Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (62)

Search Parameters:
Keywords = Fenton sludge

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2103 KiB  
Article
Pilot-Scale Fenton-like System for Wastewater Treatment Using Iron Mud Carbon Catalyst
by Lia Wang, Lan Liang, Jinglei Xu, Yanshan Wang, Beibei Yan, Guanyi Chen, Ning Li and Li’an Hou
Appl. Sci. 2025, 15(15), 8210; https://doi.org/10.3390/app15158210 - 23 Jul 2025
Viewed by 217
Abstract
Fenton oxidation can contribute to meeting effluent standards for COD in actual wastewater treatment plant effluents. However, Fenton oxidation is prone to produce iron sludge waste. The application of heterogeneous Fenton-like systems based on Fenton iron mud carbon in wastewater treatment plants is [...] Read more.
Fenton oxidation can contribute to meeting effluent standards for COD in actual wastewater treatment plant effluents. However, Fenton oxidation is prone to produce iron sludge waste. The application of heterogeneous Fenton-like systems based on Fenton iron mud carbon in wastewater treatment plants is essential for Fenton iron mud reduction and recycling. In this study, a Fenton iron mud carbon catalyst/Ferrate salts/H2O2 (FSC/Fe(VI)/H2O2) system was developed to remove chemical oxygen demand (COD) from secondary effluents at the pilot scale. The results showed that the FSC/Fe(VI)/H2O2 system exhibited excellent COD removal performance with a removal rate of 57% under slightly neutral conditions in laboratory experiments. In addition, the effluent COD was stabilized below 40 mg·L−1 for 65 days at the pilot scale. Fe(IV) and 1O2 were confirmed to be the main active species in the degradation process through electron paramagnetic resonance (EPR) and quenching experiments. C=O, O-C=O, N sites and Fe0 were responsible for the generation of Fe(IV) and 1O2 in the FSC/Fe(VI)/H2O2 system. Furthermore, the cost per ton of water treated by the pilot-scale FSC/Fe(VI)/H2O2 system was calculated to be only 0.6209 USD/t, further confirming the application potential of the FSC/Fe(VI)/H2O2 system. This study promotes the engineering application of heterogeneous Fenton-like systems for water treatment. Full article
(This article belongs to the Section Green Sustainable Science and Technology)
Show Figures

Figure 1

16 pages, 3763 KiB  
Article
Enhanced Sulfamethazine Degradation over a Wide pH Range by Cost-Effective Zero-Valent Iron-Based Electro-Fenton/Sulfite Process
by Jiayi He, Ge Song, Akhtar Islam and Minghua Zhou
Catalysts 2025, 15(7), 680; https://doi.org/10.3390/catal15070680 - 12 Jul 2025
Viewed by 464
Abstract
Sulfamethazine (SMT) is an antibiotic with good antimicrobial effect and is widely used to treat human and livestock diseases. Though the degradation of SMT by the conventional Fenton and electro-Fenton (EF) processes is efficient, it is limited by a narrow pH and iron [...] Read more.
Sulfamethazine (SMT) is an antibiotic with good antimicrobial effect and is widely used to treat human and livestock diseases. Though the degradation of SMT by the conventional Fenton and electro-Fenton (EF) processes is efficient, it is limited by a narrow pH and iron sludge generation. Herein, we constructed a cost-effective EF system with the synergistic effect of zero-valent iron (Fe0) and sulfite (Fe0-EF/Sulfite), and key parameters such as applied current, catalyst dosing, sulfite dosage, and initial pH were optimized. Under the optimal conditions (Fe0 dosing of 50 mg/L, sulfite dosage of 1.5 mM, current of 40 mA, and pH of 3), the removal efficiency of 10 mg/L SMT reached 100% within 30 min, and the degradation rate constant reached 0.194 min−1. Electron paramagnetic resonance (EPR) analysis and quenching experiments confirmed the generation of various reactive oxygen species (ROS), such as OH, SO4, O2, and 1O2, which significantly improved the pollutant removal efficiency. Sulfite accelerated iron cycling and inhibited the formation of iron sludge, thus broadening the pH range of the reaction from three to eight and overcoming the limitations of the conventional EF process. The Fe0-EF/Sulfite system performs cost-effectively at a wide pH range, providing an efficient and low-carbon solution for environmental pollution remediation with broad application prospects. Full article
(This article belongs to the Special Issue Catalytic Materials for Hazardous Wastewater Treatment)
Show Figures

