Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (107)

Search Parameters:
Keywords = Fermi transport

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5802 KiB  
Article
Study on the Influence Mechanism of Alkaline Earth Element Doping on the Thermoelectric Properties of ZnO
by Haitao Zhang, Bo Feng, Yonghong Chen, Peng Jin, Ruolin Ruan, Biyu Xu, Zhipeng Zheng, Guopeng Zhou, Yang Zhang, Kewei Wang, Yin Zhong and Yanhua Fan
Micromachines 2025, 16(8), 850; https://doi.org/10.3390/mi16080850 - 24 Jul 2025
Viewed by 270
Abstract
As a promising n-type semiconductor thermoelectric material, ZnO has great potential in the high-temperature working temperature range due to its advantages of abundant sources, low cost, high thermal stability, and good chemical stability, as well as being pollution-free. Sr-doped ZnO-based thermoelectric materials were [...] Read more.
As a promising n-type semiconductor thermoelectric material, ZnO has great potential in the high-temperature working temperature range due to its advantages of abundant sources, low cost, high thermal stability, and good chemical stability, as well as being pollution-free. Sr-doped ZnO-based thermoelectric materials were prepared using the methods of room-temperature powder synthesis and high-temperature block synthesis. The phase composition, crystal structure, and thermoelectric performances of ZnO samples with different Sr doping levels were analyzed using XRD, material simulation software and thermoelectric testing devices, and the optimal doping concentrations were obtained. The results show that Sr doping could cause the Zn-O bond to become shorter; in addition, the hybridization between Zn and O atoms would become stronger, and the Sr atom would modify the density of states near the Fermi level, which could significantly increase the carrier concentration, electrical conductivity, and corresponding power factor. Sr doping could cause lattice distortion, enhance the phonon scattering effect, and decrease the lattice thermal conductivity and thermal conductivity. Sr doping can achieve the effect of improving electrical transport performance and decreasing thermal transport performance. The ZT value increased to ~0.418 at 873 K, which is ~4.2 times the highest ZT of the undoped ZnO sample. The Vickers hardness was increased to ~351.1 HV, which is 45% higher than the pristine ZnO. Full article
(This article belongs to the Special Issue Functional Materials and Microdevices, 2nd Edition)
Show Figures

Figure 1

16 pages, 2823 KiB  
Article
Electronic Properties of Molybdenum Disulfide Rings-Based Chains Associated with Length and Bias
by Yang Shu, Jie Li, Rukai Liu and Junnan Guo
Coatings 2025, 15(7), 827; https://doi.org/10.3390/coatings15070827 - 16 Jul 2025
Viewed by 234
Abstract
Molybdenum disulfide is more attractive and valuable at the molecular level due to its unique structure and exceptional properties. Here, new-type MoS2-ring chains are constructed and theoretically investigated for relevant electronic properties influenced by the length of the chain and the [...] Read more.
Molybdenum disulfide is more attractive and valuable at the molecular level due to its unique structure and exceptional properties. Here, new-type MoS2-ring chains are constructed and theoretically investigated for relevant electronic properties influenced by the length of the chain and the bias. Different from traditional wires, our findings demonstrate that the conductance of such a new-type chain presents unusually non-exponential decay with the length of the chain, with a particularly anomalous length of seven rings, which shows stronger equilibrium conductance than a shorter four-ring chain. Multi-peaks of electron transmission and delocalized electronic states contribute such uniqueness. Mo atoms play a vital role in electron transport. Essentially, a narrower “HOMO-LUMO” (the two closest energy levels to the Fermi level of MoS2-ring chain) gap compensates for the lower device density of states of new-type molybdenum disulfide-ring chains. The usual electronic structure of a seven-ring chain is derived from its slightly arched structure and mainly originates from interference, which is the resonance occurring between the electrodes. Noticeably, the bias could greatly enhance conductance, which could reach 1000 times more than the equilibrium conductance. At a certain bias, the conductance of a seven-ring chain even exceeds the shortest one- or two-ring chain. Furthermore, the threshold voltage (at which the maximum conductance appears) gradually decreases with the length of the chain and eventually remains at 0.7 V. The valuable negative differential resistance (NDR) effect could be found in such a molecular chain, which becomes more obvious as the length rises until the seven-ring chain reaches the peak. Our findings shed light on the relations between electronic properties and the length of a new-type molybdenum disulfide-ring chain, and provide support for such new-type chains in applications of innovative low-power and controllable electronics. Full article
(This article belongs to the Special Issue Research in Laser Welding and Surface Treatment Technology)
Show Figures

