Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (72)

Search Parameters:
Keywords = Fiber Optics (FO)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
7 pages, 3138 KiB  
Proceeding Paper
On-Line Process Monitoring for Aero-Space Components Using Different Technologies of Fiber Optic Sensors During Liquid Resin Infusion (LRI) Process
by Cristian Builes Cárdenas, Tania Grandal González, Arántzazu Núñez Cascajero, Mario Román Rodríguez, Rubén Ruiz Lombera and Paula Rodríguez Alonso
Eng. Proc. 2025, 90(1), 5; https://doi.org/10.3390/engproc2025090005 - 7 Mar 2025
Viewed by 502
Abstract
The FLASH-COMP project aims to introduce novel inspection and monitoring technologies to develop a digital solution to predict defects during manufacturing, aiming to reach a zero-waste approach in composites manufacturing. Particularly, it’s studied the integration of two different Fiber Optic Sensor (FOS) technologies: [...] Read more.
The FLASH-COMP project aims to introduce novel inspection and monitoring technologies to develop a digital solution to predict defects during manufacturing, aiming to reach a zero-waste approach in composites manufacturing. Particularly, it’s studied the integration of two different Fiber Optic Sensor (FOS) technologies: Fiber Bragg Grating (FBG) and distributed All Grating Fiber (AGF®), to retrieve relevant data during the preforming stage and later resin infusion process for aero-space materials. During the study, both FOS technologies were introduced into the materials, varying process conditions and the introduction of some artificial defects to evaluate the sensors response to correlate them after with their signals. Both systems can retrieve relevant information during the process such as vacuum, leaks and temperature changes, presence of voids and air bubbles, detection of dry zones, and resin flow monitoring. Further developments have to be focused on the scalability in the implementation, since FOS are fragile to handle and need specific training to use it in a more industrial field. Full article
Show Figures

Figure 1

19 pages, 4254 KiB  
Article
Anomaly Detection in Spatiotemporal Data from Fiber Optic Distributed Temperature Sensing for Outdoor Fire Monitoring
by Haitao Bian, Xiaohan Luo, Zhichao Zhu, Xiaowei Zang and Yu Tian
Fire 2025, 8(1), 23; https://doi.org/10.3390/fire8010023 - 10 Jan 2025
Cited by 1 | Viewed by 1378
Abstract
Outdoor fire detection faces significant challenges due to complex and variable environmental conditions. Fiber Optic Distributed Temperature Sensing (FO-DTS), recognized for its high sensitivity and broad monitoring range, provides significant advantages in detecting outdoor fires. However, prediction models trained in laboratory settings often [...] Read more.
Outdoor fire detection faces significant challenges due to complex and variable environmental conditions. Fiber Optic Distributed Temperature Sensing (FO-DTS), recognized for its high sensitivity and broad monitoring range, provides significant advantages in detecting outdoor fires. However, prediction models trained in laboratory settings often yield false and missed alarms when deployed in complex outdoor settings, due to environmental interferences. To address this issue, this study developed a fixed-power fire source simulation device to establish a reliable small-scale experimental platform incorporating various environmental influences for generating anomalous temperature data. We employed deep learning autoencoders (AEs) to integrate spatiotemporal data, aiming to minimize the impact of outdoor conditions on detection performance. This research focused on analyzing how environmental temperature changes and rapid fluctuations affected detection capabilities, evaluating metrics such as detection accuracy and delay. Results showed that, compared to AE and VAE models handling spatial or temporal data, the CNN-AE demonstrated superior anomaly detection performance and strong robustness when applied to spatiotemporal data. Furthermore, the findings emphasize that environmental factors such as extreme temperatures and rapid temperature fluctuations can affect detection outcomes, increasing the likelihood of false alarms. This research underscores the potential of utilizing FO-DTS spatiotemporal data with CNN-AE for outdoor fire detection in complex scenarios and provides suggestions for mitigating environmental interference in practical applications. Full article
(This article belongs to the Special Issue Simulation, Experiment and Modeling of Coal Fires)
Show Figures

