PM2.5 may also be one of the reasons for the stable high concentration of PM2.5 in the
region. Ma et al. [7] mentioned in their study that, under the influence of the perennial
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South Asian monsoon, the air mass carried a large amount of flue gas particulate matter
from the southwest (India). On the other hand, this gas particulate matter was blocked
by the higher terrain in the east (Figure 1d). Nguyen et al. [8] confirmed that the future
increase in PM2.5 on the Southeast Asian continent will also be related to the increase in
pollutant emissions in India, Cambodia, Laos, Thailand, and Vietnam.

Climate factors play a vital role in influencing PM2.5 concentrations in northern Laos,
and several studies have provided evidence to support this finding [9,17,22,53]. In the
present study, we characterized that drought has a strong negative association with PM2.5
concentrations and FCE. It is well known that vegetation can absorb pollutants from
the air through stomas when there is adequate moisture in the environment. However,
in a drought environment, vegetation shrinks stomas to prevent moisture loss, thereby
reducing the ability to absorb and capture PM2.5 in the air [54]. On the other hand, drought
dehydrates the protoplasm in the tree, makes the leaf smaller, and promotes aging while the
stomas are closed, resulting in the leaves falling off [55]. This situation reduces the overall
wind-proof capacity of the forest and is not conducive to the deposition of particulate
matter. However, other studies discovered that the effects of drought on air quality are not
limited to vegetation, especially PM2.5 and O3. Wang et al. [56] believed that the elevation
of PM2.5 was attributed to the comprehensive effects of drought on natural emissions
(wildfire emission, volatile organic compounds, and dust), as well as their deposition and
chemistry. Demetillo et al. [57] analyzed the data of satellites and remote sensing and
found that drought caused difficulties in purifying air pollution in California with frequent
wildfires. Meanwhile, the researchers also identified the important role of drought factors
in the future modeling of air pollution.

We did not find provisionally direct evidence for the effects of diurnal temperature
range on PM2.5 from the existing literature. We consider the annual average DTR as a
prediction index and analyze its impact on PM2.5 in this study. The main reason is that DTR
related to the maximum and minimum air temperatures is an important indicator of climate
change, compared with the annual average temperature, as it contains more information
and better reflects the characteristics of regional temperature variation and its impact [21].
We observed a significantly positive effect of annual average DTR on PM2.5. This result
supports discoveries in other regions, i.e., that the upward trend of changes in maximum
and minimum temperatures in recent years is linked to air quality and visibility [58]. One
reason is that a larger diurnal temperature range produces a stronger thermal inversion
phenomenon. The emergence of the thermal inversion layer hinders the vertical flow of air,
which poses a difficulty for the transport and diffusion of pollutants in the atmosphere near
the ground [59]. Furthermore, the diurnal temperature range is the main factor influencing
wildfires. A larger diurnal temperature range results in a larger solar elevation angle and
less resistance to solar radiation caused by the shorter path. This situation reduces the fuel
moisture content [21], which increases the frequency of wildfires and subsequent FCE.

It is easy to find the negative relationship between air pollution emission concen-
tration and temperature in the short term from previous research. Indeed, the increase
in temperature results in the mixed layer continuously increasing, while the atmosphere
diffuses easily in the longitudinal direction. The mixing layer height is an important climate
factor that affects the vertical diffusion of atmospheric pollutants [60,61]. In addition, the
surface temperature has a greater impact on the height of the mixed layer, and a higher
temperature results in a higher mixed layer [62]. Meanwhile, the large thickness of the
mixed layer also gives more room for diluting particulate matter [63]. We found, however,
a positive effect of annual mean temperature on PM2.5 concentration in our study. The fifth
assessment report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) noted
that seasonal average and annual average temperatures in the tropics were expected to
increase more than in the middle latitudes, meaning that Southeast Asia might be more
vulnerable to global warming than the rest of Asia. Warming increases the frequency of
wildfires, causing a sharp increase in subsequent FCE, while also exacerbating particulate
emissions in the air. On the other hand, a possible reason is that the rapid warming of the
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near-surface atmosphere leads to the enhancement of the thermal stability of the lower
atmosphere under the background of global warming caused by greenhouse gases. This
situation further inhibits the vertical movement of the air and worsens the conditions for
the dispersion of particulate matter [64,65]. Another reason is that the reduction in ice in the
Arctic sea caused by global warming affects the entire atmospheric circulation, especially
the more pronounced amplitude of warming in winter. Simultaneously, the weakening of
winter winds in East Asia has led to a weakening of the activity of cold air in the north,
i.e., the north winds that can blow away smog in the near-surface and upper atmosphere
have become weaker and smaller, which provides an opportunity for particulate matter
retention [66].