Graphical abstract

21 pages, 3111 KiB  
Article
Iron Sludge-Derived Photo-Fenton Reaction for Laundry Wastewater Effluent Oxidation and Process Optimization into Industrial Ecology Symbiosis
by Amira Ben Gouider Trabelsi, Fatemah H. Alkallas, Shehab A. Mansour, Abdullah F. Al Naim, Adil Alshoaibi, Najeh Rekik, Manasik M. Nour and Maha A. Tony
Catalysts 2025, 15(7), 669; https://doi.org/10.3390/catal15070669 - 10 Jul 2025
Viewed by 440
Abstract
Controlled iron extraction from iron-based sludge (Fe-Sludge) drainage and its use as a Fenton’s reagent is investigated in the current study for eliminating organics from launderette discharge stream. The influences of the iron dosage, hydrogen peroxide concentration, and pH are assessed [...] Read more.
Controlled iron extraction from iron-based sludge (Fe-Sludge) drainage and its use as a Fenton’s reagent is investigated in the current study for eliminating organics from launderette discharge stream. The influences of the iron dosage, hydrogen peroxide concentration, and pH are assessed as treatment factors for their direct impact on the oxidation of organic compounds. Additionally, optimal oxidation conditions are determined using the response surface methodology (RSM) technique, and the ranges of treatment variables are analyzed. The optimum values of a pH of 2.0, Fe sludge concentration of 99 mg/L, and H2O2 content of 402 mg/L resulted in optimal organics removal of up to 98%, expressed as Chemical Oxygen Demand (COD) removal. The oxidation efficacy attained from the design is confirmed and the model validation is assessed, and the suggestive model is accepted since it possesses a correlation coefficient of 97.7%. The thermodynamic and kinetic models are also investigated, and the reaction showed that the temperature increases resulted in the oxidation efficiency being reduced. The oxidation efficiency expressed as COD reduction is clearly characterized by first-order reaction kinetics. The thermodynamic characteristics indicated that the oxidation reaction was exothermic and not spontaneous. Full article
(This article belongs to the Special Issue Advanced Catalytic Processes for Wastewater Treatment)
Show Figures

Graphical abstract

13 pages, 6747 KiB  
Article
Fabrication of Metal–Organic Framework-Mediated Heterogeneous Photocatalyst Using Sludge Generated in the Classical Fenton Process
by Xiang-Yu Wang, Xu Liu, Wu Kuang and Hong-Bin Xiong
Nanomaterials 2025, 15(14), 1069; https://doi.org/10.3390/nano15141069 - 10 Jul 2025
Viewed by 291
Abstract
The sludge produced by the Fenton process contains mixed-valence iron particulates (hereafter called Fenton wastes). Using a solvothermal method, we fabricated a new heterogeneous photo-Fenton catalyst using Fenton wastes and metal–organic frameworks (MOFs). Nanoporous metal carboxylate (MIL-88) MOF impregnated with Fenton waste was [...] Read more.
The sludge produced by the Fenton process contains mixed-valence iron particulates (hereafter called Fenton wastes). Using a solvothermal method, we fabricated a new heterogeneous photo-Fenton catalyst using Fenton wastes and metal–organic frameworks (MOFs). Nanoporous metal carboxylate (MIL-88) MOF impregnated with Fenton waste was functionalized using 2,5-dihydroxyterephthalic acid (x-HO-MIL-88-C, x, concentration of the 2,5-dihydroxyterephthalic acid). The efficiency of x-HO-MIL-88-C was examined under visible light radiation using methylene blue (MB) as an index pollutant. We observed the best catalytic performance for MB degradation by 4-HO-MIL-88-C. In the photo-Fenton process, the simultaneous presence of singlet oxygen, superoxide, and hydroxyl radicals is confirmed by free radical quenching and electron spin resonance spectral data. These free radicals associate with holes in the non-selective degradation of MB. The 4-HO-MIL-88-C catalyst shows good stability and reusability, maintaining over 80% efficiency at the end of five consecutive cycles. This work opens up a new path for recycling Fenton wastes into usable products. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