Figure 1

15 pages, 6123 KiB  
Article
Impact of Moisture Absorption on Optical Fiber Sensors: New Bragg Law Formulation for Monitoring Composite Structures
by Pietro Aceti and Giuseppe Sala
J. Compos. Sci. 2024, 8(12), 518; https://doi.org/10.3390/jcs8120518 - 9 Dec 2024
Cited by 3 | Viewed by 1099
Abstract
In recent decades, the aviation industry has increasingly adopted composite materials for various aircraft components, due to their high strength-to-weight ratio and durability. To ensure the safety and reliability of these structures, Health and Usage Monitoring Systems (HUMSs) based on fiber optics (FO), [...] Read more.
In recent decades, the aviation industry has increasingly adopted composite materials for various aircraft components, due to their high strength-to-weight ratio and durability. To ensure the safety and reliability of these structures, Health and Usage Monitoring Systems (HUMSs) based on fiber optics (FO), particularly Fiber Bragg Grating (FBG) sensors, have been developed. However, both composite materials and optical fibers are susceptible to environmental factors such as moisture, in addition to the well-known effects of mechanical stress and thermal loads. Moisture absorption can lead to the degradation of mechanical properties, posing a risk to the structural integrity of aircraft components. This research aims to quantify and monitor the impact of moisture on composite materials. A new formulation of the Bragg equation is introduced, incorporating mechanical strain, thermal expansion, and hygroscopic swelling to accurately measure Bragg wavelength variations. Experimental validation was performed using both uncoated and polyimide-coated optical fibers subjected to controlled hygrothermal conditions in a climate chamber. The results demonstrate that uncoated fibers are insensitive to humidity, whereas coated fibers exhibit measurable wavelength shifts due to moisture absorption. The proposed model effectively predicts these shifts, with errors consistently below 2.6%. This approach is crucial for improving the performance and reliability of HUMSs in monitoring composite structures, ensuring long-term safety in extreme environmental conditions. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

13 pages, 3044 KiB  
Article
Fiber Optic LSPR Sensing AFM1 in Milk with Enhanced Sensitivity by the Hot Spot Effect Based on Nanogap Construction
by Jiacong Li, Yuxin Ni, Wei Zhang, Elvige Laure Nteppe Nteppe, Yurong Li, Yeshun Zhang and Hui Yan
Micromachines 2024, 15(6), 779; https://doi.org/10.3390/mi15060779 - 13 Jun 2024
Cited by 2 | Viewed by 1560
Abstract
The detection of the amount of aflatoxin M1 (AFM1) in milk is crucial for food safety. Here, we utilize a fiber optic (FO) localized surface plasmon resonance (LSPR) biosensor by constructing gold nanoparticle (AuNP) multimers, in which the nanogaps amplified the LSPR signal [...] Read more.
The detection of the amount of aflatoxin M1 (AFM1) in milk is crucial for food safety. Here, we utilize a fiber optic (FO) localized surface plasmon resonance (LSPR) biosensor by constructing gold nanoparticle (AuNP) multimers, in which the nanogaps amplified the LSPR signal by the hot spot effect, and achieved a highly sensitive detection of f AFM1. Through the optimization of parameter conditions for the fabrication of the sensor and detection system, a high performance result from the FO LSPR biosensor was obtained, and the method for AFM1 detection was established, with a wide detection range of 0.05–100 ng/mL and a low limit of detection (LOD) of 0.04 ng/mL, and it has been successfully validated with the actual sample milk. Therefore, it is a good strategy to fabricate highly sensitive FO LSPR sensors for detecting AFM1 by constructing AuNP multimers, and this approach is suitable for developing other biosensors. Full article
(This article belongs to the Special Issue MEMS Nano/Microfabrication)
Show Figures

