Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = Flavescence dorée grapevine disease

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 10320 KiB  
Article
Advancing Grapevine Disease Detection Through Airborne Imaging: A Pilot Study in Emilia-Romagna (Italy)
by Virginia Strati, Matteo Albéri, Alessio Barbagli, Stefano Boncompagni, Luca Casoli, Enrico Chiarelli, Ruggero Colla, Tommaso Colonna, Nedime Irem Elek, Gabriele Galli, Fabio Gallorini, Enrico Guastaldi, Ghulam Hasnain, Nicola Lopane, Andrea Maino, Fabio Mantovani, Filippo Mantovani, Gian Lorenzo Mazzoli, Federica Migliorini, Dario Petrone, Silvio Pierini, Kassandra Giulia Cristina Raptis and Rocchina Tisoadd Show full author list remove Hide full author list
Remote Sens. 2025, 17(14), 2465; https://doi.org/10.3390/rs17142465 - 16 Jul 2025
Viewed by 394
Abstract
Innovative applications of high-resolution airborne imaging are explored for detecting grapevine diseases. Driven by the motivation to enhance early disease detection, the method’s effectiveness lies in its capacity to identify isolated cases of grapevine yellows (Flavescence dorée and Bois Noir) and trunk disease [...] Read more.
Innovative applications of high-resolution airborne imaging are explored for detecting grapevine diseases. Driven by the motivation to enhance early disease detection, the method’s effectiveness lies in its capacity to identify isolated cases of grapevine yellows (Flavescence dorée and Bois Noir) and trunk disease (Esca complex), crucial for preventing the disease from spreading to unaffected areas. Conducted over a 17 ha vineyard in the Forlì municipality in Emilia-Romagna (Italy), the aerial survey utilized a photogrammetric camera capturing centimeter-level resolution images of the whole area in 17 minutes. These images were then processed through an automated analysis leveraging RGB-based spectral indices (Green–Red Vegetation Index—GRVI, Green–Blue Vegetation Index—GBVI, and Blue–Red Vegetation Index—BRVI). The analysis scanned the 1.24 · 109 pixels of the orthomosaic, detecting 0.4% of the vineyard area showing evidence of disease. The instances, density, and incidence maps provide insights into symptoms’ spatial distribution and facilitate precise interventions. High specificity (0.96) and good sensitivity (0.56) emerged from the ground field observation campaign. Statistical analysis revealed a significant edge effect in symptom distribution, with higher disease occurrence near vineyard borders. This pattern, confirmed by spatial autocorrelation and non-parametric tests, likely reflects increased vector activity and environmental stress at the vineyard margins. The presented pilot study not only provides a reliable detection tool for grapevine diseases but also lays the groundwork for an early warning system that, if extended to larger areas, could offer a valuable system to guide on-the-ground monitoring and facilitate strategic decision-making by the authorities. Full article
Show Figures

Figure 1

36 pages, 5235 KiB  
Review
A Systematic Review on the Advancements in Remote Sensing and Proximity Tools for Grapevine Disease Detection
by Fernando Portela, Joaquim J. Sousa, Cláudio Araújo-Paredes, Emanuel Peres, Raul Morais and Luís Pádua
Sensors 2024, 24(24), 8172; https://doi.org/10.3390/s24248172 - 21 Dec 2024
Cited by 5 | Viewed by 3178
Abstract
Grapevines (Vitis vinifera L.) are one of the most economically relevant crops worldwide, yet they are highly vulnerable to various diseases, causing substantial economic losses for winegrowers. This systematic review evaluates the application of remote sensing and proximal tools for vineyard disease [...] Read more.
Grapevines (Vitis vinifera L.) are one of the most economically relevant crops worldwide, yet they are highly vulnerable to various diseases, causing substantial economic losses for winegrowers. This systematic review evaluates the application of remote sensing and proximal tools for vineyard disease detection, addressing current capabilities, gaps, and future directions in sensor-based field monitoring of grapevine diseases. The review covers 104 studies published between 2008 and October 2024, identified through searches in Scopus and Web of Science, conducted on 25 January 2024, and updated on 10 October 2024. The included studies focused exclusively on the sensor-based detection of grapevine diseases, while excluded studies were not related to grapevine diseases, did not use remote or proximal sensing, or were not conducted in field conditions. The most studied diseases include downy mildew, powdery mildew, Flavescence dorée, esca complex, rots, and viral diseases. The main sensors identified for disease detection are RGB, multispectral, hyperspectral sensors, and field spectroscopy. A trend identified in recent published research is the integration of artificial intelligence techniques, such as machine learning and deep learning, to improve disease detection accuracy. The results demonstrate progress in sensor-based disease monitoring, with most studies concentrating on specific diseases, sensor platforms, or methodological improvements. Future research should focus on standardizing methodologies, integrating multi-sensor data, and validating approaches across diverse vineyard contexts to improve commercial applicability and sustainability, addressing both economic and environmental challenges. Full article
(This article belongs to the Special Issue Sensor and AI Technologies in Intelligent Agriculture: 2nd Edition)
Show Figures

