Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = Flg22 peptide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1758 KiB  
Article
Bioactive Polysaccharides from Fermented Dendrobium officinale: Structural Insights and Their Role in Skin Barrier Repair
by Wanshuai Wang, Anqi Zou, Qingtao Yu, Zhe Wang, Daotong Tan, Kaiye Yang, Chao Cai and Guangli Yu
Molecules 2025, 30(13), 2875; https://doi.org/10.3390/molecules30132875 - 6 Jul 2025
Viewed by 617
Abstract
Dendrobium, a prominent genus in the Orchidaceae family, has generated significant research attention due to its demonstrated biological potential, particularly its notable anti-inflammatory and antioxidant activities. In this study, two fractions of fermented Dendrobium officinale polysaccharides (FDOPs) were successfully isolated through a [...] Read more.
Dendrobium, a prominent genus in the Orchidaceae family, has generated significant research attention due to its demonstrated biological potential, particularly its notable anti-inflammatory and antioxidant activities. In this study, two fractions of fermented Dendrobium officinale polysaccharides (FDOPs) were successfully isolated through a multi-stage purification strategy including gradient ethanol precipitation, gel column chromatography, and ion exchange chromatography with Lactobacillus reuteri CCFM863. Structural characterization revealed that both Dendrobium officinale polysaccharide fractions consisted of (1→4)-β-D-Manp, (1→4)-β-D-Glcp, and (1→4)-α-D-Glcp residues. The anti-inflammatory efficacy and keratinocyte-protective potential of FDOPs (FDOP-1A and FDOP-2A) were investigated by using lipopolysaccharide (LPS)-induced RAW264.7 and HaCaT cells models, which showed significant inhibitions on the inflammatory factors of monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), nitric oxide (NO), and interleukin-1 beta (IL-1β); recovered levels of filaggrin (FLG), aquaporin 3 (AQP3), transient receptor potential vanilloid 4 (TRPV4), cathelicidin antimicrobial peptide (CAMP)/LL-37, and adiponectin (ADIPOQ); and the reduced protein expression of the TLR4/IκB-α/NF-κB/NLRP3 pathway. Notably, the FDOPs exhibited a remarkable reactive oxygen species (ROS) scavenging capacity, demonstrating superior antioxidant activity. Therefore, FDOPs show dual anti-inflammatory and antioxidant properties, making them suitable as active ingredients for modulating epidermal inflammation and promoting skin barrier repair. Full article
(This article belongs to the Special Issue Biotechnology and Biomass Valorization)
Show Figures

Figure 1

14 pages, 29318 KiB  
Article
High-Quality Assembly of the Apple Fungal Pathogen Marssonina coronaria Genome and Functional Analysis of Candidate Effectors
by Huiting Guo, Yicong Fu, Lichi Zhong and Qiang Cheng
Plants 2025, 14(11), 1638; https://doi.org/10.3390/plants14111638 - 27 May 2025
Viewed by 511
Abstract
Marssonina coronaria is the causal agent of apple blotch, which poses a significant threat to apple production worldwide. Here, Illumina and Oxford Nanopore sequencing were combined to generate a high-quality M. coronaria YL1 genome assembly (54.5 Mb, 23 contigs). Based on genome annotation, [...] Read more.
Marssonina coronaria is the causal agent of apple blotch, which poses a significant threat to apple production worldwide. Here, Illumina and Oxford Nanopore sequencing were combined to generate a high-quality M. coronaria YL1 genome assembly (54.5 Mb, 23 contigs). Based on genome annotation, 97 candidate effector proteins (CEPs) were identified, and 61 CEPs were successfully cloned for functional analysis. Transient expression assays in Nicotiana benthamiana revealed that eight CEPs significantly suppressed BAX-induced cell death, with McCEP12, McCEP23, McCEP24, and McCEP52 concurrently inhibiting flg22-triggered reactive oxygen species bursts. Two signal peptide-dependent cell death-inducing effectors were identified: McNLP1, containing an NPP1 domain, and McCEP3. McCEP3 exhibited evolutionary conservation within Ascomycota, with its homologous gene VmMcCEP3 from Valsa mali inducing cell death in N. benthamiana. McEP03-triggered cell death was independent of BAK1/SOBIR1 receptor kinases. This study provides a high-quality genomic resource for M. coronaria and sheds light on the mechanisms by which its CEPs modulate host immunity, offering new insights into the molecular interactions between the pathogen and its host. Full article
Show Figures

