Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (181)

Search Parameters:
Keywords = Fenton–like reactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1835 KiB  
Article
Homogeneous and Heterogeneous Photo-Fenton-Based Photocatalytic Techniques for the Degradation of Nile Blue Dye
by Georgia Papadopoulou, Eleni Evgenidou and Dimitra Lambropoulou
Appl. Sci. 2025, 15(14), 7917; https://doi.org/10.3390/app15147917 - 16 Jul 2025
Viewed by 311
Abstract
In this study, the degradation of Nile Blue dye was investigated using homogeneous and heterogeneous photocatalytic methods based on the photo-Fenton reaction. More specifically, for homogeneous photocatalysis, the classical photo-Fenton (UV/Fe2+/H2O2) and modified photo-Fenton-like (UV/Fe2+/S [...] Read more.
In this study, the degradation of Nile Blue dye was investigated using homogeneous and heterogeneous photocatalytic methods based on the photo-Fenton reaction. More specifically, for homogeneous photocatalysis, the classical photo-Fenton (UV/Fe2+/H2O2) and modified photo-Fenton-like (UV/Fe2+/S2O82−) systems were studied, while for heterogeneous photocatalysis, a commercial MOF catalyst, Basolite F300, and a natural ferrous mineral, geothite, were employed. Various parameters—including the concentrations of the oxidant and catalyst, UV radiation, and pH—were investigated to determine their influence on the reaction rate. In homogeneous systems, an increase in iron concentration led to an enhanced degradation rate of the target compound. Similarly, increasing the oxidant concentration accelerated the reaction rate up to an optimal level, beyond which radical scavenging effects were observed, reducing the overall efficiency. In contrast, heterogeneous systems exhibited negligible degradation in the absence of an oxidant; however, the addition of oxidants significantly improved the process efficiency. Among the tested processes, homogeneous techniques demonstrated a superior efficiency, with the conventional photo-Fenton process achieving complete mineralization within three hours. Kinetic analysis revealed pseudo-first-order behavior, with rate constants ranging from 0.012 to 0.688 min−1 and correlation coefficients (R2) consistently above 0.90, confirming the reliability of the applied model under various experimental conditions. Nevertheless, heterogeneous techniques, despite their lower degradation rates, also achieved high removal efficiencies while offering the advantage of operating at a neutral pH without the need for acidification. Full article
Show Figures

Figure 1

20 pages, 5439 KiB  
Article
The Efficient Degradation of Oxytetracycline in Wastewater Using Fe/Mn-Modified Magnetic Oak Biochar: Pathways and Mechanistic Investigation
by Yujie Zhou, Yuzhe Fu, Xiaoxue Niu, Bohan Wu, Xinghan Liu, Fu Hao, Zichuan Ma, Hao Cai and Yuheng Liu
Magnetochemistry 2025, 11(6), 49; https://doi.org/10.3390/magnetochemistry11060049 - 6 Jun 2025
Cited by 1 | Viewed by 1125
Abstract
Antibiotic resistance has been recognized as a global threat to human health. Therefore, it is urgent to develop effective strategies to address the contamination of water environments caused by antibiotics. In this study, Fe/Mn bimetallic-modified biochar (FMBC) was synthesized through a one-pot oxidation/reduction-hydrothermal [...] Read more.
Antibiotic resistance has been recognized as a global threat to human health. Therefore, it is urgent to develop effective strategies to address the contamination of water environments caused by antibiotics. In this study, Fe/Mn bimetallic-modified biochar (FMBC) was synthesized through a one-pot oxidation/reduction-hydrothermal co-precipitation method, demonstrating an exceptional photocatalytic-Fenton degradation performance for oxytetracycline (OTC). Characterization techniques including FTIR, SEM, XRD, VSM, and N2 adsorption–desorption analysis confirmed that the Fe/Mn bimetals were successfully loaded onto the surface of biochar in the form of Fe3O4 and MnFe2O4 mixed crystals and exhibited favorable paramagnetic properties that facilitate magnetic recovery. A key innovation is the utilization of biochar’s inherent phenol/quinone structures as reactive sites and electron transfer mediators, which synergistically interact with the loaded bimetallic oxides to significantly enhance the generation of highly reactive ·OH radicals, thereby boosting catalytic activity. Even after five recycling cycles, the material exhibited minimal changes in degradation efficiency and bimetallic crystal structure, indicating its notable stability and reusability. The photocatalytic degradation experiment conducted in a Fenton-like reaction system demonstrates that, under the conditions of pH 4.0, a H2O2 concentration of 5.16 mmol/L, a catalyst dosage of 0.20 g/L, and an OTC concentration of 100 mg/L, the optimal degradation efficiency of 98.3% can be achieved. Additionally, the pseudo-first-order kinetic rate constant was determined to be 4.88 min−1. Furthermore, this study elucidated the detailed degradation mechanisms, pathways, and the influence of various ions, providing valuable theoretical insights and technical support for the degradation of antibiotics in real wastewater. Full article
(This article belongs to the Special Issue Applications of Magnetic Materials in Water Treatment)
Show Figures