21 pages, 2036 KiB  
Review
A Mini-Review of Sludge-Derived Biochar (SDB) for Wastewater Treatment: Recent Advances in 2020–2025
by Lia Wang, Lan Liang, Ning Li, Guanyi Chen, Haixiao Guo and Li’an Hou
Appl. Sci. 2025, 15(11), 6173; https://doi.org/10.3390/app15116173 - 30 May 2025
Cited by 1 | Viewed by 1212
Abstract
Sludge-derived biochar (SDB) synthesized by the pyrolysis of sludge is gaining enormous interest as a sustainable solution to wastewater treatment and sludge disposal. Despite the proliferation of general biochar reviews, a focused synthesis on SDB-specific advances, particularly covering the recent surge in multifunctional [...] Read more.
Sludge-derived biochar (SDB) synthesized by the pyrolysis of sludge is gaining enormous interest as a sustainable solution to wastewater treatment and sludge disposal. Despite the proliferation of general biochar reviews, a focused synthesis on SDB-specific advances, particularly covering the recent surge in multifunctional wastewater treatment applications (2020–2025), receives little emphasis. In particular, a critical analysis of recent trends, application challenges, and future research directions for SDB is still limited. Unlike broader biochar reviews, this mini-review highlights the comparative advantages and limitations of SDB, identifies emerging integration strategies (e.g., bio-electrochemical systems, catalytic membranes), and outlines future research priorities toward enhancing the durability and environmental safety of SDB applications. Specifically, this review summarized the advances from 2020 to 2025, focusing exclusively on functional modifications, and practical applications of SDB across diverse wastewater treatment technologies involved in adsorption, catalytic oxidation, membrane integration, electrochemical processes and bio-treatment systems. Quantitative comparisons of adsorption capacities (e.g., >99% Cd2+ removal, >150 mg/g tetracycline adsorption) and catalytic degradation efficiencies are provided to illustrate recent improvements. The potential of SDB in evaluating traditional and emerging contaminant degradation among the Fenton-like, persulfate, and peracetic acid activation systems was emphasized. Integration with membrane technologies reduces fouling, while electrochemical applications, including microbial fuel cells, yield higher power densities. To improve the functionality of SDB-based systems in targeting contamination removal, modification strategies, i.e., thermal activation, heteroatom doping (N, S, P), and metal loading, played crucial roles. Emerging trends highlight hybrid systems and persistent free radicals for non-radical pathways. Despite progress, critical challenges persist in scalability, long-term stability, lifecycle assessments, and scale-up implementation. The targeted synthesis of this review offers valuable insights to guide the development and practical deployment of SDB in sustainable wastewater management. Full article
Show Figures

Figure 1

16 pages, 3003 KiB  
Article
Removal of COD from Secondary Effluent Using Fenton Iron Sludge-Based Biochar/Fe(VI)/H2O2 Process
by Lia Wang, Xu He, Lan Liang, Yanshan Wang, Beibei Yan, Guanyi Chen, Ning Li and Li’an Hou
Appl. Sci. 2025, 15(11), 5945; https://doi.org/10.3390/app15115945 - 25 May 2025
Viewed by 512
Abstract
The conventional Fenton process generates large amounts of Fenton sludge during wastewater treatment. Achieving effective utilization of Fenton sludge and reducing its production remain pivotal challenges. In this study, Fenton sludge biochar catalysts (Cat) were prepared using Fenton sludge via pyrolysis. In addition, [...] Read more.
The conventional Fenton process generates large amounts of Fenton sludge during wastewater treatment. Achieving effective utilization of Fenton sludge and reducing its production remain pivotal challenges. In this study, Fenton sludge biochar catalysts (Cat) were prepared using Fenton sludge via pyrolysis. In addition, chemical oxygen demand (COD) from secondary effluent was removed by Fenton sludge biochar catalysts activated with H2O2/Fe(VI). Specifically, the removal efficiency of COD could reach 46.2% in the Cat−2/H2O2/Fe(VI) system under weakly alkaline conditions. The mechanistic analysis confirmed that high-valent iron, OH, O2•−, and 1O2 all participate in the degradation process. Furthermore, a continuous-flow reactor was applied to treat secondary effluent, with COD decreasing from 65 mg/L to 36 mg/L. This study provides new insights into the resource utilization of Fenton sludge and the treatment of complex wastewater. Full article
(This article belongs to the Special Issue Wastewater Treatment and Purification Technologies)
Show Figures