Figure 1

15 pages, 3683 KiB  
Article
Potential of Nettle Infusion to Protect Common Bean from Halo Blight Disease
by Carlota Cerezo, Penélope García-Angulo, Asier Largo-Gosens and María Luz Centeno
Horticulturae 2024, 10(6), 536; https://doi.org/10.3390/horticulturae10060536 - 21 May 2024
Cited by 2 | Viewed by 1595
Abstract
The use of plant-based preparations to replace chemical pesticides is a challenge for sustainable agriculture. Preparations from nettle (Urtica dioica L.) are good candidates, as the treatment of common bean plants (Phaseolus vulgaris L.) with aqueous suspensions of nettle reduced symptoms [...] Read more.
The use of plant-based preparations to replace chemical pesticides is a challenge for sustainable agriculture. Preparations from nettle (Urtica dioica L.) are good candidates, as the treatment of common bean plants (Phaseolus vulgaris L.) with aqueous suspensions of nettle reduced symptoms of halo blight disease caused by Pseudomonas syringae pv. phaseolicola (Pph). The aim of the present work was to test if nettle infusions (Ui) have similar effects and find out what activity is behind this: antimicrobial, promotion of the natural defenses of plants, and/or antioxidant. To achieve this, Pph growth was tested in the presence of infusions of nettle leaves collected in two different years (Ui18 and Ui22), and we found that it was only weakly inhibited at high concentrations of Ui18. Interestingly, Ui22 promoted bacteria growth at all concentrations. Second, we estimated the production of reactive oxygen species (ROS) in response to flagellin22 (flg22) in common bean leaf discs, since recognition of this bacterial peptide usually leads to ROS accumulation in tissues as a plant immune response. However, leaf discs that were preincubated in Ui showed no accumulation of ROS after flg22 treatment, suggesting that Ui can neutralize ROS production. Finally, in a Pph inoculation experiment of common bean plants grown in vitro, we observed that pretreatment of plants with Ui drastically reduced foliar oxidative damage and disease symptoms 6 h after inoculation. This effect was more noticeable for Ui22, which was related to the higher antioxidant activity found in this extract in comparison with Ui18. These results suggest that the protective properties of Ui are mainly due to the content of antioxidant bioactive compounds. Full article
(This article belongs to the Special Issue The Diagnosis, Management, and Epidemiology of Plant Diseases)
Show Figures

Figure 1

18 pages, 3289 KiB  
Article
FlgI Is a Sec-Dependent Effector of Candidatus Liberibacter asiaticus That Can Be Blocked by Small Molecules Identified Using a Yeast Screen
by Siliang Zuo, Linghui Xu, Huiyan Zhang, Meiqian Jiang, Sifeng Wu, Lian-Hui Zhang, Xiaofan Zhou and Junxia Wang
Plants 2024, 13(2), 318; https://doi.org/10.3390/plants13020318 - 21 Jan 2024
Cited by 3 | Viewed by 2281
Abstract
Huanglongbing (HLB) is one of the most devastating diseases of citrus worldwide. The phloem-restricted bacterium Candidatus Liberibacter asiaticus (CLas) is considered to be the main pathogen responsible for HLB. There is currently no effective practical strategy for the control of HLB. Our understanding [...] Read more.
Huanglongbing (HLB) is one of the most devastating diseases of citrus worldwide. The phloem-restricted bacterium Candidatus Liberibacter asiaticus (CLas) is considered to be the main pathogen responsible for HLB. There is currently no effective practical strategy for the control of HLB. Our understanding of how pathogens cause HLB is limited because CLas has not been artificially cultured. In this study, 15 potential virulence factors were predicted from the proteome of CLas through DeepVF and PHI-base searches. One among them, FlgI, was found to inhibit yeast growth when expressed in Saccharomyces cerevisiae. The expression of the signal peptide of FlgI fused with PhoA in Escherichia coli resulted in the discovery that FlgI was a novel Sec-dependent secretory protein. We further found that the carboxyl-terminal HA-tagged FlgI was secreted via outer membrane vesicles in Sinorhizobium meliloti. Fluoresence localization of transient expression FlgI-GFP in Nicotiana benthamiana revealed that FlgI is mainly localized in the cytoplasm, cell periphery, and nuclear periphery of tobacco cells. In addition, our experimental results suggest that FlgI has a strong ability to induce callose deposition and cell necrosis in N. benthamiana. Finally, by screening a large library of compounds in a high-throughput format, we found that cyclosporin A restored the growth of FlgI-expressing yeast. These results confirm that FlgI is a novel Sec-dependent effector, enriching our understanding of CLas pathogenicity and helping to develop new and more effective strategies to manage HLB. Full article
Show Figures