Figure 1

45 pages, 17760 KiB  
Review
Artificial Intelligence Techniques in Grapevine Research: A Comparative Study with an Extensive Review of Datasets, Diseases, and Techniques Evaluation
by Paraskevi Gatou, Xanthi Tsiara, Alexandros Spitalas, Spyros Sioutas and Gerasimos Vonitsanos
Sensors 2024, 24(19), 6211; https://doi.org/10.3390/s24196211 - 25 Sep 2024
Cited by 7 | Viewed by 3815
Abstract
In the last few years, the agricultural field has undergone a digital transformation, incorporating artificial intelligence systems to make good employment of the growing volume of data from various sources and derive value from it. Within artificial intelligence, Machine Learning is a powerful [...] Read more.
In the last few years, the agricultural field has undergone a digital transformation, incorporating artificial intelligence systems to make good employment of the growing volume of data from various sources and derive value from it. Within artificial intelligence, Machine Learning is a powerful tool for confronting the numerous challenges of developing knowledge-based farming systems. This study aims to comprehensively review the current scientific literature from 2017 to 2023, emphasizing Machine Learning in agriculture, especially viticulture, to detect and predict grape infections. Most of these studies (88%) were conducted within the last five years. A variety of Machine Learning algorithms were used, with those belonging to the Neural Networks (especially Convolutional Neural Networks) standing out as having the best results most of the time. Out of the list of diseases, the ones most researched were Grapevine Yellow, Flavescence Dorée, Esca, Downy mildew, Leafroll, Pierce’s, and Root Rot. Also, some other fields were studied, namely Water Management, plant deficiencies, and classification. Because of the difficulty of the topic, we collected all datasets that were available about grapevines, and we described each dataset with the type of data (e.g., statistical, images, type of images), along with the number of images where they were mentioned. This work provides a unique source of information for a general audience comprising AI researchers, agricultural scientists, wine grape growers, and policymakers. Among others, its outcomes could be effective in curbing diseases in viticulture, which in turn will drive sustainable gains and boost success. Additionally, it could help build resilience in related farming industries such as winemaking. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

11 pages, 1241 KiB  
Article
Investigation on Flavescence Dorée in North-Western Italy Identifies Map-M54 (16SrV-D/Map-FD2) as the Only Phytoplasma Genotype in Vitis vinifera L. and Reveals the Presence of New Putative Reservoir Plants
by Ivo Ercole Rigamonti, Martino Salvetti, Paola Girgenti, Piero Attilio Bianco and Fabio Quaglino
Biology 2023, 12(9), 1216; https://doi.org/10.3390/biology12091216 - 7 Sep 2023
Cited by 12 | Viewed by 1947
Abstract
Flavescence dorée (FD) is the most important phytoplasma-associated disease of the grapevine yellows complex in Europe. Recent studies highlighted a great genetic diversity within FD phytoplasma (FDp) strains and demonstrated that their diffusion is not related exclusively to the pathosystem including Vitis vinifera [...] Read more.
Flavescence dorée (FD) is the most important phytoplasma-associated disease of the grapevine yellows complex in Europe. Recent studies highlighted a great genetic diversity within FD phytoplasma (FDp) strains and demonstrated that their diffusion is not related exclusively to the pathosystem including Vitis vinifera L. and Scaphoideus titanus but involves additional vectors and reservoir plants. This study aimed to investigate FD epidemiology in north-western Italy, with a particular focus on FDp hosts. During field surveys, leaf samples were collected from symptomatic grapevines and other symptomless plant species, and insects were collected within and around vineyards. Phytoplasmas belonging to the ribosomal group 16SrV were detected and typed using nested-PCR-based amplification and nucleotide sequence analyses of the map gene. All symptomatic grapevines were found to be infected by the FDp genotype M54, prevalent in S. titanus and also identified in other known and newly reported hosts. Interestingly, other FDp strains (M38, M50, M51, M121) and FDp-related strains (M39, M43, M48), never detected in grapevines, were largely identified in several known and newly reported host plants and insects including S. titanus. Such evidence confirmed the complexity of FD ecology, expanding the knowledge on the range of FDp host plants putatively involved in the disease spread. Full article
Show Figures