Figure 1

24 pages, 576 KiB  
Article
Asymmetry in the Mean Free Path of Neutrinos in Hot Neutron Matter Under Strong Magnetic Fields
by Eduardo Bauer and Vanesa D. Olivera
Symmetry 2025, 17(6), 896; https://doi.org/10.3390/sym17060896 - 6 Jun 2025
Viewed by 306
Abstract
We investigate the asymmetry in the mean free path of massive neutrinos propagating through hot neutron matter under strong magnetic fields. The system is studied at temperatures up to 30 MeV and baryon densities up to ρ/ρ0 = 2.5, where [...] Read more.
We investigate the asymmetry in the mean free path of massive neutrinos propagating through hot neutron matter under strong magnetic fields. The system is studied at temperatures up to 30 MeV and baryon densities up to ρ/ρ0 = 2.5, where ρ0 is the nuclear saturation density. Magnetic field strengths up to B = 1018 G are considered. We analyze three different equations of state: one corresponding to a non-interacting Fermi gas and two derived from Skyrme-type interactions. The impact of a finite neutrino mass is assessed and found to be negligible within the energy range considered. The neutrino mean free path is computed for various angles of incidence with respect to the magnetic field direction, revealing a clear angular asymmetry. We show that quantum interference terms contribute significantly to this asymmetry, enhancing neutrino emission in directions perpendicular to the magnetic field at high densities. This result contrasts with previous expectations and suggests a revised interpretation of neutrino transport in magnetized nuclear matter. Full article
(This article belongs to the Special Issue Neutrino Physics and Symmetries)
Show Figures

Figure 1

11 pages, 14805 KiB  
Article
Dilute Paramagnetism and Non-Trivial Topology in Quasicrystal Approximant Fe4Al13
by Keenan E. Avers, Jarryd A. Horn, Ram Kumar, Shanta R. Saha, Peter Zavalij, Yuanfeng Xu, Bogdan Andrei Bernevig and Johnpierre Paglione
Crystals 2025, 15(5), 485; https://doi.org/10.3390/cryst15050485 - 21 May 2025
Viewed by 533
Abstract
A very fundamental property of both weakly and strongly interacting materials is the nature of their magnetic response. In this work, we detail the growth of crystals of the quasicrystal approximant Fe4Al13 with an Al flux solvent method. We characterize [...] Read more.
A very fundamental property of both weakly and strongly interacting materials is the nature of their magnetic response. In this work, we detail the growth of crystals of the quasicrystal approximant Fe4Al13 with an Al flux solvent method. We characterize our samples using electrical transport and heat capacity, yielding results consistent with a simple non-magnetic metal. However, magnetization measurements portray an extremely unusual response for a dilute paramagnet and do not exhibit the characteristic Curie behavior expected for a weakly interacting material at high temperature. Electronic structure calculations confirm metallic behavior but also indicate that each isolated band near the Fermi energy hosts non-trivial topologies, including strong, weak, and nodal components, with resultant topological surface states distinguishable from bulk states on the (001) surface. With half-filled flat bands apparent in the calculation, but an absence of long-range magnetic order, the unusual quasi-paramagnetic response suggests the dilute paramagnetic behavior in this quasicrystal approximant is surprising and may serve as a test of the fundamental assumptions that are taken for granted for the magnetic response of weakly interacting systems. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