Figure 1

18 pages, 3110 KiB  
Article
Super-Resolution Imaging of Plant Receptor-Like Kinases Uncovers Their Colocalization and Coordination with Nanometer Resolution
by Jeremiah Traeger, Dehong Hu, Mengran Yang, Gary Stacey and Galya Orr
Membranes 2023, 13(2), 142; https://doi.org/10.3390/membranes13020142 - 21 Jan 2023
Cited by 2 | Viewed by 3598
Abstract
Plant cell signaling often relies on the cellular organization of receptor-like kinases (RLKs) within membrane nanodomains to enhance signaling specificity and efficiency. Thus, nanometer-scale quantitative analysis of spatial organizations of RLKs could provide new understanding of mechanisms underlying plant responses to environmental stress. [...] Read more.
Plant cell signaling often relies on the cellular organization of receptor-like kinases (RLKs) within membrane nanodomains to enhance signaling specificity and efficiency. Thus, nanometer-scale quantitative analysis of spatial organizations of RLKs could provide new understanding of mechanisms underlying plant responses to environmental stress. Here, we used stochastic optical reconstruction fluorescence microscopy (STORM) to quantify the colocalization of the flagellin-sensitive-2 (FLS2) receptor and the nanodomain marker, remorin, within Arabidopsis thaliana root hair cells. We found that recovery of FLS2 and remorin in the plasma membrane, following ligand-induced internalization by bacterial-flagellin-peptide (flg22), reached ~85% of their original membrane density after ~90 min. The pairs colocalized at the membrane at greater frequencies, compared with simulated randomly distributed pairs, except for directly after recovery, suggesting initial uncoordinated recovery followed by remorin and FLS2 pairing in the membrane. The purinergic receptor, P2K1, colocalized with remorin at similar frequencies as FLS2, while FLS2 and P2K1 colocalization occurred at significantly lower frequencies, suggesting that these RLKs mostly occupy distinct nanodomains. The chitin elicitor receptor, CERK1, colocalized with FLS2 and remorin at much lower frequencies, suggesting little coordination between CERK1 and FLS2. These findings emphasize STORM’s capacity to observe distinct nanodomains and degrees of coordination between plant cell receptors, and their respective immune pathways. Full article
(This article belongs to the Special Issue Recent Studies on the Behaviour of Lipid Membranes)
Show Figures