Figure 1

24 pages, 4696 KiB  
Article
Treatment of Pharmaceutical Effluent Using Ultrasound-Based Advanced Oxidation for Intensified Biological Oxidation
by Akshara M. Iyer, Aditya V. Karande and Parag R. Gogate
Processes 2025, 13(4), 1191; https://doi.org/10.3390/pr13041191 - 15 Apr 2025
Cited by 1 | Viewed by 622
Abstract
The current work investigates the intensification process of the biological oxidation (BO) of a pharmaceutical effluent using ultrasound (US)-based pretreatment methods. US, in combination with chemical oxidants, like hydrogen peroxide (H2O2), Fenton, potassium persulphate (KPS), and peroxone, was used [...] Read more.
The current work investigates the intensification process of the biological oxidation (BO) of a pharmaceutical effluent using ultrasound (US)-based pretreatment methods. US, in combination with chemical oxidants, like hydrogen peroxide (H2O2), Fenton, potassium persulphate (KPS), and peroxone, was used as a pretreatment technique to enhance the efficacy of BO, as BO alone could only bring about 16.67% COD reduction. The application of US under the optimized conditions of a 70% duty cycle, 120W of power, pH 2, and at a 30 °C temperature resulted in 12.3% COD reduction after 60 min, whereas its combination with oxidants at optimized loadings resulted in a higher COD reduction of 20% for H2O2 (2000 ppm), 23.08% for Fenton (1:1 Fe:H2O2), and 30.77% for the US + peroxone approach (400 mg/h of ozone with 2000 ppm H2O2). The pretreated samples did not produce any toxic by-products, as confirmed by a toxicity analysis using the agar well diffusion method. A cow-dung-based sludge was acclimatised specifically for use in BO. The treatment time for BO was set to 8 h, and the US + peroxone-pretreated samples showed a maximum overall COD reduction of 60%, which is about three times that observed with only BO. This work clearly demonstrates the enhancement of the biodegradation of a complex recalcitrant pharmaceutical effluent using a US-based pretreatment. Full article
Show Figures

Figure 1

37 pages, 1533 KiB  
Systematic Review
Advanced Oxidation Process in the Sustainable Treatment of Refractory Wastewater: A Systematic Literature Review
by Jorge Alejandro Silva
Sustainability 2025, 17(8), 3439; https://doi.org/10.3390/su17083439 - 12 Apr 2025
Cited by 9 | Viewed by 2741
Abstract
More than 4 billion people yearly suffer from global water scarcity amid climate change, rapid population growth, and growing industrial activity. Due to the high concentrations of recalcitrant organic compounds, refractory wastewater is highly resistant to conventional biological treatment and represents a critical [...] Read more.
More than 4 billion people yearly suffer from global water scarcity amid climate change, rapid population growth, and growing industrial activity. Due to the high concentrations of recalcitrant organic compounds, refractory wastewater is highly resistant to conventional biological treatment and represents a critical obstacle for water reuse and sustainable water management. A systematic literature review of 35 peer-reviewed articles published from 2010 to 2025 is provided to evaluate the utilization and sustainability potential of advanced oxidation processes (AOPs) for treating recalcitrant wastewater. Using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) framework, the review assesses numerous AOPs, such as ozonation, UV/H2O2, Fenton reactions, and photocatalysis, while also evaluating their performance, efficiency, and integration ability. The results show that AOPs demonstrate pollutant removal rates often greater than 96%, reduce sludge formation, and improve effluent biodegradability. They can be applied at different treatment stages, combined with any renewable energy systems, and therefore can scale and be sustained, thereby aligning with UN Sustainable Development Goal 6. AOPs provide a technically feasible and eco-friendly solution for higher quality wastewater treatment. In the face of increasing pressure on global water resources, and the urgent need for sustainable water resource management, this study offers valuable insights for policymakers and practitioners aiming to adopt resilient and circular strategies for water. Full article
Show Figures