13 pages, 1473 KiB  
Article
First-Principles Study on the Electrical and Thermal Conductivities of Cu–Zn Binary Alloys
by Lei Huang, Bo Peng, Qinchi Yue, Guojie Huang, Changhao Wang, Ruzhi Wang and Ning Tian
Materials 2025, 18(10), 2310; https://doi.org/10.3390/ma18102310 - 15 May 2025
Viewed by 547
Abstract
Cu–Zn alloys are widely used engineering materials with well-known industrial applications. However, studies on their electrical and thermal conductivities have primarily relied on experimental measurements, while theoretical investigations remain limited. In this work, eight crystal structure models were constructed to represent three phase [...] Read more.
Cu–Zn alloys are widely used engineering materials with well-known industrial applications. However, studies on their electrical and thermal conductivities have primarily relied on experimental measurements, while theoretical investigations remain limited. In this work, eight crystal structure models were constructed to represent three phase configurations (α single phase, α + β′ dual phase, and β′ single phase) of Cu–Zn alloys with Zn concentrations ranging from 0 to 50 at.%. Based on the first-principles calculations combined with the Boltzmann transport equation, the electrical and thermal conductivities of these models were computed, and the electronic structure of the α-phase configurations was further analyzed. The results show that both electrical and thermal conductivities exhibit a non-monotonic trend with increasing Zn content, initially decreasing and then increasing. This trend is in strong agreement with available experimental data. Further analysis of the electronic structure reveals that, in the α-phase region, the density of states near the Fermi level is mainly contributed by Cu d-orbitals. As Zn content increases, the effective DOS near the Fermi level decreases, leading to reduced electron transport capability. For thermal conductivity, both the Wiedemann–Franz law and the first-principles calculations were employed, yielding results consistent with experimental trends. In summary, this study systematically investigates the variation of electrical and thermal conductivities of Cu–Zn binary alloys with Zn content and explores the underlying physical mechanisms from the perspective of electronic structure. The findings provide valuable theoretical support for understanding and optimizing the transport properties of complex alloy systems. Full article
(This article belongs to the Special Issue Advances in Modelling and Simulation of Materials in Applied Sciences)
Show Figures

Graphical abstract

30 pages, 4446 KiB  
Review
Electrical Transport Interplay with Charge Density Waves, Magnetization, and Disorder Tuned by 2D van der Waals Interface Modification via Elemental Intercalation and Substitution in ZrTe3, 2H-TaS2, and Cr2Si2Te6 Crystals
by Xiao Tong, Yu Liu, Xiangde Zhu, Hechang Lei and Cedomir Petrovic
Nanomaterials 2025, 15(10), 737; https://doi.org/10.3390/nano15100737 - 14 May 2025
Viewed by 689
Abstract
Electrical transport in 2D materials exhibits unique behaviors due to reduced dimensionality, broken symmetries, and quantum confinement. It serves as both a sensitive probe for the emergence of coherent electronic phases and a tool to actively manipulate many-body correlated states. Exploring their interplay [...] Read more.
Electrical transport in 2D materials exhibits unique behaviors due to reduced dimensionality, broken symmetries, and quantum confinement. It serves as both a sensitive probe for the emergence of coherent electronic phases and a tool to actively manipulate many-body correlated states. Exploring their interplay and interdependence is crucial but remains underexplored. This review integratively cross-examines the atomic and electronic structures and transport properties of van der Waals-layered crystals ZrTe3, 2H-TaS2, and Cr2Si2Te6, providing a comprehensive understanding and uncovering new discoveries and insights. A common observation from these crystals is that modifying the atomic and electronic interface structures of 2D van der Waals interfaces using heteroatoms significantly influences the emergence and stability of coherent phases, as well as phase-sensitive transport responses. In ZrTe3, substitution and intercalation with Se, Hf, Cu, or Ni at the 2D vdW interface alter phonon–electron coupling, valence states, and the quasi-1D interface Fermi band, affecting the onset of CDW and SC, manifested as resistance upturns and zero-resistance states. We conclude here that these phenomena originate from dopant-induced variations in the lattice spacing of the quasi-1D Te chains of the 2D vdW interface, and propose an unconventional superconducting mechanism driven by valence fluctuations at the van Hove singularity, arising from quasi-1D lattice vibrations. Short-range in-plane electronic heterostructures at the vdW interface of Cr2Si2Te6 result in a narrowed band gap. The sharp increase in in-plane resistance is found to be linked to the emergence and development of out-of-plane ferromagnetism. The insertion of 2D magnetic layers such as Mn, Fe, and Co into the vdW gap of 2H-TaS2 induces anisotropic magnetism and associated transport responses to magnetic transitions. Overall, 2D vdW interface modification offers control over collective electronic behavior, transport properties, and their interplays, advancing fundamental science and nanoelectronic devices. Full article
Show Figures