Graphical abstract

13 pages, 1988 KiB  
Article
Flagellin-Fused Protein Targeting M2e and HA2 Induces Innate and T-Cell Responses in Mice of Different Genetic Lines
by Liudmila A. Stepanova, Marina A. Shuklina, Kirill A. Vasiliev, Anna A. Kovaleva, Inna G. Vidyaeva, Yana A. Zabrodskaya, Alexandr V. Korotkov and Liudmila M. Tsybalova
Vaccines 2022, 10(12), 2098; https://doi.org/10.3390/vaccines10122098 - 8 Dec 2022
Cited by 4 | Viewed by 2408
Abstract
Efficient control of influenza A infection can potentially be achieved through the development of broad-spectrum vaccines. Recombinant proteins incorporating conserved influenza A virus peptides are one of the platforms for the development of cross-protective influenza vaccines. We constructed a recombinant protein Flg-HA2-2-4M2ehs, in [...] Read more.
Efficient control of influenza A infection can potentially be achieved through the development of broad-spectrum vaccines. Recombinant proteins incorporating conserved influenza A virus peptides are one of the platforms for the development of cross-protective influenza vaccines. We constructed a recombinant protein Flg-HA2-2-4M2ehs, in which the extracellular domain of the M2 protein (M2e) and the sequence (aa76-130) of the second subunit of HA (HA2) were used as target antigens. In this study, we investigated the ability of the Flg-HA2-2-4M2ehs protein to activate innate immunity and stimulate the formation of T-cell response in mice of different genetic lines after intranasal immunization. Our studies showed that the Flg-HA2-2-4M2ehs protein was manifested in an increase in the relative content of neutrophils, monocytes, and interstitial macrophages, against the backdrop of a decrease in the level of dendritic cells and increased expression in the CD86 marker. In the lungs of BALB/c mice, immunization with the Flg-HA2-2-4M2ehs protein induced the formation of antigen-specific CD4+ and CD8+ effector memory T cells, producing TNF-α. In mice C57Bl/6, the formation of antigen-specific effector CD8+ T cells, predominantly producing IFN-γ+, was demonstrated. The data obtained showed the formation of CD8+ and CD4+ effector memory T cells expressing the CD107a. Full article
(This article belongs to the Section Influenza Virus Vaccines)
Show Figures

Figure 1

13 pages, 2344 KiB  
Article
Lactobacilli Downregulate Transcription Factors in Helicobacter pylori That Affect Motility, Acid Tolerance and Antimicrobial Peptide Survival
by Fanglei Zuo, Tanvi Somiah, Hanna G. Gebremariam and Ann-Beth Jonsson
Int. J. Mol. Sci. 2022, 23(24), 15451; https://doi.org/10.3390/ijms232415451 - 7 Dec 2022
Cited by 10 | Viewed by 2470
Abstract
Helicobacter pylori infection triggers inflammation that may lead to gastritis, stomach ulcers and cancer. Probiotic bacteria, such as Lactobacillus, have been of interest as treatment options, however, little is known about the molecular mechanisms of Lactobacillus-mediated inhibition of H. pylori pathogenesis. [...] Read more.
Helicobacter pylori infection triggers inflammation that may lead to gastritis, stomach ulcers and cancer. Probiotic bacteria, such as Lactobacillus, have been of interest as treatment options, however, little is known about the molecular mechanisms of Lactobacillus-mediated inhibition of H. pylori pathogenesis. In this work, we investigated the effect of Lactobacillus culture supernatants, so-called conditioned medium (CM), from two gastric isolates, L. gasseri and L. oris, on the expression of transcriptional regulators in H. pylori. Among the four known two-component systems (TCSs), i.e., ArsRS, FlgRS, CheAY and CrdRS, the flagellar regulator gene flgR and the acid resistance associated arsS gene were down-regulated by L. gasseri CM, whereas expression of the other TCS-genes remained unaffected. L. gasseri CM also reduced the motility of H. pylori, which is in line with reduced flgR expression. Furthermore, among six transcription factors of H. pylori only the ferric uptake regulator gene fur was regulated by L. gasseri CM. Deletion of fur further led to dramatically increased sensitivity to the antimicrobial peptide LL-37. Taken together, the results highlight that released/secreted factors of some lactobacilli, but not all, downregulate transcriptional regulators involved in motility, acid tolerance and LL-37 sensitivity of H. pylori. Full article
Show Figures