Figure 1

32 pages, 16871 KiB  
Article
Structural Health Monitoring for Prefabricated Building Envelope under Stress Tests
by Laura Vandi, Maria Teresa Calcagni, Francesco Belletti, Giuseppe Pandarese, Milena Martarelli, Gian Marco Revel, Vincent Docter and Alessandro Pracucci
Appl. Sci. 2024, 14(8), 3260; https://doi.org/10.3390/app14083260 - 12 Apr 2024
Cited by 1 | Viewed by 1854
Abstract
This paper details the comprehensive activities conducted in a laboratory setting to assess the structural health monitoring (SHM) of prefabricated building envelopes. Integrating sensors into building components like curtain wall facades poses challenges but offers opportunities for monitoring structural health, requiring compliance with [...] Read more.
This paper details the comprehensive activities conducted in a laboratory setting to assess the structural health monitoring (SHM) of prefabricated building envelopes. Integrating sensors into building components like curtain wall facades poses challenges but offers opportunities for monitoring structural health, requiring compliance with regulatory standards. The research investigates the possibility of defining a kit of conventional and multi-parameter sensors integrated within the building envelope to monitor its behavior during the performance test conducted. The kit of sensors also includes Fiber Optic Sensors for effectively monitoring building envelope behavior and structural integrity. In this context, the European project InComEss (H2020-GA862597) aims to define a stand-alone solution for SHM using Piezoelectric Energy Harvesting Systems (PE-EHS) for façade monitoring through FBG/FOS system. After analyzing the main façade structural stress, a series of FBGs, accelerometers, and force washers were integrated within a 1:1 scale façade prototype and tested in a laboratory following the test sequence parameters required by the curtain wall standard EN 13830. The data collected were analyzed with the aim of monitoring the façade behavior before and after the tests. The results show that the façade’s performance passed the assessing test criteria without reporting any damages. In addition, the outcomes demonstrated the effectiveness of the defined kit of multi-parameter sensors for the building envelope’s SHM. Full article
Show Figures

Figure 1

31 pages, 15070 KiB  
Article
Integration of Piezoelectric Energy Harvesting Systems into Building Envelopes for Structural Health Monitoring with Fiber Optic Sensing Technology
by Alessandro Pracucci, Laura Vandi, Francesco Belletti, Amanda Ramos Aragão Melo, Marios Vlachos, Angelos Amditis, Maria Teresa Calcagni and David Seixas Esteves
Energies 2024, 17(7), 1789; https://doi.org/10.3390/en17071789 - 8 Apr 2024
Cited by 5 | Viewed by 2719
Abstract
This paper presents a study about the integration of Piezoelectric Energy Harvesting Systems (PE-EHSs) into building envelopes for powering Fiber Bragg Grating (FBG) sensors, enabling efficient and low-consumption monitoring with the objective of leveraging structural health monitoring (SHM). The research includes preliminary tests [...] Read more.
This paper presents a study about the integration of Piezoelectric Energy Harvesting Systems (PE-EHSs) into building envelopes for powering Fiber Bragg Grating (FBG) sensors, enabling efficient and low-consumption monitoring with the objective of leveraging structural health monitoring (SHM). The research includes preliminary tests conducted in a real environment to validate the PE-EHS when fully integrated into a ventilated façade, capturing mechanical vibrations generated mainly by wind loads. Based on these activities, the final configuration of PE-EHSs is defined to provide a complete system for façade monitoring. This integrated system includes the piezoelectric generator (PEG), supercapacitor (SC), Power Conditioner Circuit (PCC), Fiber Optic Sensing (FOS) interrogator, and the IoT gateway transmitting measurement data within an Internet of Things (IoT) monitoring platform. This configuration is tailored to address the challenges related to the structural integrity of building envelopes. Results demonstrate a potential for a stand-alone solution in the façade sector but raise issues for certain limitations, requiring further investigation. In particular, the study emphasizes constraints related to the energy production of PE-EHSs for façade integration. It highlights the necessity to carefully consider these limitations within the broader context of their applicability, providing insights for the informed deployment of piezoelectric energy harvesting technology in building envelope monitoring. Full article
(This article belongs to the Section G1: Smart Cities and Urban Management)
Show Figures