Figure 1

15 pages, 10805 KiB  
Article
DFT-Based Investigation of Pd-Modified WO3/Porous Silicon Composites for NO2 Gas Sensors: Enhanced Synergistic Effect and High-Performance Sensing
by Xiaoyong Qiang, Zhipeng Wang, Yongliang Guo and Weibin Zhou
Coatings 2025, 15(5), 570; https://doi.org/10.3390/coatings15050570 - 9 May 2025
Viewed by 459
Abstract
Pd-WO3 coatings on porous silicon (PSi) substrates are engineered to enhance interfacial charge transfer and surface reactivity through atomic-scale structural tailoring. This study combines first-principles calculations and experimental characterization to elucidate how Pd nanoparticles (NPs) optimize the coating’s electronic structure and environmental [...] Read more.
Pd-WO3 coatings on porous silicon (PSi) substrates are engineered to enhance interfacial charge transfer and surface reactivity through atomic-scale structural tailoring. This study combines first-principles calculations and experimental characterization to elucidate how Pd nanoparticles (NPs) optimize the coating’s electronic structure and environmental stability. The hierarchical PSi framework with uniform nanopores (200–500 nm) serves as a robust substrate for WO3 nanorod growth (50–100 nm diameter), while Pd decoration (15%–20% surface coverage) strengthens Pd–O–W interfacial bonds, amplifying electron density at the Fermi level by 2.22-fold. Systematic computational analysis reveals that Pd-induced d-p orbital hybridization near the Fermi level (−2 to +1 eV) enhances charge delocalization, optimizing interfacial charge transfer. Experimentally, these modifications enhance the coating’s response to environmental degradation, showing less than 3% performance decay over 30 days under cyclic humidity (45 ± 3% RH). Although designed for gas sensing, the coating’s high surface-to-volume ratio and delocalized charge transport channels demonstrate broader applicability in catalytic and high-stress environments. This work provides a paradigm for designing multifunctional coatings through synergistic interface engineering. Full article
Show Figures

Figure 1

14 pages, 3868 KiB  
Article
Analytical Implementation of Electron–Phonon Scattering in a Schottky Barrier CNTFET Model
by Ibrahim L. Abdalla, Fatma A. Matter, Ahmed A. Afifi, Mohamed I. Ibrahem, Hesham F. A. Hamed and Eslam S. El-Mokadem
J. Low Power Electron. Appl. 2025, 15(2), 28; https://doi.org/10.3390/jlpea15020028 - 2 May 2025
Viewed by 576
Abstract
This paper elaborates on the proposal of a new analytical model for a non-ballistic transport scenario for Schottky barrier carbon nanotube field effect transistors (SB-CNTFETs). The non-ballistic transport scenario depends on incorporating the effects of acoustic phonon (A-Ph) and optical phonon (O-Ph) electron [...] Read more.
This paper elaborates on the proposal of a new analytical model for a non-ballistic transport scenario for Schottky barrier carbon nanotube field effect transistors (SB-CNTFETs). The non-ballistic transport scenario depends on incorporating the effects of acoustic phonon (A-Ph) and optical phonon (O-Ph) electron scattering mechanisms. The analytical model is rooted in the solution of the Landauer integral equation, which is modified to account for non-ballistic transport through a set of approximations applied to the Wentzel–Kramers–Brillouin (WKB) transmission probability and the Fermi–Dirac distribution function. Our proposed model was simulated to evaluate the total current and transconductance, considering scenarios both with and without the electron–phonon scattering effect. The simulation results revealed a substantial decrease of approximately 78.6% in both total current and transconductance due to electron–phonon scattering. In addition, we investigated the impact of acoustic phonon (A-Ph) and optical phonon (O-Ph) scattering on the drain current under various conditions, including different temperatures, gate lengths, and nanotube chiralities. This comprehensive analysis helps in understanding how these parameters influence device performance. Compared with experimental data, the model’s simulation results demonstrate a high degree of agreement. Furthermore, our fully analytical model achieves a significantly faster runtime, clocking in at around 2.726 s. This validation underscores the model’s accuracy and reliability in predicting the behavior of SB-CNTFETs under non-ballistic conditions. Full article
Show Figures