Figure 1

15 pages, 3480 KiB  
Article
Cytokinin Deficiency Alters Leaf Proteome and Metabolome during Effector-Triggered Immunity in Arabidopsis thaliana Plants
by Ling Pan, Miroslav Berka, Martin Černý, Jan Novák, Markéta Luklová, Břetislav Brzobohatý and Iñigo Saiz-Fernández
Plants 2022, 11(16), 2123; https://doi.org/10.3390/plants11162123 - 15 Aug 2022
Cited by 2 | Viewed by 2300
Abstract
The involvement of cytokinins (CK) in biotic stresses has been recognized, while knowledge regarding the effects of CK deficiency on plant response against pathogens is less abundant. Thus, the purpose of this study was to reveal the effects of CK deficiency on proteomics [...] Read more.
The involvement of cytokinins (CK) in biotic stresses has been recognized, while knowledge regarding the effects of CK deficiency on plant response against pathogens is less abundant. Thus, the purpose of this study was to reveal the effects of CK deficiency on proteomics and metabolomic responses of flg22-triggered immunity. We conducted a series of histochemical assays to investigate the activity of the downstream pathways caused by flg22, such as accumulation of ROS, induction of defence genes, and callose deposition, that occurred in Arabidopsis thaliana transgenic lines overexpressing the Hordeum vulgare CKX2 gene (HvCKX2), which are therefore CK-deficient. We also used GC and LC-MS-based technology to quantify variations in stress hormone levels and metabolomic and proteomic responses in flg22-treated HvCKX2 and wild-type Arabidopsis plants. We found that CK deficiency alters the flg22-triggered plant defence response, especially through induction of callose deposition, upregulation of defence response-related proteins, increased amino acid biosynthesis, and regulation of plant photosynthesis. We also indicated that JA might be an important contributor to immune response in plants deficient in CKs. The present study offers new evidence on the fundamental role of endogenous CK in the response to pathogens, as well as the possibility of altering plant biotic tolerance by manipulating CK pools. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

16 pages, 1916 KiB  
Article
Mitogen-Activated Protein Kinases Associated Sites of Tobacco Repression of Shoot Growth Regulates Its Localization in Plant Cells
by Luyao Wang, Ying Gui, Bingye Yang, Wenpan Dong, Peiling Xu, Fangjie Si, Wei Yang, Yuming Luo, Jianhua Guo, Dongdong Niu and Chunhao Jiang
Int. J. Mol. Sci. 2022, 23(16), 8941; https://doi.org/10.3390/ijms23168941 - 11 Aug 2022
Cited by 3 | Viewed by 1998
Abstract
Plant defense and growth rely on multiple transcriptional factors (TFs). Repression of shoot growth (RSG) is a TF belonging to a bZIP family in tobacco, known to be involved in plant gibberellin feedback regulation by inducing the expression of key genes. The tobacco [...] Read more.
Plant defense and growth rely on multiple transcriptional factors (TFs). Repression of shoot growth (RSG) is a TF belonging to a bZIP family in tobacco, known to be involved in plant gibberellin feedback regulation by inducing the expression of key genes. The tobacco calcium-dependent protein kinase CDPK1 was reported to interact with RSG and manipulate its intracellular localization by phosphorylating Ser-114 of RSG previously. Here, we identified tobacco mitogen-activated protein kinase 3 (NtMPK3) as an RSG-interacting protein kinase. Moreover, the mutation of the predicted MAPK-associated phosphorylation site of RSG (Thr-30, Ser-74, and Thr-135) significantly altered the intracellular localization of the NtMPK3-RSG interaction complex. Nuclear transport of RSG and its amino acid mutants (T30A and S74A) were observed after being treated with plant defense elicitor peptide flg22 within 5 min, and the two mutated RSG swiftly re-localized in tobacco cytoplasm within 30 min. In addition, triple-point mutation of RSG (T30A/S74A/T135A) mimics constant unphosphorylated status, and is predominantly localized in tobacco cytoplasm. RSG (T30A/S74A/T135A) showed no re-localization effect under the treatments of flg22, B. cereus AR156, or GA3, and over-expression of this mutant in tobacco resulted in lower expression levels of downstream gene GA20ox1. Our results suggest that MAPK-associated phosphorylation sites of RSG regulate its localization in tobacco, and that constant unphosphorylation of RSG in Thr-30, Ser-74, and Thr-135 keeps RSG predominantly localized in cytoplasm. Full article
(This article belongs to the Special Issue Recent Advances in Plant Molecular Science in China 2022)
Show Figures