Figure 1

16 pages, 1579 KiB  
Article
Competition among Flavescence Dorée Phytoplasma Strains in the Experimental Insect Vector Euscelidius variegatus
by Marika Rossi, Luciana Galetto, Nicola Bodino, Jessica Beltramo, Silvia Gamalero, Mattia Pegoraro, Domenico Bosco and Cristina Marzachì
Insects 2023, 14(7), 575; https://doi.org/10.3390/insects14070575 - 23 Jun 2023
Cited by 3 | Viewed by 2000
Abstract
Phytoplasmas are plant pathogenic wall-less bacteria transmitted in a persistent propagative manner by hemipteran insects, mainly belonging to the suborder Auchenorrhyncha (Fulgoromorpha and Cicadomorpha). Flavescence dorée (FD) is a quarantine disease of grapevine, causing great damage to European viticulture and associated with phytoplasmas [...] Read more.
Phytoplasmas are plant pathogenic wall-less bacteria transmitted in a persistent propagative manner by hemipteran insects, mainly belonging to the suborder Auchenorrhyncha (Fulgoromorpha and Cicadomorpha). Flavescence dorée (FD) is a quarantine disease of grapevine, causing great damage to European viticulture and associated with phytoplasmas belonging to 16SrV-C (FD-C) and -D (FD-D) subgroups. FD-C and FD-D strains share similar pathogenicity, but mixed infections are rare in nature. To investigate the competition among FDp strains, specimens of the laboratory vector Euscelidius variegatus (Hemiptera: Cicadellidae) were forced to acquire both phytoplasma haplotypes upon feeding on FD-C- and FD-D-infected plants or after the injection of both strains. The pathogen colonization of insect bodies and heads was monitored with multiplex qPCR, and the efficiencies of phytoplasma transmission were estimated. Single infection, irrespective of strain type, was more frequent than expected, indicating that competition among FD strains occurs. Hypotheses of competition for resources and/or host active sites or the direct antibiosis of one strain against the other are discussed, based on the genetic complexity of FDp populations and on the high genome variability of the FD-D strain. As FD management still mainly relies on insecticides against vectors, the characterization of FDp haplotypes and the description of their epidemiology also have practical implications. Full article
(This article belongs to the Special Issue Insect Vectors of Plant Diseases)
Show Figures