Graphical abstract

29 pages, 6092 KiB  
Review
The Evolving Landscape of Advanced Oxidation Processes in Wastewater Treatment: Challenges and Recent Innovations
by Satyam Satyam and Sanjukta Patra
Processes 2025, 13(4), 987; https://doi.org/10.3390/pr13040987 - 26 Mar 2025
Cited by 5 | Viewed by 4017
Abstract
The increasing presence of persistent pollutants in industrial wastewater underscores the shortcomings of conventional treatment methods, prompting the adoption of advanced oxidation processes (AOPs) for sustainable water remediation. This review examines the development of AOPs, focusing on their ability to produce hydroxyl radicals [...] Read more.
The increasing presence of persistent pollutants in industrial wastewater underscores the shortcomings of conventional treatment methods, prompting the adoption of advanced oxidation processes (AOPs) for sustainable water remediation. This review examines the development of AOPs, focusing on their ability to produce hydroxyl radicals and reactive oxygen species (ROS) to mineralize complex pollutants. Homogeneous systems such as Fenton’s reagent show high degradation efficiency. However, challenges like pH sensitivity, catalyst recovery issues, sludge generation, and energy-intensive operations limit their scalability. Heterogeneous catalysts, such as TiO2-based photocatalysts and Fe3O4 composites, offer improved pH adaptability, visible-light activation, and recyclability. Emerging innovations like ultraviolet light emitting diode (UV-LED)-driven systems, plasma-assisted oxidation, and artificial intelligence (AI)-enhanced hybrid reactors demonstrate progress in energy efficiency and process optimization. Nevertheless, key challenges remain, including secondary byproduct formation, mass transfer constraints, and economic feasibility for large-scale applications. Integrating AOPs with membrane filtration or biological treatments enhances treatment synergy, while advances in materials science and computational modeling refine catalyst design and reaction mechanisms. Addressing barriers in energy use, catalyst durability, and practical adaptability requires multidisciplinary collaboration. This review highlights AOPs as pivotal solutions for water security amid growing environmental pollution, urging targeted research to bridge gaps between laboratory success and real-world implementation. Full article
(This article belongs to the Special Issue Advanced Oxidation Processes in Water Treatment)
Show Figures

Figure 1

19 pages, 8318 KiB  
Article
Activation of H2O2/PDS/PMS by Iron-Based Biochar Derived from Fenton Sludge for Oxidative Removal of 2,4-DCP and As(III)
by Chutong Ling, Renting Huang, Wei Mao, Zhiming Wu, Cui Wei, Anze Li and Jinghong Zhou
Water 2025, 17(5), 765; https://doi.org/10.3390/w17050765 - 6 Mar 2025
Cited by 2 | Viewed by 1151
Abstract
In this study, the catalytic performance of the Fenton sludge iron-based biochar catalyst (Fe@BC700), generated during the Fenton process, was investigated regarding its role in oxidizing 2,4-dichlorophenol (2,4-DCP) and As(III) from aqueous solutions in peroxymonosulfate (PMS), peroxydisulfate (PDS), and hydrogen peroxide (H2 [...] Read more.
In this study, the catalytic performance of the Fenton sludge iron-based biochar catalyst (Fe@BC700), generated during the Fenton process, was investigated regarding its role in oxidizing 2,4-dichlorophenol (2,4-DCP) and As(III) from aqueous solutions in peroxymonosulfate (PMS), peroxydisulfate (PDS), and hydrogen peroxide (H2O2) systems. The characteristics of the as-prepared catalyst, operational parameters of H2O2/UV/Fe@BC700, PDS/UV/Fe@BC700, and PMS/UV/Fe@BC700 systems, and the kinetics of 2,4-DCP degradation were evaluated. Fe@BC700 exhibited excellent capabilities for activating persulfate and an outstanding oxidant performance as a heterogeneous photocatalyst under UV irradiation. Among the tested systems, PMS/UV/Fe@BC700 showed the highest oxidation capabilities for both 2,4-DCP and As(III) within 40 min. The total organic carbon (TOC) removal efficiency for 2,4-DCP was up to 95.9% in the PMS/UV/Fe@BC700 system. The presence of free radicals in the PMS/PDS system included ·OH, SO4·−, and ·O2, which were facilitated by both UV irradiation and the catalyst. The by-products generated during the PMS/UV/Fe@BC700 treatment were identified via LC-MS analysis, which showed that catalytic degradation substantially reduced the chronic and acute toxicity of 2,4-DCP intermediates. The present study demonstrates that the iron-based biochar derived from Fenton sludge exhibited remarkable persulfate activation capabilities and was highly effective in removing 2,4-DCP and As(III). Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Graphical abstract