Figure 1

18 pages, 4332 KiB  
Article
Brachypodium Antifreeze Protein Gene Products Inhibit Ice Recrystallisation, Attenuate Ice Nucleation, and Reduce Immune Response
by Collin L. Juurakko, George C. diCenzo and Virginia K. Walker
Plants 2022, 11(11), 1475; https://doi.org/10.3390/plants11111475 - 31 May 2022
Cited by 4 | Viewed by 4214
Abstract
Antifreeze proteins (AFPs) from the model crop, Brachypodium distachyon, allow freeze survival and attenuate pathogen-mediated ice nucleation. Intriguingly, Brachypodium AFP genes encode two proteins, an autonomous AFP and a leucine-rich repeat (LRR). We present structural models which indicate that ice-binding motifs on [...] Read more.
Antifreeze proteins (AFPs) from the model crop, Brachypodium distachyon, allow freeze survival and attenuate pathogen-mediated ice nucleation. Intriguingly, Brachypodium AFP genes encode two proteins, an autonomous AFP and a leucine-rich repeat (LRR). We present structural models which indicate that ice-binding motifs on the ~13 kDa AFPs can “spoil” nucleating arrays on the ~120 kDa bacterial ice nucleating proteins used to form ice at high sub-zero temperatures. These models are consistent with the experimentally demonstrated decreases in ice nucleating activity by lysates from wildtype compared to transgenic Brachypodium lines. Additionally, the expression of Brachypodium LRRs in transgenic Arabidopsis inhibited an immune response to pathogen flagella peptides (flg22). Structural models suggested that this was due to the affinity of the LRR domains to flg22. Overall, it is remarkable that the Brachypodium genes play multiple distinctive roles in connecting freeze survival and anti-pathogenic systems via their encoded proteins’ ability to adsorb to ice as well as to attenuate bacterial ice nucleation and the host immune response. Full article
Show Figures

Graphical abstract

14 pages, 3044 KiB  
Article
A Putative Effector LtCSEP1 from Lasiodiplodia theobromae Inhibits BAX-Triggered Cell Death and Suppresses Immunity Responses in Nicotiana benthamiana
by Qikai Xing, Yang Cao, Junbo Peng, Wei Zhang, Jiahong Wu, Yueyan Zhou, Xinghong Li and Jiye Yan
Plants 2022, 11(11), 1462; https://doi.org/10.3390/plants11111462 - 30 May 2022
Cited by 4 | Viewed by 2586
Abstract
Lasiodiplodia theobromae is a causal agent of grapevine trunk disease, and it poses a significant threat to the grape industry worldwide. Fungal effectors play an essential role in the interaction between plants and pathogens. However, few studies have been conducted to understand the [...] Read more.
Lasiodiplodia theobromae is a causal agent of grapevine trunk disease, and it poses a significant threat to the grape industry worldwide. Fungal effectors play an essential role in the interaction between plants and pathogens. However, few studies have been conducted to understand the functions of individual effectors in L. theobromae. In this study, we identified and characterized a candidate secreted effector protein, LtCSEP1, in L. theobromae. Gene expression analysis suggested that transcription of LtCSEP1 in L. theobromae was induced at the early infection stages in the grapevine. Yeast secretion assay revealed that LtCSEP1 contains a functional signal peptide. Transient expression of LtCSEP1 in Nicotiana benthamiana suppresses BAX-trigged cell death and significantly inhibits the flg22-induced PTI-associated gene expression. Furthermore, the ectopic expression of LtCSEP1 in N. benthamiana enhanced disease susceptibility to L. theobromae by downregulating the defense-related genes. These results demonstrated that LtCSEP1 is a potential effector of L. theobromae, which contributes to suppressing the plant’s defenses. Full article
Show Figures