Figure 1

22 pages, 8545 KiB  
Article
Low-Cost Handheld Spectrometry for Detecting Flavescence Dorée in Vineyards
by Hafiz Ali Imran, Abdallah Zeggada, Ivan Ianniello, Farid Melgani, Annalisa Polverari, Alice Baroni, Davide Danzi and Rino Goller
Appl. Sci. 2023, 13(4), 2388; https://doi.org/10.3390/app13042388 - 13 Feb 2023
Cited by 7 | Viewed by 2482
Abstract
This study was conducted to evaluate the potential of low-cost hyperspectral sensors for the early detection of Flavescence dorée (FD) from asymptomatic samples prior to symptom development. In total, 180 leaf spectra from 60 randomly selected plants (three leaves per plant) were collected [...] Read more.
This study was conducted to evaluate the potential of low-cost hyperspectral sensors for the early detection of Flavescence dorée (FD) from asymptomatic samples prior to symptom development. In total, 180 leaf spectra from 60 randomly selected plants (three leaves per plant) were collected by using two portable mini-spectrometers (Hamamatsu: 340–850 nm and NIRScan: 900–1700 nm) at five vegetative growth stages in a vineyard with grape variety Garganega. High differences in the Hamamatsu spectra of the two groups were found in the VIS-NIR (visible–near infrared) spectral region while very small differences were observed in the NIRScan spectra. We analyzed the spectral data of two sensors by using all bands, features reduced by an ensemble method, and by genetic algorithms (GA) to discriminate the asymptomatic healthy (FD negative) and diseased (FD positive) leaves using five different classifiers. Overall, high classification accuracies were found in case of the Hamamatsu sensor compared to the NIRScan sensor. The feature selection techniques performed better compared to all bands, and the highest classification accuracy of 96% was achieved when GA features of the Hamamatsu sensor were used with the logistic regression (LR) classifier on test samples. A slightly low accuracy of 85% was achieved when the features (selected by the ensemble method) of the Hamamatsu sensor were used with the support vector machine (SVM) classifier by using leave-one-out (LOO) cross-validation on the whole dataset. Results demonstrated that employing a feature selection technique can provide a valid tool for determining the optimal bands that can be used to identify FD disease in the vineyard. However, further validation studies are required, as this study was conducted using a small dataset and from the single grapevine variety. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

14 pages, 904 KiB  
Article
Epidemiological Role of Dictyophara europaea (Hemiptera: Dictyopharidae) in the Transmission of ‘Candidatus Phytoplasma solani’
by Tatjana Cvrković, Jelena Jović, Oliver Krstić, Slavica Marinković, Miljana Jakovljević, Milana Mitrović and Ivo Toševski
Horticulturae 2022, 8(7), 654; https://doi.org/10.3390/horticulturae8070654 - 19 Jul 2022
Cited by 8 | Viewed by 2794
Abstract
Bois noir, an economically important disease of grapevine yellows that causes significant economic losses in wine production, is associated with ‘Candidatus Phytoplasma solani’ and transmitted to grapevines by cixiids Hyalesthes obsoletus and Reptalus panzeri. Polyphagous planthopper Dictyophara europaea, commonly found [...] Read more.
Bois noir, an economically important disease of grapevine yellows that causes significant economic losses in wine production, is associated with ‘Candidatus Phytoplasma solani’ and transmitted to grapevines by cixiids Hyalesthes obsoletus and Reptalus panzeri. Polyphagous planthopper Dictyophara europaea, commonly found in natural habitats, harbors phytoplasmas from distinct groups and is an alternative vector in the open epidemiological cycles of the Flavescence dorée phytoplasma in grapevine in European vineyards. This study addresses the role of D. europaea in the transmission cycle(s) of ‘Ca. P. solani’ among wild habitats, natural reservoir plants, and the vineyard agroecosystem using MLSA and transmission trials with naturally infected adults to grapevine and Catharanthus roseus. The infection rates of D. europaea ranged from 7% to 13% in diverse locations, while reservoir herbaceous plants were infected in the amount of 29%. A total of 13 CaPsol MLSA genotypes were detected in D. europaea (7) and plants (8). Nine of them corresponded to previously identified genotypes. Two new genotypes were found in D. europaea (tuf-b1/S1/V14/Rqg50-sv1 and tuf-b1/S18/V14/Rqg50-sv1) and one in Convolvulus arvensis (tuf-b1/S1/V2-TA/Rqg31-sv1), whereas one was shared by two hosts, Crepis foetida and Daucus carota (tuf-b1/S1/V2-TA/STOL-sv1). Naturally infected D. europaea successfully transmitted the tuf-b1/S1/V2-TA/STOL type to five grapevines and six periwinkles, tuf-b1/S1/V2-TA/Rqg31 to one grapevine, and tuf-b1/S1/V2-TA/Rqg50 to one periwinkle, indicating that D. europaea is an intermediate vector in CaPsol epidemiological cycles. Full article
(This article belongs to the Special Issue New Insights into Pest Management in Horticultural Production)
Show Figures