Figure 1

14 pages, 3994 KiB  
Article
Impregnation of Se2S6 into a Nitrogen- and Sulfur-Co-Doped Functional Metal Carbides and Nitrides for High-Performance Li-S Batteries
by Lu Chen, Zhongyuan Zheng, Shuo Meng, Wenwei Wu, Weicheng Zhou, Shanshan Yang, Kexuan Liao, Yuanhui Zuo and Ting He
Molecules 2025, 30(5), 1070; https://doi.org/10.3390/molecules30051070 - 26 Feb 2025
Viewed by 526
Abstract
In this study, nitrogen- and sulfur-co-doped MXene (NS-MXene) was developed as a high-performance cathode material for lithium–sulfur (Li-S) batteries. Heterocyclic Se2S6 molecules were successfully confined within the NS-MXene structure using a simple melt impregnation method. The resulting NS-MXene exhibited a [...] Read more.
In this study, nitrogen- and sulfur-co-doped MXene (NS-MXene) was developed as a high-performance cathode material for lithium–sulfur (Li-S) batteries. Heterocyclic Se2S6 molecules were successfully confined within the NS-MXene structure using a simple melt impregnation method. The resulting NS-MXene exhibited a unique wrinkled morphology with a stable structure which facilitated rapid ion transport and provided a physical barrier to mitigate the shuttle effect of polysulfide. The introduction of nitrogen and sulfur heteroatoms into the MXene structure not only shifted the Ti d-band center towards the Fermi level but also significantly polarizes the MXene, enhancing the conversion kinetics and ion diffusion capability while preventing the accumulation of Li2S6. Additionally, the incorporation of Se and S in Se2S6 improved the conductivity compared to S alone, resulting in reduced polarization and enhanced electrical properties. Consequently, NS-MXene/Se2S6 exhibited excellent cycling stability, high reversible capacity, and reliable performance at high current densities and under extreme conditions, such as high sulfur loading and low electrolyte-to-sulfur ratios. This work presents a simple and effective strategy for designing heteroatom-doped MXene materials, offering promising potential for the development of high-performance, long-lasting Li-S batteries for practical applications. Full article
Show Figures

Figure 1

14 pages, 458 KiB  
Article
Orbital Selectivity in Pure and Electron-Doped MoO2 Superconductor
by Luis Craco
Processes 2025, 13(2), 565; https://doi.org/10.3390/pr13020565 - 17 Feb 2025
Cited by 1 | Viewed by 436
Abstract
Inspired by experiments manifesting unconventional metallic behavior in MoO2±δ and superconductivity in KxMoO2δ, we present t2g-DFT+DMFT results for monoclinic MoO2. We unearth the role played by multi-orbital, many-particle physics [...] Read more.
Inspired by experiments manifesting unconventional metallic behavior in MoO2±δ and superconductivity in KxMoO2δ, we present t2g-DFT+DMFT results for monoclinic MoO2. We unearth the role played by multi-orbital, many-particle physics in understanding the emergence of 4d-orbital selectivity with coexisting pseudogapped, resilient, and Fermi-liquid quasiparticles, which might host unconventional superconductivity in K-doped MoO2 bulk crystals at low temperatures. Our findings highlight the capability of DFT+DMFT to bridge the gap between electronic structure and electric transport in multi-orbital Hubbard models, providing insights into spin and charge fluctuations, as well as their role in orbital-selective non-Fermi liquid formation. Full article
(This article belongs to the Special Issue Transport and Energy Conversion at the Nanoscale and Molecular Scale)
Show Figures

Figure 1

16 pages, 2798 KiB  
Article
Structural and Transport Properties of Thin InAs Layers Grown on InxAl1−xAs Metamorphic Buffers
by Giulio Senesi, Katarzyna Skibinska, Alessandro Paghi, Gaurav Shukla, Francesco Giazotto, Fabio Beltram, Stefan Heun and Lucia Sorba
Nanomaterials 2025, 15(3), 173; https://doi.org/10.3390/nano15030173 - 23 Jan 2025
Cited by 1 | Viewed by 1177
Abstract
Indium Arsenide is a III–V semiconductor with low electron effective mass, a small band gap, strong spin–orbit coupling, and a large g-factor. These properties and its surface Fermi level pinned in the conduction band make InAs a good candidate for developing superconducting solid-state [...] Read more.
Indium Arsenide is a III–V semiconductor with low electron effective mass, a small band gap, strong spin–orbit coupling, and a large g-factor. These properties and its surface Fermi level pinned in the conduction band make InAs a good candidate for developing superconducting solid-state quantum devices. Here, we report the epitaxial growth of very thin InAs layers with thicknesses ranging from 12.5 nm to 500 nm grown by Molecular Beam Epitaxy on InxAl1−xAs metamorphic buffers. Differently than InAs substrates, these buffers have the advantage of being insulating at cryogenic temperatures, which allows for multiple device operations on the same wafer and thus making the approach scalable. The structural properties of the InAs layers were investigated by high-resolution X-ray diffraction, demonstrating the high crystal quality of the InAs layers. Furthermore, their transport properties, such as total and sheet carrier concentration, sheet resistance, and carrier mobility, were measured in the van der Pauw configuration at room temperature. A simple conduction model was employed to quantify the surface, bulk, and interface contributions to the overall carrier concentration and mobility. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