Figure 1

15 pages, 3892 KiB  
Article
Comparison of the Oxidation of 3,5-Dihydroxybenzoic Acid in Rainwater by UV/Fenton-like and UV/H2O2 Processes
by Patrícia S. M. Santos, Mónica P. S. Ferreira and Armando C. Duarte
Water 2025, 17(11), 1618; https://doi.org/10.3390/w17111618 - 27 May 2025
Viewed by 695
Abstract
Rainwater needs to be recognized as a natural water source for domestic use, but finding viable processes to remove its contaminants is essential. The aim of this work was to compare the UV/H2O2 and UV/Fenton-like processes for the oxidation of [...] Read more.
Rainwater needs to be recognized as a natural water source for domestic use, but finding viable processes to remove its contaminants is essential. The aim of this work was to compare the UV/H2O2 and UV/Fenton-like processes for the oxidation of 3,5-dihydroxybenzoic acid (3,5-DHBA) in rainwater. The reactions were assessed using ultraviolet-visible (UV-Vis) and molecular fluorescence spectroscopies, and the results showed the formation of new and similar chromophoric compounds in both processes, which were subsequently degraded. At environmentally relevant concentrations of chemical oxidants, namely H2O2 at 10−4 M, the chromophoric organic compounds in solution were degraded within 24 h by the UV/H2O2 process and within 4 h by the UV/Fenton-like process. However, when the concentration of H2O2 was increased by one order of magnitude for the UV/H2O2 process (from 10−4 M to 10−3 M), oxidation rates were similar and nearly complete after 4 h for both UV/H2O2 and UV/Fenton-like processes. These findings highlight that the presence of more oxidizing agents in the oxidation system improves the synergistic effect, leading to a greater contribution of the free radical oxidation pathway, particularly through hydroxyl radicals. Thus, by increasing the concentration of H2O2 in the UV/H2O2 process to 10−3 M, it was possible to achieve a similar level of oxidation (close to 100% after 4 h, as indicated by a decrease in fluorescence intensity) as the UV/Fenton-like process at environmentally relevant concentrations (10−4 M), but using fewer chemical reactants, since UV/H2O2 process does not require Fe(III) as catalyst and oxidant. Therefore, the UV/H2O2 process can be considered a simpler and cleaner process for removing organic contaminants from rainwater. Full article
Show Figures

Figure 1

15 pages, 3051 KiB  
Article
Performance of Copper as a Catalyst for Fenton-like Processes in Highly Saline Solutions
by Xavier Orts, Jordi Arévalo, Antonio Arques, Ana M. Amat and Lucas Santos-Juanes
Molecules 2025, 30(11), 2298; https://doi.org/10.3390/molecules30112298 - 23 May 2025
Viewed by 489
Abstract
The catalytic performance of copper in Fenton-like processes was investigated under conditions of elevated chloride concentrations. Model solutions were prepared containing four target pollutants (50 mg/L each), Cu (II) at 50 mg/L, and a stoichiometric dose of hydrogen peroxide sufficient for complete oxidation [...] Read more.
The catalytic performance of copper in Fenton-like processes was investigated under conditions of elevated chloride concentrations. Model solutions were prepared containing four target pollutants (50 mg/L each), Cu (II) at 50 mg/L, and a stoichiometric dose of hydrogen peroxide sufficient for complete oxidation of the organic matter. Chloride levels ranged from low concentrations to those representative of both synthetic and natural seawater (36 g/L NaCl). An increase in chloride concentration consistently led to greater pollutant removal efficiency. The influence of pH on process performance was also assessed in saline and real seawater matrices. An optimal pH range between 6 and 7 was identified in both cases, where the reactivity of copper–chloride complexes was maximized while the formation of insoluble, catalytically inactive copper species was suppressed. Monitoring of pH, soluble copper concentration, and hydrogen peroxide consumption supported the conclusion that real seawater provides the most favorable conditions for copper–chloride catalyzed Fenton-like reactions. These results demonstrate the high potential of copper-based advanced oxidation processes in saline environments, particularly in applications where traditional methods exhibit limited efficiency. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Figure 1