Figure 1

18 pages, 2077 KiB  
Article
In-Field LAMP Detection of Flavescence Dorée Phytoplasma in Crude Extracts of the Scaphoideus titanus Vector
by Slavica Matić, Valentina Candian, Chiara D’Errico, Roberto Pierro, Stefano Panno, Salvatore Davino, Emanuela Noris and Rosemarie Tedeschi
Agronomy 2022, 12(7), 1645; https://doi.org/10.3390/agronomy12071645 - 8 Jul 2022
Cited by 7 | Viewed by 3204
Abstract
One of the most destructive diseases affecting grapevine in Europe is caused by Flavescence Dorée phytoplasma (FDp), which belongs to the 16Sr-V group and is a European Union quarantine pathogen. Although many molecular techniques such as loop-mediated isothermal amplification (LAMP) are widely used [...] Read more.
One of the most destructive diseases affecting grapevine in Europe is caused by Flavescence Dorée phytoplasma (FDp), which belongs to the 16Sr-V group and is a European Union quarantine pathogen. Although many molecular techniques such as loop-mediated isothermal amplification (LAMP) are widely used for the rapid detection of FDp in infected grapevine plants, there is no developed isothermal amplification assay for FDp detection in the insect vectors that are fundamental for the spread of the disease. For this reason, a simple in-field real-time LAMP protocol was optimized and developed for the specific detection of FDp in the insect vector Scaphoideus titanus. The LAMP assay was optimized to work with crude insect extracts obtained by manually shaking a single insect in a buffer for 5 min. Such a simple, sensitive, specific, economic, and user-friendly LAMP assay allowed the detection of FDp in S. titanus in less than half an hour, directly in the field. The developed insect tissue preparation procedure, combined with the LAMP protocol, promptly revealed the presence of FDp in infected S. titanus directly in the vineyards, allowing for monitoring of the spread of the pathogen in the field and to apply timely strategies required for the mandatory control of this pathogen. Full article
(This article belongs to the Special Issue Genetics and Molecular Biology of Pathogens in Agricultural Crops)
Show Figures

Graphical abstract

14 pages, 2576 KiB  
Article
Impact of the “Flavescence Dorée” Phytoplasma on Xylem Growth and Anatomical Characteristics in Trunks of ‘Chardonnay’ Grapevines (Vitis vinifera)
by Attilio Rizzoli, Luca Jelmini, Gianni Boris Pezzatti, Mauro Jermini, Olivier Schumpp, Christophe Debonneville, Enrico Marcolin, Patrik Krebs and Marco Conedera
Biology 2022, 11(7), 978; https://doi.org/10.3390/biology11070978 - 28 Jun 2022
Cited by 5 | Viewed by 2561
Abstract
Flavescence dorée (FD) is a grapevine disease caused by ‘Candidatus Phytoplasma vitis’ (FDp), which is epidemically transmitted by the Nearctic leafhopper Scaphoideus titanus. In this study, we applied dendrochronological techniques to analyse the response to FDp infections in terms of wood [...] Read more.
Flavescence dorée (FD) is a grapevine disease caused by ‘Candidatus Phytoplasma vitis’ (FDp), which is epidemically transmitted by the Nearctic leafhopper Scaphoideus titanus. In this study, we applied dendrochronological techniques to analyse the response to FDp infections in terms of wood ring widths and anatomical structures of the xylem and phloem tissues of the trunk of the susceptible grapevine cultivar ‘Chardonnay.’ As a rule, grapevines are susceptible to water shortage and reduce their growth in diameter in case of summer drought. In the season of the external expression of FD symptoms, however, the ring width reductions are extreme and supersede any drought-induced effects. In addition, the anatomy of the phloem tissue in the year of the FD symptom expression appears heavily disarranged. Moreover, in the most suffering individuals, the xylem formation remains incomplete and mostly limited to the early wood tissue. In conclusion, even though the FD phytoplasma does not inhabit and replicate inside the xylem tissue, our results confirm existing indirect inhibiting effects on the ring growth and the xylem tissue formation in FDp-infected grapevines. Full article
Show Figures