26 pages, 3798 KiB  
Article
Polycrystalline Films of Indium-Doped PbTe on Amorphous Substrates: Investigation of the Material Based on Study of Its Structural, Transport, and Optical Properties
by Jürgen Jopp, Vadim Kovalyuk, Elias Towe, Roni Shneck, Zinovi Dashevsky and Mark Auslender
Materials 2024, 17(24), 6058; https://doi.org/10.3390/ma17246058 - 11 Dec 2024
Viewed by 1159
Abstract
Nowadays, polycrystalline lead telluride is one of the premier substances for thermoelectric devices while remaining a hopeful competitor to current semiconductor materials used in mid-infrared photonic applications. Notwithstanding that, the development of reliable and reproducible routes for the synthesis of PbTe thin films [...] Read more.
Nowadays, polycrystalline lead telluride is one of the premier substances for thermoelectric devices while remaining a hopeful competitor to current semiconductor materials used in mid-infrared photonic applications. Notwithstanding that, the development of reliable and reproducible routes for the synthesis of PbTe thin films has not yet been accomplished. As an effort toward this aim, the present article reports progress in the growth of polycrystalline indium-doped PbTe films and their study. The introduction foregoing the main text presents an overview of studies in these and closely related research fields for seven decades. The main text reports on the electron-beam-assisted physical vapor deposition of n-type indium-doped PbTe films on two different amorphous substrates. This doping of PbTe is unique since it sets electron density uniform over grains due to pinning the Fermi level. In-house optimized parameters of the deposition process are presented. The films are structurally characterized by a set of techniques. The transport properties of the films are measured with the original setups described in detail. The infrared transmission spectra are measured and simulated with the original optical-multilayer modeling tool described in the appendix. Conclusions of films’ quality in terms of these properties altogether are drawn. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

11 pages, 8127 KiB  
Article
Enhancing Photoelectrocatalytic Efficiency of BiVO4 Photoanodes by Crystal Orientation Control
by Hongru Zhao, Xinkong Wei, Yue Pei and Weihua Han
Nanomaterials 2024, 14(23), 1870; https://doi.org/10.3390/nano14231870 - 21 Nov 2024
Cited by 5 | Viewed by 1289
Abstract
Bismuth Vanadate (BiVO4) is a promising photoanode material due to its stability and suitable bandgap, making it effective for visible light absorption. However, its photoelectrocatalytic efficiency is often limited by the poor transport dynamics of photogenerated carriers. Recent research found that [...] Read more.
Bismuth Vanadate (BiVO4) is a promising photoanode material due to its stability and suitable bandgap, making it effective for visible light absorption. However, its photoelectrocatalytic efficiency is often limited by the poor transport dynamics of photogenerated carriers. Recent research found that varying the atomic arrangement in crystals and Fermi levels across different crystal orientations can lead to significant differences in carrier mobility, charge recombination rates, and overall performance. In this work, we optimized the atomic arrangement by controlling the crystal growth direction to improve carrier separation efficiency using a wet chemical method. Systematic investigations revealed that the preferential [010]-oriented BiVO4 film exhibits the highest carrier mobility and photocurrent density. Under an applied bias of 1.21 V (vs. RHE) in a 0.5 M Na2SO4 electrolyte, it achieved a photocurrent density of 0.2 mA cm−2 under AM 1.5 G illumination, significantly higher than that of the [121]-oriented (0.056 mA cm−2) and randomly oriented films (0.11 mA cm−2). This study provides a deeper understanding of the role of crystal orientation in enhancing photoelectrocatalytic efficiency. Full article
(This article belongs to the Special Issue Nanomaterials for CO2 Capture and Conversion)
Show Figures