Figure 1

17 pages, 3069 KiB  
Article
Dynamic Profiling and Prediction of Antibody Response to SARS-CoV-2 Booster-Inactivated Vaccines by Microsample-Driven Biosensor and Machine Learning
by Sumin Bian, Min Shang, Ying Tao, Pengbo Wang, Yankun Xu, Yao Wang, Zhida Shen and Mahamad Sawan
Vaccines 2024, 12(4), 352; https://doi.org/10.3390/vaccines12040352 - 25 Mar 2024
Cited by 4 | Viewed by 2568
Abstract
Knowledge of the antibody response to the third dose of inactivated SARS-CoV-2 vaccines is crucial because it is the subject of one of the largest global vaccination programs. This study integrated microsampling with optical biosensors to profile neutralizing antibodies (NAbs) in fifteen vaccinated [...] Read more.
Knowledge of the antibody response to the third dose of inactivated SARS-CoV-2 vaccines is crucial because it is the subject of one of the largest global vaccination programs. This study integrated microsampling with optical biosensors to profile neutralizing antibodies (NAbs) in fifteen vaccinated healthy donors, followed by the application of machine learning to predict antibody response at given timepoints. Over a nine-month duration, microsampling and venipuncture were conducted at seven individual timepoints. A refined iteration of a fiber optic biolayer interferometry (FO-BLI) biosensor was designed, enabling rapid multiplexed biosensing of the NAbs of both wild-type and Omicron SARS-CoV-2 variants in minutes. Findings revealed a strong correlation (Pearson r of 0.919, specificity of 100%) between wild-type variant NAb levels in microsamples and sera. Following the third dose, sera NAb levels of the wild-type variant increased 2.9-fold after seven days and 3.3-fold within a month, subsequently waning and becoming undetectable after three months. Considerable but incomplete evasion of the latest Omicron subvariants from booster vaccine-elicited NAbs was confirmed, although a higher number of binding antibodies (BAbs) was identified by another rapid FO-BLI biosensor in minutes. Significantly, FO-BLI highly correlated with a pseudovirus neutralization assay in identifying neutralizing capacities (Pearson r of 0.983). Additionally, machine learning demonstrated exceptional accuracy in predicting antibody levels, with an error level of <5% for both NAbs and BAbs across multiple timepoints. Microsample-driven biosensing enables individuals to access their results within hours of self-collection, while precise models could guide personalized vaccination strategies. The technology’s innate adaptability means it has the potential for effective translation in disease prevention and vaccine development. Full article
Show Figures

Graphical abstract

18 pages, 30326 KiB  
Article
CFRP Conical Grid Space Structure with Embedded Fiber Optics: Design, Manufacturing and Test
by Giovanni Totaro, Felice De Nicola, Paola Spena, Giovangiuseppe Giusto, Monica Ciminello, Ilan Weissberg, Yehonatan Carmi, Daniel Arviv and Nir Lalazar
Aerospace 2024, 11(1), 41; https://doi.org/10.3390/aerospace11010041 - 29 Dec 2023
Cited by 3 | Viewed by 2074
Abstract
This article discloses the activity developed in the framework of the research project “GRID” aiming at the feasibility demonstration of a fiber optic sensing system (FOS), based on fiber Bragg gratings (FGB), embedded in the ribs of a conical grid structure demonstrator in [...] Read more.
This article discloses the activity developed in the framework of the research project “GRID” aiming at the feasibility demonstration of a fiber optic sensing system (FOS), based on fiber Bragg gratings (FGB), embedded in the ribs of a conical grid structure demonstrator in composite material (CFRP), manufactured by means of dry robotic winding, liquid resin infusion and oven curing. This structure represents an optimized and highly efficient conical adapter for satellite applications that was designed under the same requirements of a conventional CFRP benchmark solution in order to evaluate possible mass savings. Specific interfaces were conceived in order to facilitate the insertion of the fiber optics in the center of helical ribs—pausing the automated deposition phase of the dry preform—and secure them to the structure. Representative grid articles were produced and tested to select the materials and evaluate the preliminary feasibility of the integrated system in conjunction with the infusion process. The proper functioning and use of the sensing system were finally proven during the various phases of the mechanical testing campaign of the demonstrator. Such a campaign included stiffness and strength evaluations and culminated with the catastrophic failure of the structure. The significant amount of data collected from several sensors embedded in the ribs and from conventional sensors glued outside the ribs helped us to better understand the structural behavior and to validate the design and analysis models. The main steps of the design, manufacturing and tests of this project are here addressed. Full article
Show Figures