Figure 1

18 pages, 3086 KiB  
Article
Genetic Diversity of Flavescence Dorée Phytoplasmas in Vineyards of Serbia: From the Widespread Occurrence of Autochthonous Map-M51 to the Emergence of Endemic Map-FD2 (Vectotype II) and New Map-FD3 (Vectotype III) Epidemic Genotypes
by Oliver Krstić, Tatjana Cvrković, Slavica Marinković, Miljana Jakovljević, Milana Mitrović, Ivo Toševski and Jelena Jović
Agronomy 2022, 12(2), 448; https://doi.org/10.3390/agronomy12020448 - 11 Feb 2022
Cited by 10 | Viewed by 3616
Abstract
Flavescence dorée (FD) is a European quarantine disease of grapevine caused by FD phytoplasma (FDp) transmitted by the leafhopper of North American origin Scaphoideus titanus. The disease affects the most important viticultural regions of Europe and all wine-growing regions of Serbia. Unlike [...] Read more.
Flavescence dorée (FD) is a European quarantine disease of grapevine caused by FD phytoplasma (FDp) transmitted by the leafhopper of North American origin Scaphoideus titanus. The disease affects the most important viticultural regions of Europe and all wine-growing regions of Serbia. Unlike the insect vector, the pathogen is native to Europe and associated with several wild host plants among which alder trees as the main source of two out of three map genetic clusters of pathogen variants (Map-FD1 and FD2). Heretofore, the FDp epidemic in Serbian vineyards was thought to be monotypic, i.e., caused by the single genotype of the Map-FD3 cluster, M51, and correlated with clematis as the natural source plant. This study aimed to provide data on genetic diversity, through map and vmpA gene typing, and insights into ecological properties of epidemiological cycles driving the epidemic outbreaks of FD in Serbia today. Map genotyping of 270 grapevine isolates collected from 2017 to 2019 confirmed M51 as autochthonous genotype widespread in all wine producing regions of Serbia and the dominant FDp epidemic genotype in most of the districts (75%, 202/270 isolates), except in north Serbia where multiple outbreaks of M12 Map-FD3 were recorded (54 isolates). Tree of heaven is reported as a new FDp plant reservoir for the Serbian vineyards, hosting the M51 genotype, along with clematis. An outbreak of a new endemic Map-FD3 genotype M144 was documented in grapevine samples from east Serbia (5 isolates), correlating with previous findings of the same genotype in clematis. In addition, single grapevine infections with five new Map-FD3 genotypes (M150-M154) were recorded in central Serbia, thus indicating high endemic potential for new outbreaks. The vmpA typing placed all Map-FD3 isolates into the VmpA-III cluster, i.e., Vectotype III. Finally, we found direct evidence that at least two FDp endemic genotypes, M89 and M148, of the Map-FD2/VmpA-II have escaped from alders and propagated in the grapevine-S. titanus pathosystem in Serbia (Vectotype II). Our findings confirm the high complexity of the FDp ecological cycle and provide evidence of a unique, autochthonous Balkan epidemiology sourced endemically. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

16 pages, 3114 KiB  
Article
Bacteriophage-Host Association in the Phytoplasma Insect Vector Euscelidius variegatus
by Marta Vallino, Marika Rossi, Sara Ottati, Gabriele Martino, Luciana Galetto, Cristina Marzachì and Simona Abbà
Pathogens 2021, 10(5), 612; https://doi.org/10.3390/pathogens10050612 - 17 May 2021
Cited by 10 | Viewed by 4286
Abstract
Insect vectors transmit viruses and bacteria that can cause severe diseases in plants and economic losses due to a decrease in crop production. Insect vectors, like all other organisms, are colonized by a community of various microorganisms, which can influence their physiology, ecology, [...] Read more.
Insect vectors transmit viruses and bacteria that can cause severe diseases in plants and economic losses due to a decrease in crop production. Insect vectors, like all other organisms, are colonized by a community of various microorganisms, which can influence their physiology, ecology, evolution, and also their competence as vectors. The important ecological meaning of bacteriophages in various ecosystems and their role in microbial communities has emerged in the past decade. However, only a few phages have been described so far in insect microbiomes. The leafhopper Euscelidius variegatus is a laboratory vector of the phytoplasma causing Flavescence dorée, a severe grapevine disease that threatens viticulture in Europe. Here, the presence of a temperate bacteriophage in E. variegatus (named Euscelidius variegatus phage 1, EVP-1) was revealed through both insect transcriptome analyses and electron microscopic observations. The bacterial host was isolated in axenic culture and identified as the bacterial endosymbiont of E. variegatus (BEV), recently assigned to the genus Candidatus Symbiopectobacterium. BEV harbors multiple prophages that become active in culture, suggesting that different environments can trigger different mechanisms, finely regulating the interactions among phages. Understanding the complex relationships within insect vector microbiomes may help in revealing possible microbe influences on pathogen transmission, and it is a crucial step toward innovative sustainable strategies for disease management in agriculture. Full article
Show Figures