21 pages, 6262 KiB  
Article
Disinfection of Activated Sludge by Combination of the Fenton Reagent and Physical Treatment
by Māra Blumfelde, Aija Dēliņa, Kristina Puzane, Vadims Bartkevičs and Olga Muter
Agronomy 2024, 14(12), 3037; https://doi.org/10.3390/agronomy14123037 - 19 Dec 2024
Viewed by 718
Abstract
Biological wastewater treatment plants could serve as an important alternative to renewable biological nitrogen mines, which are locally available and have a low carbon footprint. Recent progress in Fenton processes has revealed their potential use for sludge treatment to decrease organic contamination and [...] Read more.
Biological wastewater treatment plants could serve as an important alternative to renewable biological nitrogen mines, which are locally available and have a low carbon footprint. Recent progress in Fenton processes has revealed their potential use for sludge treatment to decrease organic contamination and pathogens. The aim of this study was to determine the optimal concentrations of metal catalyst Fe(II) and hydrogen peroxide H2O2 for activated sludge (AS) disinfection using the Fenton process at near-neutral pH, alone and in combination with thermal treatment and UV radiation. The efficiency of the 48 h treatment was evaluated by log reduction, fluorescein diacetate (FDA) hydrolysis activity, concentration of pharmaceuticals, changes in antimicrobial resistance, and ecotoxicity. Using the desirability function approach, a combination of 239 mM H2O2 and 8.6 mM Fe(II) was found to be optimal in frames of the chosen concentrations of reagents. The FDA hydrolysis activity correlated with log reduction at 287 mM H2O2 and different Fe(II) concentrations. Sludge treatment resulted in the removal of ciprofloxacin by 65.5%. The sets with the highest log reduction, i.e., additionally treated by heating and UV, were accompanied by increasing ecotoxic effects on crustaceans, Thamnocephalus platyurus. The Fenton process shows prospective ways on sludge stabilization for its application as a fertilizer. Full article
(This article belongs to the Special Issue Soil Pollution and Remediation in Sustainable Agriculture)
Show Figures