Figure 1

21 pages, 6487 KiB  
Article
Comparative Reverse Vaccinology of Piscirickettsia salmonis, Aeromonas salmonicida, Yersinia ruckeri, Vibrio anguillarum and Moritella viscosa, Frequent Pathogens of Atlantic Salmon and Lumpfish Aquaculture
by Joy Chukwu-Osazuwa, Trung Cao, Ignacio Vasquez, Hajarooba Gnanagobal, Ahmed Hossain, Vimbai Irene Machimbirike and Javier Santander
Vaccines 2022, 10(3), 473; https://doi.org/10.3390/vaccines10030473 - 18 Mar 2022
Cited by 21 | Viewed by 5752
Abstract
Marine finfish aquaculture is affected by diverse infectious diseases, and they commonly occur as co-infection. Some of the most frequent and prevalent Gram-negative bacterial pathogens of the finfish aquaculture include Piscirickettsia salmonis, Aeromonas salmonicida, Yersinia ruckeri, Vibrio anguillarum and Moritella [...] Read more.
Marine finfish aquaculture is affected by diverse infectious diseases, and they commonly occur as co-infection. Some of the most frequent and prevalent Gram-negative bacterial pathogens of the finfish aquaculture include Piscirickettsia salmonis, Aeromonas salmonicida, Yersinia ruckeri, Vibrio anguillarum and Moritella viscosa. To prevent co-infections in aquaculture, polyvalent or universal vaccines would be ideal. Commercial polyvalent vaccines against some of these pathogens are based on whole inactivated microbes and their efficacy is controversial. Identification of common antigens can contribute to the development of effective universal or polyvalent vaccines. In this study, we identified common and unique antigens of P. salmonis, A. salmonicida, Y. ruckeri, V. anguillarum and M. viscosa based on a reverse vaccinology pipeline. We screened the proteome of several strains using complete available genomes and identified a total of 154 potential antigens, 74 of these identified antigens corresponded to secreted proteins, and 80 corresponded to exposed outer membrane proteins (OMPs). Further analysis revealed the outer membrane antigens TonB-dependent siderophore receptor, OMP assembly factor BamA, the LPS assembly protein LptD and secreted antigens flagellar hook assembly protein FlgD and flagellar basal body rod protein FlgG are present in all pathogens used in this study. Sequence and structural alignment of these antigens showed relatively low percentage sequence identity but good structural homology. Common domains harboring several B-cells and T-cell epitopes binding to major histocompatibility (MHC) class I and II were identified. Selected peptides were evaluated for docking with Atlantic salmon (Salmo salar) and Lumpfish MHC class II. Interaction of common peptide-MHC class II showed good in-silico binding affinities and dissociation constants between −10.3 to −6.5 kcal mol−1 and 5.10 × 10−9 to 9.4 × 10−6 M. This study provided the first list of antigens that can be used for the development of polyvalent or universal vaccines against these Gram-negative bacterial pathogens affecting finfish aquaculture. Full article
(This article belongs to the Special Issue Vaccines for Aquaculture)
Show Figures

Figure 1

13 pages, 3652 KiB  
Article
Heat Shock 70 kDa Protein Cognate 3 of Brown Planthopper Is Required for Survival and Suppresses Immune Response in Plants
by Houhong Yang, Xiaoya Zhang, Hanjing Li, Yuxuan Ye, Zhipeng Li, Xiao Han, Yanru Hu, Chuanxi Zhang and Yanjuan Jiang
Insects 2022, 13(3), 299; https://doi.org/10.3390/insects13030299 - 17 Mar 2022
Cited by 11 | Viewed by 2972
Abstract
The brown planthopper (Nilaparvata lugens) is a monophagous pest of rice (Oryza sativa), which threatens food security around the world. Insect Heat shock proteins 70 kDa (Hsp70s) play a key role in insect growth and development, however, if they [...] Read more.
The brown planthopper (Nilaparvata lugens) is a monophagous pest of rice (Oryza sativa), which threatens food security around the world. Insect Heat shock proteins 70 kDa (Hsp70s) play a key role in insect growth and development, however, if they also modulate the plant physiological processes is still unclear. In this study, we identified the Heat shock 70 kDa protein cognate 3 (NlHSC70-3) of BPH from compared protein profiles of Nipponbare tissues after BPH infestation via LC/MS. NlHSC70-3 has a predicted signal peptide and displays high transcription levels in the salivary glands, which further supported that it is secreted into plants by BPH during the feeding process. Using RNA interference (RNAi), we showed that NlHSC70-3 is indispensable for the survival of BPH on rice. Most importantly, NlHSC70-3 mediates the plant immune responses including cell death, flg22-induced ROS burst and defense-related gene expression in N. benthamiana. These results demonstrate that NlHSC70-3 may function as an effector manipulating plant physiological processes to facilitate pest survival on rice, which provides a new potential target for future pest control. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