Figure 1

12 pages, 921 KiB  
Review
Models Applied to Grapevine Pests: A Review
by Federico Lessio and Alberto Alma
Insects 2021, 12(2), 169; https://doi.org/10.3390/insects12020169 - 16 Feb 2021
Cited by 25 | Viewed by 5040
Abstract
This paper reviews the existing predictive models concerning insects and mites harmful to grapevine. A brief conceptual description is given on the definition of a model and about different types of models: deterministic vs. stochastics, continuous vs. discrete, analytical vs. computer-based, and descriptive [...] Read more.
This paper reviews the existing predictive models concerning insects and mites harmful to grapevine. A brief conceptual description is given on the definition of a model and about different types of models: deterministic vs. stochastics, continuous vs. discrete, analytical vs. computer-based, and descriptive vs. data-driven. The main biological aspects of grapevine pests covered by different types of models are phenology, population growth and dynamics, species distribution, and invasion risk. A particular emphasis is put on forecasting epidemics of plant disease agents transmitted by insects with sucking-piercing mouthparts. The most investigated species or groups are the glassy-winged sharpshooter Homalodisca vitripennis (Germar) and other vectors of Xylella fastidiosa subsp. fastidiosa, a bacterium agent of Pierce’s disease; the European grape berry moth, Lobesia botrana (Denis and Schiffermuller); and the leafhopper Scaphoideus titanus Ball, the main vector of phytoplasmas agents of Flavescence dorée. Finally, the present and future of decision-support systems (DSS) in viticulture is discussed. Full article
Show Figures

Figure 1

15 pages, 1975 KiB  
Article
Competitive Exclusion of Flavescence dorée Phytoplasma Strains in Catharanthus roseus Plants
by Marika Rossi, Marta Vallino, Luciana Galetto and Cristina Marzachì
Plants 2020, 9(11), 1594; https://doi.org/10.3390/plants9111594 - 17 Nov 2020
Cited by 8 | Viewed by 2709
Abstract
Flavescence dorée phytoplasmas (FDp, 16SrV-C and -D) are plant pathogenic non-cultivable bacteria associated with a severe grapevine disease. The incidence of the two reference strains on cultivated grapevines is unbalanced, and mixed infections are rare. To investigate the interaction between the two strains, [...] Read more.
Flavescence dorée phytoplasmas (FDp, 16SrV-C and -D) are plant pathogenic non-cultivable bacteria associated with a severe grapevine disease. The incidence of the two reference strains on cultivated grapevines is unbalanced, and mixed infections are rare. To investigate the interaction between the two strains, Catharanthus roseus plants were graft-infected with both strains, either simultaneously or sequentially. Different combinations of lateral and apical grafting were applied to avoid possible benefits due to graft position. The infection was monitored for four months through a new diagnostic protocol developed for differentiation and relative quantification of the two strains. Regardless of the temporal or spatial advantage at grafting, FD-C generally outcompeted FD-D. The prevalence of FD-C increased over time and, at the end of the experiment, FD-C was the unique strain detected in the aerial part and the roots of 74% and 90% of grafted plants, respectively. These data indicate that the interaction between the two strains results in competitive exclusion. Understanding the bases of the competition between FD-C and FD-D may contribute to explain the biology of the coexistence of different FDp strains under field conditions, aiming at identifying potential suppressor strains, which can provide alternative and environmentally sustainable solutions for FD control. Full article
(This article belongs to the Special Issue Advances in Phytoplasma Research)
Show Figures