Figure 1

12 pages, 3557 KiB  
Article
A Point-of-Care Testing Device Utilizing Graphene-Enhanced Fiber Optic SPR Sensor for Real-Time Detection of Infectious Pathogens
by Shiyu Jiang, Siyu Qian, Shunning Zhu, Jinxin Lu, Yunxin Hu, Cheng Zhang, Yikai Geng, Xuefeng Chen, Ying Guo, Zhaoliang Chen, Jie Pu, Zhendong Guo and Shengchun Liu
Biosensors 2023, 13(12), 1029; https://doi.org/10.3390/bios13121029 - 14 Dec 2023
Cited by 11 | Viewed by 2938
Abstract
Timely detection of highly infectious pathogens is essential for preventing and controlling public health risks. However, most traditional testing instruments require multiple tedious steps and ultimately testing in hospitals and third-party laboratories. The sample transfer process significantly prolongs the time to obtain test [...] Read more.
Timely detection of highly infectious pathogens is essential for preventing and controlling public health risks. However, most traditional testing instruments require multiple tedious steps and ultimately testing in hospitals and third-party laboratories. The sample transfer process significantly prolongs the time to obtain test results. To tackle this aspect, a portable fiber optic surface plasmon resonance (FO-SPR) device was developed for the real-time detection of infectious pathogens. The portable device innovatively integrated a compact FO-SPR sensing component, a signal acquisition and processing system, and an embedded power supply unit. A gold-plated fiber is used as the FO-SPR sensing probe. Compared with traditional SPR sensing systems, the device is smaller size, lighter weight, and higher convenience. To enhance the detection capacity of pathogens, a monolayer graphene was coated on the sensing region of the FO-SPR sensing probe. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was used to evaluate the performance of the portable device. The device can accurately detect the SARS-CoV-2 spike S1 protein in phosphate-buffered saline (PBS) and artificial saliva within just 20 min, and the device successfully detected cultured SARS-CoV-2 virus. Furthermore, the FO-SPR probe has long-term stability, remaining stable for up to 8 days. It could distinguish between the SARS-CoV-2 spike protein and the MERS-CoV spike protein. Hence, this FO-SPR device provides reliable, rapid, and portable access to test results. It provides a promising point-of-care testing (POCT) tool for on-site screening of infectious pathogens. Full article
(This article belongs to the Section Biosensors and Healthcare)
Show Figures