26 pages, 2810 KiB  
Review
A Review of Various Advanced Oxidation Techniques for Pesticide Degradation for Practical Application in Aqueous Environments
by Mehary Dagnew, Qin Xue, Jian Zhang, Zizeng Wang, Anran Zhou, Min Li and Chun Zhao
Sustainability 2025, 17(10), 4710; https://doi.org/10.3390/su17104710 - 20 May 2025
Viewed by 871
Abstract
Pesticides are chemicals used in agriculture, industry, and households to control pests and enhance crop yields but have emerged as pollutants in soil and water due to their presence in domestic and agricultural wastewater effluents. The World Health Organization (WHO) has identified the [...] Read more.
Pesticides are chemicals used in agriculture, industry, and households to control pests and enhance crop yields but have emerged as pollutants in soil and water due to their presence in domestic and agricultural wastewater effluents. The World Health Organization (WHO) has identified the development of pesticide resistance as a significant threat to global public health. Consequently, removing pesticides in aqueous environments has gained considerable attention. Numerous methodologies, including biological, physical, and chemical methods, have been employed for their treatment. Among these methods, advanced oxidation processes (AOPs) have garnered particular interest due to their fast reaction rates and strong oxidizing abilities. This review focuses on various AOPs such as Fenton and Fenton-like oxidation, ozonation, the UV/H2O2 process, electrochemical oxidation, photocatalytic oxidation, and the UV/O3 process. The review analyzes and summarizes the current applications of these AOPs for treating pesticides in aqueous environments. It also compares various AOPs treatment methods and discusses the challenges, drawbacks, advantages, and strategies for addressing these issues, and provides insights into the future prospects. Finally, it propose potential strategies and areas of improvement for future research to enhance the efficiency and sustainability of AOPs in practical application. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

15 pages, 6161 KiB  
Article
Chiral-Dependent Redox Capacitive Biosensor Using Cu-Cys-GSH Nanoparticles for Ultrasensitive H2O2 Detection
by Duygu Yilmaz Aydin, Jie Jayne Wu and Jiangang Chen
Biosensors 2025, 15(5), 315; https://doi.org/10.3390/bios15050315 - 14 May 2025
Viewed by 492
Abstract
Copper-thiolate nanostructures, formed through the self-assembly of cysteine (Cys) and glutathione (GSH) with copper ions, offer a versatile platform for redox-active applications due to their structural stability and chemical functionality. In this study, Cu-Cys-GSH nanoparticles were synthesized and employed to develop a capacitive [...] Read more.
Copper-thiolate nanostructures, formed through the self-assembly of cysteine (Cys) and glutathione (GSH) with copper ions, offer a versatile platform for redox-active applications due to their structural stability and chemical functionality. In this study, Cu-Cys-GSH nanoparticles were synthesized and employed to develop a capacitive biosensor for the ultralow concentration detection of hydrogen peroxide (H2O2). The detection mechanism leverages a Fenton-like reaction, where H2O2 interacts with Cu-Cys-GSH nanoparticles to generate hydroxyl radicals (·OH) through redox cycling between Cu2+ and Cu+ ions. These redox processes induce changes in the sensor’s surface charge and dielectric properties, enabling highly sensitive capacitive sensing at gold interdigitated electrodes (IDEs). The influence of chirality on sensing performance was investigated by synthesizing nanoparticles with both L- and D-cysteine enantiomers. Comparative analysis revealed that the stereochemistry of cysteine impacts the catalytic activity and sensor response, with Cu-L-Cys-GSH nanoparticles exhibiting superior performance. Specifically, the biosensor achieved a linear detection range from 1.0 fM to 1.0 pM and demonstrated an ultra-sensitive detection limit of 21.8 aM, outperforming many existing methods for H2O2 detection. The sensor’s practical performance was further validated using milk and saliva samples, yielding high recovery rates and confirming its robustness and accuracy for real-world applications. This study offers a disposable, low-cost sensing platform compatible with sustainable healthcare practices and facilitates easy integration into point-of-care diagnostic systems. Full article
(This article belongs to the Special Issue Innovative Biosensing Technologies for Sustainable Healthcare)
Show Figures