In this study, we observed weak negative feedback of soil moisture on FCE. The water
vapor exchange between surface fuel and soil surface regulates the fuel moisture content,
which plays a crucial role in the occurrence of forest fires [67]. In the study of peat fire in
Indonesia, Dadap et al. [68] found that the drought of soil led to wildfires, and subsequent
uncontrolled fires were associated with haze weather in the local and surrounding areas
or nations.

Limitations

Nevertheless, there were still some limitations in our research. First of all, climate
warming increases the probability of pests and also salt soil because of the rise in sea level,
affecting rice production in Southeast Asia. In order to make a living, indigenous peoples
develop and expand the available land through deforestation and burning, which not
only leads to a reduction in forest vegetation, but also causes serious smog problems [69].
However, the human footprint index and the human disturbance index that we considered
in the study did not seem to play an important role as representatives of human activities.
The calculation of these two indices may have covered up the information of some human
activity variables, such that the influence of human activity factors on PM2.5 and FCE did
not stand out. How to measure the impact of human activities on environmental pollutants
needs to be explored in future research. Secondly, socioeconomic factors such as GDP and
the release and implementation of environmental protection policies were not considered in
this study but will be addressed in the future. Satellite data modeling showed that FCE has
a certain impact on PM2.5 concentration, and deciphering the impact mechanism represents
our next task. In addition, the PM2.5 data in this study were from a single source, and the
results were limited by the resolution. The current PM2.5 datasets have the characteristics of
multiple sources; thus, it is also one of the tasks of future research to compare the influences
of different PM2.5 data sources and their driving factors, especially the comparison and
confirmation between satellite data and actual investigation and experimental results.

5. Conclusions

In this study, a database of FCE, PM2.5, and environmental factors in Laos was es-
tablished by acquiring satellite grid data with ArcGIS software. We considered spatial
autocorrelation techniques to demonstrate the spatial pattern of PM2.5 and FCE in northern
Laos. on the relationships between the important variables selected by RF and PM2.5 and
FCE were explored via SEM. The results allow drawing the following conclusions: (1) the
concentration of PM2.5 and FCE from 2003 to 2019 in the west of the study area was higher
than the average value of the whole region. These areas were surrounded by PM2.5 and
FCE higher than the average value of the whole region. Their spatial distributions were
almost consistent, and these areas will become the focus of work related to pollution control
in the future; (2) the quantitative analysis gave us a result of a weak but significant impact
of fire emissions on PM2.5 in the Laotian rainforest; (3) climate factors played a leading role
as drivers of PM2.5 and FCE in northern Laos from 2003 to 2019. Among them, drought
and annual average diurnal temperature range had the greatest impact. In the context
of global climate change, this discovery can help regulators and decision-makers better
incorporate drought and diurnal temperature range into FCE and PM2.5 estimation models.
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We suggest, therefore, that the related government and indigenous people should pay
attention to reducing PM2.5 pollutants caused by biomass combustion in formulating future
measures to prevent and control air pollution, especially in an increasing drought and
warming environment. In particular, in the improvement of wildfire management and
prescribed burning in the dry season, the arid and warming environment should be given
enough attention.
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