Figure 1

20 pages, 4582 KiB  
Article
Integrated Sensor-Optics Communication System Using Bidirectional Fiber and FSO Channels and Hybrid Deep Learning Techniques
by Amare Mulatie Dehnaw, Yibeltal Chanie Manie, Li-Yuan Du, Cheng-Kai Yao, Jun-Wei Jiang, Bing-Xian Liu and Peng-Chun Peng
Sensors 2023, 23(20), 8434; https://doi.org/10.3390/s23208434 - 13 Oct 2023
Cited by 10 | Viewed by 3087
Abstract
This paper introduces a new bidirectional integration approach that combines fiber sensor/free space optics (FSO) communication using an intensity and wavelength division multiplexer (IWDM) techniques-based long-distance fiber Bragg grating (FBG) sensor strain-sensing system. By implementing coarse wavelength division multiplexing (CWDM), the system achieves [...] Read more.
This paper introduces a new bidirectional integration approach that combines fiber sensor/free space optics (FSO) communication using an intensity and wavelength division multiplexer (IWDM) techniques-based long-distance fiber Bragg grating (FBG) sensor strain-sensing system. By implementing coarse wavelength division multiplexing (CWDM), the system achieves the simultaneous transmission of optical communication and fiber optical sensor (FOS) sensing signals, resulting in a highly capable, flexible, and cost-effective solution. The proposed FSO transmission technique addresses complex fiber cable installation concerns with topographical limitations. This bidirectional structure ensures the reliability and stability of the long-distance FBG sensor system, supported by extensive research and experimentation. A hybrid stacked gated recurrent units and long short-term memory (SGRU-LSTM) model is proposed to enhance strain measurement accuracy by predicting and measuring the central wavelength of overlapped strain-sensing FBG sensor signals. The results demonstrate the superiority of the proposed model in peak wavelength detection accuracy. The primary benefit of integrating communication and sensing is the significant reduction in construction costs by eliminating the requirement for two individual fiber optic systems, as the integration allows for a single system to fulfill both functions, resulting in more efficient and cost-effective implementation. Overall, this paper contributes to advancing long-distance FBG sensor systems by integrating fiber sensor/FSO communication and deep learning techniques, improving transmission distance, multiplexing capacity, measurement accuracy, system survivability, and cost-effectiveness. Full article
Show Figures

Figure 1

25 pages, 5508 KiB  
Review
Fiber Optic-Based Durability Monitoring in Smart Concrete: A State-of-Art Review
by Hou Qiao, Zhen Lin, Xiangtao Sun, Wei Li, Yangping Zhao and Chuanrui Guo
Sensors 2023, 23(18), 7810; https://doi.org/10.3390/s23187810 - 11 Sep 2023
Cited by 16 | Viewed by 3532
Abstract
Concrete is the most commonly used construction material nowadays. With emerging cutting-edge technologies such as nanomaterials (graphene, carbon nanotubes, etc.), advanced sensing (fiber optics, computer tomography, etc.), and artificial intelligence, concrete can now achieve self-sensing, self-healing, and ultrahigh performance. The concept and functions [...] Read more.
Concrete is the most commonly used construction material nowadays. With emerging cutting-edge technologies such as nanomaterials (graphene, carbon nanotubes, etc.), advanced sensing (fiber optics, computer tomography, etc.), and artificial intelligence, concrete can now achieve self-sensing, self-healing, and ultrahigh performance. The concept and functions of smart concrete have thus been partially realized. However, due to the wider application location (coastal areas, cold regions, offshore, and deep ocean scenarios) and changing climate (temperature increase, more CO2 emissions, higher moisture, etc.), durability monitoring (pH, ion penetration, carbonation, corrosion, etc.) becomes an essential component for smart concrete. Fiber optic sensors (FOS) have been widely explored in recent years for concrete durability monitoring due to their advantages of high sensitivity, immunity to harsh environments, small size, and superior sensitivity. The purpose of this review is to summarize FOS development and its application in concrete durability monitoring in recent years. The objectives of this study are to (1) introduce the working principle of FOS, including fiber Bragg grating (FBG), long-period fiber grating (LPFG), surface plasmon resonance (SPR), fluorescence-based sensors, and distributed fiber optic sensors (DFOS); (2) compare the sensitivity, resolution, and application scenarios of each sensor; and (3) discuss the advantages and disadvantages of FOS in concrete durability monitoring. This review is expected to promote technical development and provide potential research paths in the future for FOS in durability monitoring in smart concrete. Full article
(This article belongs to the Special Issue Optical Fiber Sensor Technology for Structural Health Monitoring)
Show Figures