Figure 1

17 pages, 5002 KiB  
Article
The Degradation of Rhodamine B by an Electro-Fenton Reactor Constructed with Gas Diffusion Electrode and Heterogeneous CuFeO@C Particles
by Shuo Li, Siyang Gu, Xiaotong Jia, Xin Su, Yifan Li, Yang Zhang, Yunmei Du and Yuanhong Ding
Water 2024, 16(20), 2906; https://doi.org/10.3390/w16202906 - 13 Oct 2024
Viewed by 1336
Abstract
Compared with conventional Fenton processes, the electro-Fenton process consumes fewer chemicals and produces less sludge, as it can generate the required Fenton’s reagents in situ. In this work, an electro-Fenton reactor was constructed to treat synthetic rhodamine B (Rh B) wastewater, in which [...] Read more.
Compared with conventional Fenton processes, the electro-Fenton process consumes fewer chemicals and produces less sludge, as it can generate the required Fenton’s reagents in situ. In this work, an electro-Fenton reactor was constructed to treat synthetic rhodamine B (Rh B) wastewater, in which a gas diffusion electrode (GDE) was used as a cathode to produce H2O2, and heterogeneous CuFeO@C particles were used to generate Fe2+ in situ. The results indicated that the gas diffusion electrode made of elements N-S-B and r-graphene oxide (NSB-r-GO) composites produced more H2O2 than the one made from r-graphene oxide (r-GO), under the conditions of 0.1 mol ·L−1 Na2SO4 electrolyte, 10 mA·cm−2 current density, and 1.0 L·min−1 O2 flow rate, with the accumulated H2O2 production reaching 105.43 mg·L−1. Additionally, different iron morphologies, including octahedral Fe (II), octahedral Fe (III), and tetrahedral Fe (III), were found in the calcined CuFeO@C particles, approximately 1.0 mg·L−1 of iron ions dissolved in the electrolyte was detected, which worked simultaneously as conductive electrodes in a conceptual three-dimensional electrochemical reactor consisting of a gas diffusion electrode cathode, Ti/RuSn anode, and CuFeO@C particle electrodes. No external Fenton reagents were necessary. Full article
(This article belongs to the Special Issue Advanced Technologies for Wastewater Treatment and Water Reuse)
Show Figures

Figure 1

36 pages, 2483 KiB  
Review
A Review of the Efficiency of Phosphorus Removal and Recovery from Wastewater by Physicochemical and Biological Processes: Challenges and Opportunities
by Sima Abdoli, Behnam Asgari Lajayer, Zahra Dehghanian, Nazila Bagheri, Amir Hossein Vafaei, Masoud Chamani, Swati Rani, Zheya Lin, Weixi Shu and G. W. Price
Water 2024, 16(17), 2507; https://doi.org/10.3390/w16172507 - 4 Sep 2024
Cited by 14 | Viewed by 9523
Abstract
Phosphorus (P) discharge from anthropogenic sources, notably sewage effluent and agricultural runoff, significantly contributes to eutrophication in aquatic environments. Stringent regulations have heightened the need for effective P removal technologies in wastewater treatment processes. This paper provides a comprehensive review of current P [...] Read more.
Phosphorus (P) discharge from anthropogenic sources, notably sewage effluent and agricultural runoff, significantly contributes to eutrophication in aquatic environments. Stringent regulations have heightened the need for effective P removal technologies in wastewater treatment processes. This paper provides a comprehensive review of current P removal methods, focusing on both biological and chemical approaches. Biological treatments discussed include enhanced biological P removal in activated sludge systems, biological trickling filters, biofilm reactors, and constructed wetlands. The efficiency of microbial absorption and novel biotechnological integrations, such as the use of microalgae and fungi, are also examined. Chemical treatments reviewed encompass the application of metal salts, advanced oxidation processes such as chlorination, ozonation, and the Fenton reaction, as well as emerging techniques including the Electro-Fenton process and photocatalysis. Analytical methods for P, including spectrophotometric techniques and fractionation analyses, are evaluated to understand the dynamics of P in wastewater. This review critically assesses the strengths and limitations of each method, aiming to identify the most effective and sustainable solutions for P management in wastewater treatment. The integration of innovative strategies and advanced technologies is emphasized as crucial for optimizing P removal and ensuring compliance with environmental regulations. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