Graphical abstract

13 pages, 966 KiB  
Article
Recovery from Grapevine Flavescence Dorée in Areas of High Infection Pressure
by Matteo Ripamonti, Davide Pacifico, Chiara Roggia, Sabrina Palmano, Marika Rossi, Nicola Bodino, Cristina Marzachì, Domenico Bosco and Luciana Galetto
Agronomy 2020, 10(10), 1479; https://doi.org/10.3390/agronomy10101479 - 27 Sep 2020
Cited by 5 | Viewed by 4683
Abstract
Flavescence dorée (FD) is a quarantine grapevine disease caused by a phytoplasma transmitted by the leafhopper Scaphoideus titanus Ball. FD management relies on compulsory insecticide treatments, roguing of infected plants, and substitution with certified material. Some grapevine cultivars show a spontaneous remission of [...] Read more.
Flavescence dorée (FD) is a quarantine grapevine disease caused by a phytoplasma transmitted by the leafhopper Scaphoideus titanus Ball. FD management relies on compulsory insecticide treatments, roguing of infected plants, and substitution with certified material. Some grapevine cultivars show a spontaneous remission of symptoms (recovery). To determine if recovery is a suitable strategy to co-exist with disease in areas of strong infestation, the qualitative aspects of grapes, musts, and wines obtained from recovered Barbera and Chardonnay grapevines were investigated in two productive vineyards. Following field observations, about 1500 plants in each vineyard were divided into healthy (asymptomatic and negative in phytoplasma molecular diagnosis) and recovered (asymptomatic the year of observation but infected the year before). Maturation curves and microvinification tests followed by oenological and sensory analyses showed that maturation trends of recovered grapes were in line with those from healthy plants and the final qualities of wines were comparable. The spread of FD has strongly increased in Piedmont (Italy) in recent decades. Management strategies to cope with the disease are necessary to preserve traditional wine production. Despite the yield from recovered grapevines is quantitatively lower than that from healthy ones, we showed here that the wine quality is, however, preserved. Full article
Show Figures

Graphical abstract

16 pages, 2181 KiB  
Article
Flavescence Dorée Phytoplasma Has Multiple ftsH Genes that Are Differentially Expressed in Plants and Insects
by Camille Jollard, Xavier Foissac, Delphine Desqué, Frédérique Razan, Christophe Garcion, Laure Beven and Sandrine Eveillard
Int. J. Mol. Sci. 2020, 21(1), 150; https://doi.org/10.3390/ijms21010150 - 24 Dec 2019
Cited by 10 | Viewed by 3821
Abstract
Flavescence dorée (FD) is a severe epidemic disease of grapevines caused by FD phytoplasma (FDP) transmitted by the leafhopper vector Scaphoideus titanus. The recent sequencing of the 647-kbp FDP genome highlighted an unusual number of genes encoding ATP-dependent zinc proteases FtsH, which [...] Read more.
Flavescence dorée (FD) is a severe epidemic disease of grapevines caused by FD phytoplasma (FDP) transmitted by the leafhopper vector Scaphoideus titanus. The recent sequencing of the 647-kbp FDP genome highlighted an unusual number of genes encoding ATP-dependent zinc proteases FtsH, which have been linked to variations in the virulence of “Candidatus Phytoplasma mali” strains. The aims of the present study were to predict the FtsH repertoire of FDP, to predict the functional domains and topologies of the encoded proteins in the phytoplasma membrane and to measure the expression profiles in different hosts. Eight complete ftsH genes have been identified in the FDP genome. In addition to ftsH6, which appeared to be the original bacterial ortholog, the other seven gene copies were clustered on a common distinct phylogenetic branch, suggesting intra-genome duplication of ftsH. The expression of these proteins, quantified in plants and insect vectors in natural and experimental pathosystems, appeared to be modulated in a host-dependent manner. Two of the eight FtsH C-tails were predicted by Phobius software to be extracellular and, therefore, in direct contact with the host cellular content. As phytoplasmas cannot synthesize amino acids, our data raised questions regarding the involvement of FtsH in the adaptation to hosts via potentially enhanced recycling of phytoplasma cellular proteins and host protein degradation. Full article
(This article belongs to the Special Issue Host–Pathogen Interaction)
Show Figures

Figure 1

Back to TopTop