Figure 1

20 pages, 6284 KiB  
Article
Investigation of Hybrid Remote Fiber Optic Sensing Solutions for Railway Applications
by Serhat Boynukalin, Selçuk Paker and Ahmad Atieh
Photonics 2023, 10(8), 864; https://doi.org/10.3390/photonics10080864 - 25 Jul 2023
Cited by 1 | Viewed by 1580
Abstract
Fiber optic sensing (FOS) has become a well-known technology in response to the rising demands of the railway transportation field despite the abundance of electronic sensing systems in the market. FOS application boasts an all-in-one solution that is both efficient and versatile. In [...] Read more.
Fiber optic sensing (FOS) has become a well-known technology in response to the rising demands of the railway transportation field despite the abundance of electronic sensing systems in the market. FOS application boasts an all-in-one solution that is both efficient and versatile. In order to enhance the understanding of the capabilities of FOS, this paper presents a hybrid fiber optic sensing system with an improved sensing ability to facilitate transportation applications for primary or secondary security interfaces. The hybrid sensing scheme incorporates two different sensing systems designed for long-distance applications. The first system employs a coding technique for the transmitted pulses, which provide information on train location through cross-correlation with the reflected pulses from fiber Bragg grating (FBG) sensors located along the railway. The proposed system can accurately predict the train’s location up to a precision of one cm. The second system examines the wavelength drift of the reflected signal from the FBG sensor affected by the train using a tunable optical filter and photodetector. It determines essential parameters such as the train’s location, speed, and direction by measuring the Bragg wavelength shift and its direction. The effect of the train movement and speed on the applied strain on the FBG sensor is calculated in this work and applied to the simulation to determine the train’s location, speed, and direction. A calibration table facilitates the correlation between the train speed and the shift in the FBG center wavelength, which helps ensure accurate results. The hybrid fiber optic sensing system is designed to facilitate railway transportation applications’ sustainability and security. Full article
(This article belongs to the Special Issue Advanced Photonic Sensing and Measurement)
Show Figures

Figure 1

20 pages, 6782 KiB  
Article
Research of a Fiber Sensor Based on Fiber Bragg Grating for Road Surface Monitoring
by Gulzhan Kashaganova, Ainur Kozbakova, Timur Kartbayev, Gani Balbayev, Kulzhan Togzhanova, Zhuldyz Alimseitova and Sandugash Orazaliyeva
Electronics 2023, 12(11), 2491; https://doi.org/10.3390/electronics12112491 - 31 May 2023
Cited by 24 | Viewed by 2863
Abstract
Road infrastructure is a key public asset because it benefits the social and economic development of any country. It plays an important role in the development of the industrial complex and the production sector, and the surfaces of transport roads should be of [...] Read more.
Road infrastructure is a key public asset because it benefits the social and economic development of any country. It plays an important role in the development of the industrial complex and the production sector, and the surfaces of transport roads should be of high quality and have a long service life. Road infrastructure, like all infrastructure, requires preservation, maintenance and repair. There are special requirements for roadways that must be observed during construction or repair. The uncertainty of the composition, temperature sensitivity and viscoelastic characteristics of road materials make the structural analysis of pavement very difficult compared to other civil structures, such as bridges, tunnels and buildings. For this reason, the question of how to improve fiber sensors based on fiber Bragg grating (FBG) arose. The novelty of this study is to modernize fiber sensors based on FBG so that they display deformation, stress and displacement, temperature and other parameters with much greater accuracy, which would provide a reliable scientific basis for modifying the theory, as well as the use of a fiber sensor based on FBG for simultaneous measurement of deformation and temperature when monitoring the road surface. This article is devoted to a detailed study of the use of fiber-optic sensors (FOS) based on fiber Bragg grating for road surface monitoring. Such a fiber sensor, consisting of a fiber Bragg grating and a pair of grids, can offer the possibility of simultaneous measurement of deformation and temperature for monitoring the pavement. Temperature and deformation measurements were carried out by installing a sensor on the surface of a made asphalt sample. The built-in fiber sensor based on FBG provides important information about how the pavement structure can withstand the load and subsidence of soil and implement road safety and stability measures in a timely manner to evaluate and predict the service life of the pavement. The results of the study showed that the synchronicity, repeatability and linearity of the characteristics of the fiber sensor are excellent. The difference between the experimental and theoretical results was about 7%. Thus, based on the results of the obtained data, the fiber sensor on the FBG can be used for monitoring and designing road surfaces and in general transport infrastructure. Full article
(This article belongs to the Section Optoelectronics)
Show Figures