Graphical abstract

8 pages, 2626 KiB  
Article
Improvement of the Stability of Quantum-Dot Light Emitting Diodes Using Inorganic HfOx Hole Transport Layer
by Jung Min Yun, Min Ho Park, Yu Bin Kim, Min Jung Choi, Seunghwan Kim, Yeonjin Yi, Soohyung Park and Seong Jun Kang
Materials 2024, 17(19), 4739; https://doi.org/10.3390/ma17194739 - 27 Sep 2024
Cited by 1 | Viewed by 1673
Abstract
One of the major challenges in QLED research is improving the stability of the devices. In this study, we fabricated all inorganic quantum-dot light emitting diodes (QLEDs) using hafnium oxide (HfOx) as the hole transport layer (HTL), a material commonly used [...] Read more.
One of the major challenges in QLED research is improving the stability of the devices. In this study, we fabricated all inorganic quantum-dot light emitting diodes (QLEDs) using hafnium oxide (HfOx) as the hole transport layer (HTL), a material commonly used for insulator. Oxygen vacancies in HfOx create defect states below the Fermi level, providing a pathway for hole injection. The concentration of these oxygen vacancies can be controlled by the annealing temperature. We optimized the all-inorganic QLEDs with HfOx as the HTL by changing the annealing temperature. The optimized QLEDs with HfOx as the HTL showed a maximum luminance and current efficiency of 66,258 cd/m2 and 9.7 cd/A, respectively. The fabricated all-inorganic QLEDs exhibited remarkable stability, particularly when compared to devices using organic materials for the HTL. Under extended storage in ambient conditions, the all-inorganic device demonstrated a significantly enhanced operating lifetime (T50) of 5.5 h, which is 11 times longer than that of QLEDs using an organic HTL. These results indicate that the all-inorganic QLEDs structure, with ITO/MoO3/HfOx/QDs/ZnMgO/Al, exhibits superior stability compared to organic-inorganic hybrid QLEDs. Full article
(This article belongs to the Special Issue Feature Papers in Materials Physics (2nd Edition))
Show Figures

Graphical abstract

14 pages, 3239 KiB  
Article
First-Principles Approach to Finite Element Simulation of Flexible Photovoltaics
by Francis Ako Marley, Joseph Asare, Daniel Sekyi-Arthur, Tino Lukas, Augustine Nana Sekyi Appiah, Dennis Charway, Benjamin Agyei-Tuffour, Richard Boadi, Patryk Janasik, Samuel Yeboah, G. Gebreyesus, George Nkrumah-Buandoh, Marcin Adamiak and Henry James Snaith
Energies 2024, 17(16), 4064; https://doi.org/10.3390/en17164064 - 16 Aug 2024
Viewed by 1694
Abstract
This study explores the potential of copper-doped nickel oxide (Cu:NiO) as a hole transport layer (HTL) in flexible photovoltaic (PV) devices using a combined first-principles and finite element analysis approach. Density functional theory (DFT) calculations reveal that Cu doping introduces additional states in [...] Read more.
This study explores the potential of copper-doped nickel oxide (Cu:NiO) as a hole transport layer (HTL) in flexible photovoltaic (PV) devices using a combined first-principles and finite element analysis approach. Density functional theory (DFT) calculations reveal that Cu doping introduces additional states in the valence band of NiO, leading to enhanced charge transport. Notably, Cu:NiO exhibits a direct band gap (reduced from 3.04 eV in NiO to 1.65 eV in the stable supercell structure), facilitating the efficient hole transfer from the active layer. Furthermore, the Fermi level shifts towards the valence band in Cu:NiO, promoting hole mobility. This translates to an improved photovoltaic performance, with Cu:NiO-based HTLs achieving ~18% and ~9% power conversion efficiencies (PCEs) in perovskite and poly 3-hexylthiophene: 1-3-methoxycarbonyl propyl-1-phenyl 6,6 C 61 butyric acid methyl ester (P3HT:PCBM) polymer solar cells, respectively. Finally, a finite element analysis demonstrates the potential of these composite HTLs with Poly 3,4-ethylene dioxythiophene)—polystyrene sulfonate (PEDOT:PSS) in flexible electronics design and the optimization of printing processes. Overall, this work highlights Cu:NiO as a promising candidate for high-performance and flexible organic–inorganic photovoltaic cells. Full article
(This article belongs to the Special Issue Photovoltaic Solar Cells and Systems: Fundamentals and Applications)
Show Figures

Figure 1

Back to TopTop