15 pages, 2562 KiB  
Article
Sludge Recycling from Non-Lime Purification of Electrolysis Wastewater: Bridge from Contaminant Removal to Waste-Derived NOX SCR Catalyst
by Ju Gao, Fucheng Sun, Pei Liu, Jizhi Zhou and Yufeng Zhang
Catalysts 2024, 14(8), 535; https://doi.org/10.3390/catal14080535 - 17 Aug 2024
Viewed by 4482
Abstract
Catalysts for the selective catalytic reduction (NOX SCR) of nitrogen oxides can be obtained from sludge in industrial waste treatment, and, due to the complex composition of sludge, NOX SCR shows various SCR efficiencies. In the current work, an SCR catalyst [...] Read more.
Catalysts for the selective catalytic reduction (NOX SCR) of nitrogen oxides can be obtained from sludge in industrial waste treatment, and, due to the complex composition of sludge, NOX SCR shows various SCR efficiencies. In the current work, an SCR catalyst developed from the sludge produced with Fe/C micro-electrolysis Fenton technology (MEF) in wastewater treatment was investigated, taking into account various sludge compositions, Fe/C ratios, and contaminant contents. It was found that, at about 300 °C, the NOX removal rate could reach 100% and there was a wide decomposition temperature zone. The effect of individual components of electroplating sludge, i.e., P, Fe and Ni, on NOX degradation performance of the obtained solids was investigated. It was found that the best effect was achieved when the Fe/P was 8/3 wt%, and variations in the Ni content had a limited effect on the NOX degradation performance. When the Fe/C was 1:2 and the Fe/C/P was 1:2:0.4, the electroplating sludge formed after treatment with Fe/C MEF provided the best NOX removal rate at 100%. Moreover, the characterization results show that the activated carbon was also involved in the catalytic reduction degradation of NOX. An excessive Fe content may cause agglomeration on the catalyst surface and thus affect the catalytic efficiency. The addition of P effectively reduces the catalytic reaction temperature, and the formation of phosphate promotes the generation of adsorbed oxygen, which in turn contributes to improvements in catalytic efficiency. Therefore, our work suggests that controlling the composition in the sludge is an efficient way to modulate SCR catalysis, providing a bridge from contaminant-bearing waste to efficient catalyst. Full article
(This article belongs to the Special Issue Homogeneous and Heterogeneous Catalytic Oxidation and Reduction)
Show Figures

Figure 1

18 pages, 5660 KiB  
Article
Application of Bimetallic Hydroxide/Graphene Composites in Wastewater Treatment
by Dan Chen, Jiao Wang, Nana Li, Xiaoqin Luo, Hua Yu, Haichang Fu, Zhangxin Chen, Binbin Yu, Yanxian Jin and Dmitry S. Kopchuk
Molecules 2024, 29(13), 3157; https://doi.org/10.3390/molecules29133157 - 2 Jul 2024
Cited by 1 | Viewed by 1612
Abstract
The increasing discharge of antibiotic wastewater leads to increasing water pollution. Most of these antibiotic wastewaters are persistent, strongly carcinogenic, easy to bioaccumulate, and have other similar characteristics, seriously jeopardizing human health and the ecological environment. As a commonly used wastewater treatment technology, [...] Read more.
The increasing discharge of antibiotic wastewater leads to increasing water pollution. Most of these antibiotic wastewaters are persistent, strongly carcinogenic, easy to bioaccumulate, and have other similar characteristics, seriously jeopardizing human health and the ecological environment. As a commonly used wastewater treatment technology, non-homogeneous electro-Fenton technology avoids the hazards of H2O2 storage and transportation as well as the loss of desorption and reabsorption. It also facilitates electron transfer on the electrodes and the reduction of Fe3+ on the catalysts, thereby reducing sludge production. However, the low selectivity and poor activity of electro-synthesized H2O2, along with the low concentration of its products, combined with the insufficient activity of electrically activated H2O2, results in a low ∙OH yield. To address the above problems, composites of layered bimetallic hydroxides and carbon materials were designed and prepared in this paper to enhance the performance of electro-synthesized H2O2 and non-homogeneous electro-Fenton by changing the composite mode of the materials. Three composites, NiFe layered double hydroxides (LDHs)/reduced graphene oxide (rGO), NiMn LDHs/rGO, and NiMnFe LDHs/rGO, were constructed by the electrostatic self-assembly of exfoliated LDHs with few-layer graphene. The LDHs/rGO was loaded on carbon mats to construct the electro-Fenton cathode materials, and the non-homogeneous electro-Fenton oxidative degradation of organic pollutants was realized by the in situ electrocatalytic reduction of O2 to ∙OH. Meanwhile, the effects of solution pH, applied voltage, and initial concentration on the performance of non-homogeneous electro-Fenton were investigated with ceftazidime as the target pollutant, which proved that the cathode materials have an excellent electro-Fenton degradation effect. Full article
Show Figures

Figure 1

Back to TopTop