Figure 1

14 pages, 9957 KiB  
Article
Effectiveness of Fiber Optic Distributed Acoustic Sensing (DAS) in Vertical Seismic Profiling (VSP) Field Survey
by Mohamad Hafizal Mad Zahir, Khairul Mustaqim Abdul Aziz, Ahmad Riza Ghazali and Abdul Halim Abdul Latiff
Appl. Sci. 2023, 13(8), 5002; https://doi.org/10.3390/app13085002 - 16 Apr 2023
Cited by 12 | Viewed by 5837
Abstract
The evolution of fiber optic technology in the past few decades has led to significant advancements in various fields, including high-speed and long-distance communication, big data transport, optical imaging, and sensing. However, relatively few studies have examined the use of fiber optic sensors [...] Read more.
The evolution of fiber optic technology in the past few decades has led to significant advancements in various fields, including high-speed and long-distance communication, big data transport, optical imaging, and sensing. However, relatively few studies have examined the use of fiber optic sensors (FOSs) as point and distributed sensors in geophysics. Distributed Acoustic Sensing (DAS) is a widely used method for subsurface imaging and monitoring in wells, specifically in Vertical Seismic Profiling (VSP) surveys. This method allows for detailed analysis of subsurface structures and properties of reservoirs. Four different strategies for deploying FOS cables in DAS VSP are evaluated and compared: cementing behind casing, cable behind inflatable liner, strapping to production tubing, and wireline deployment. Cementing the fiber behind casing is considered the most effective method for coupling with the formation. However, the other methods also have their own advantages and limitations. The fiber cable behind inflatable liner, for example, allows for accessibility to the fiber without affecting the acoustic signal, while strapping the fiber to production tubing can still record DAS signals; tubing noise and signal attenuation from the annular fluid, however, can make it difficult to differentiate from the seismic signal. Nonetheless, this method has the benefit of being simpler to deploy and replace in case of failure. Wireline deployment can pick up some acoustic signals in regions where the cable touches the well wall, but in vertical sections where the cable is not in contact with the wall, the signal is attenuated. Results from pilot tests in a field in Canada are discussed and evaluated, and suggestions for improving the VSP signal are provided. Full article
(This article belongs to the Special Issue Recent Advances in Exploration Geophysics)
Show Figures

Figure 1

11 pages, 18136 KiB  
Technical Note
High-Resolution Monitoring of Scour Using a Novel Fiber-Optic Distributed Temperature Sensing Device: A Proof-of-Concept Laboratory Study
by Rebecca Hatley, Mahmoud Shehata, Chadi Sayde and Celso Castro-Bolinaga
Sensors 2023, 23(7), 3758; https://doi.org/10.3390/s23073758 - 5 Apr 2023
Cited by 5 | Viewed by 2508
Abstract
Scour events can severely change the characteristics of streams and impose detrimental hazards on any structures built on them. The development of robust and accurate devices to monitor scour is therefore essential for studying and developing mitigation strategies for these adverse consequences. This [...] Read more.
Scour events can severely change the characteristics of streams and impose detrimental hazards on any structures built on them. The development of robust and accurate devices to monitor scour is therefore essential for studying and developing mitigation strategies for these adverse consequences. This technical note introduces a novel scour-monitoring device that utilizes new advances in the fiber-optic distributed temperature sensing (FO-DTS) technology. The novel FO-DTS scour-monitoring device utilizes the differential thermal responses of sediment, water, and air media to a heating event to accurately identify the locations of the interfaces between them. The performance of the device was tested in a laboratory flume under flow conditions with water velocities ranging from 0 m/s to 0.16 m/s. In addition, the effect of the measurement duration on the device’s measurement accuracy was also investigated. The FO-DTS scour-monitoring device managed to detect the sediment–water and water–air interfaces with average absolute errors of 1.60 cm and 0.63 cm, respectively. A measurement duration of fewer than 238 s was sufficient to obtain stable measurements of the locations of the sediment–water and water–air interfaces for all the tested flow conditions. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

Back to TopTop