25 pages, 2344 KiB  
Article
Immune Priming Triggers Cell Wall Remodeling and Increased Resistance to Halo Blight Disease in Common Bean
by Alfonso Gonzalo De la Rubia, Hugo Mélida, María Luz Centeno, Antonio Encina and Penélope García-Angulo
Plants 2021, 10(8), 1514; https://doi.org/10.3390/plants10081514 - 23 Jul 2021
Cited by 8 | Viewed by 3560
Abstract
The cell wall (CW) is a dynamic structure extensively remodeled during plant growth and under stress conditions, however little is known about its roles during the immune system priming, especially in crops. In order to shed light on such a process, we used [...] Read more.
The cell wall (CW) is a dynamic structure extensively remodeled during plant growth and under stress conditions, however little is known about its roles during the immune system priming, especially in crops. In order to shed light on such a process, we used the Phaseolus vulgaris-Pseudomonas syringae (Pph) pathosystem and the immune priming capacity of 2,6-dichloroisonicotinic acid (INA). In the first instance we confirmed that INA-pretreated plants were more resistant to Pph, which was in line with the enhanced production of H2O2 of the primed plants after elicitation with the peptide flg22. Thereafter, CWs from plants subjected to the different treatments (non- or Pph-inoculated on non- or INA-pretreated plants) were isolated to study their composition and properties. As a result, the Pph inoculation modified the bean CW to some extent, mostly the pectic component, but the CW was as vulnerable to enzymatic hydrolysis as in the case of non-inoculated plants. By contrast, the INA priming triggered a pronounced CW remodeling, both on the cellulosic and non-cellulosic polysaccharides, and CW proteins, which resulted in a CW that was more resistant to enzymatic hydrolysis. In conclusion, the increased bean resistance against Pph produced by INA priming can be explained, at least partially, by a drastic CW remodeling. Full article
(This article belongs to the Special Issue Plant Cell Wall Plasticity under Stress Situations)
Show Figures

Graphical abstract

14 pages, 1290 KiB  
Article
A Bifunctional Peptide Conjugate That Controls Infections of Erwinia amylovora in Pear Plants
by Pau Caravaca-Fuentes, Cristina Camó, Àngel Oliveras, Aina Baró, Jesús Francés, Esther Badosa, Marta Planas, Lidia Feliu, Emilio Montesinos and Anna Bonaterra
Molecules 2021, 26(11), 3426; https://doi.org/10.3390/molecules26113426 - 5 Jun 2021
Cited by 15 | Viewed by 3553
Abstract
In this paper, peptide conjugates were designed and synthesized by incorporating the antimicrobial undecapeptide BP16 at the C- or N-terminus of the plant defense elicitor peptide flg15, leading to BP358 and BP359, respectively. The evaluation of their in vitro activity against [...] Read more.
In this paper, peptide conjugates were designed and synthesized by incorporating the antimicrobial undecapeptide BP16 at the C- or N-terminus of the plant defense elicitor peptide flg15, leading to BP358 and BP359, respectively. The evaluation of their in vitro activity against six plant pathogenic bacteria revealed that BP358 displayed MIC values between 1.6 and 12.5 μM, being more active than flg15, BP16, BP359, and an equimolar mixture of BP16 and flg15. Moreover, BP358 was neither hemolytic nor toxic to tobacco leaves. BP358 triggered the overexpression of 6 out of the 11 plant defense-related genes tested. Interestingly, BP358 inhibited Erwinia amylovora infections in pear plants, showing slightly higher efficacy than the mixture of BP16 and flg15, and both treatments were as effective as the antibiotic kasugamycin. Thus, the bifunctional peptide conjugate BP358 is a promising agent to control fire blight and possibly other plant bacterial diseases. Full article
(This article belongs to the Special Issue The Emerging Role of Antimicrobial Peptides in the Agro-Food Sector)
Show Figures

Graphical abstract

Back to TopTop