Figure 1

17 pages, 22223 KiB  
Article
Enhanced Fenton-like Catalytic Activation of Peroxymonosulfate over Macroporous LaFeO3 for Water Remediation
by Elzhana Encheva, Savina Koleva, Martin Tsvetkov and Maria Milanova
Crystals 2025, 15(5), 394; https://doi.org/10.3390/cryst15050394 - 24 Apr 2025
Viewed by 388
Abstract
Four different-sized carbon microspheres, CS, obtained by a facile hydrothermal method, are applied as a hard template for the preparation of a series of macroporous LaFeO3. The average particle size of the CS obtained is between 0.350 and 0.700 µm. The [...] Read more.
Four different-sized carbon microspheres, CS, obtained by a facile hydrothermal method, are applied as a hard template for the preparation of a series of macroporous LaFeO3. The average particle size of the CS obtained is between 0.350 and 0.700 µm. The macroporous LaFeO3 are tested in a Fenton-like activation of peroxymonosulfate, PMS, for oxidation of tetracycline hydrochloride, TCH, in model water solution under visible-light irradiation. The effect of parameters such as type of irradiation, temperature of the reaction, and type of the water matrixes was tested. The oxidation of the pollutant TCH is evaluated by total organic carbon and organic nitrogen measurements. The results showed the superior catalytic activity of macroporous LaFeO3 in comparison to pure LaFeO3. Rate constants between 0.036 and 0.184 min−1 at 25 °C were obtained. The activation energy for the process with the most active macroporous LaFeO3 was 33.88 kJ/mol, a value lower than for the catalytic process with PMS only, proving the positive role of the macroporous LaFeO3 for TCH degradation. Radical scavenger measurements showed that singlet oxygen, produced during the catalytic degradation process, was responsible for the performance of macroporous LaFeO3/PMS/visible light for TCH degradation. The catalysts proved to be efficient and recyclable. Full article
(This article belongs to the Special Issue Rare Earths-Doped Materials (3rd Edition))
Show Figures

Figure 1

26 pages, 1365 KiB  
Review
Metal-Doped Carbon Dots as Fenton-like Catalysts and Their Applications in Pollutant Degradation and Sensing
by Weiyun Chen, Andrew S. Ball, Ivan Cole and Hong Yin
Sustainability 2025, 17(8), 3642; https://doi.org/10.3390/su17083642 - 17 Apr 2025
Cited by 3 | Viewed by 1164
Abstract
Metal-doped carbon dots (CDs) have become one of the most popular catalytic materials for Fenton-like reactions, mainly due to their low production cost, minimal toxicity, and high catalytic efficiency. Theses reactions not only provide an efficient decontamination method for the degradation of organic [...] Read more.
Metal-doped carbon dots (CDs) have become one of the most popular catalytic materials for Fenton-like reactions, mainly due to their low production cost, minimal toxicity, and high catalytic efficiency. Theses reactions not only provide an efficient decontamination method for the degradation of organic pollutants in wastewater but also demonstrate a wide range of sensing applications. Metal doping introduces new catalytically active centres, which increase the binding selectivity to the reactants and offer an additional advantage of improved catalytic degradation and sensing activity. The metal-doped CDs optimise the electronic structure of pristine CDs, thereby enhancing their catalytic properties and reaction rates. These enhancements make them an attractive option for water treatment and sensor design. The objective of this review is to provide a comprehensive overview of the current research progress in the utilisation of metal-doped CDs as Fenton-like reaction catalysts for the degradation of pollutants and sensing applications. This review examines the advantages of metal-doped carbon dots in terms of catalytic efficiency, selectivity, and application scope and discusses the potential challenges and future research directions. The aim is to promote further the sustainable application and green development of CD technology in environmental governance and analytical chemistry. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

20 pages, 13042 KiB  
Article
Biomass Cellulose-Derived Carbon Aerogel Supported Magnetite-Copper Bimetallic Heterogeneous Fenton-like Catalyst Towards the Boosting Redox Cycle of ≡Fe(III)/≡Fe(II)
by Qiang Zhao, Jiawei Yang, Jiayi Xia, Gaotian Zhao, Yida Yang, Zongwei Zhang, Jing Li, Fang Wei and Weiguo Song
Nanomaterials 2025, 15(8), 614; https://doi.org/10.3390/nano15080614 - 16 Apr 2025
Viewed by 542
Abstract
To degrade high-concentration and toxic organic effluents, we developed Fe-Cu active sites loaded on biomass-source carbon aerogel (CA) to produce a low-cost and high-efficiency magnetic Fenton-like catalyst for the catalytic oxidative decomposition of organic pollutants. It exhibits excellent performance in catalytic Fenton-like reactions [...] Read more.
To degrade high-concentration and toxic organic effluents, we developed Fe-Cu active sites loaded on biomass-source carbon aerogel (CA) to produce a low-cost and high-efficiency magnetic Fenton-like catalyst for the catalytic oxidative decomposition of organic pollutants. It exhibits excellent performance in catalytic Fenton-like reactions for RhB removal at an ultrahigh initial concentration of up to 1000 ppm. To be specific, Fe3O4 and Cu nanoparticles are generated in situ on a mesoporous CA support, denoted as an Fe3O4-Cu/CA catalyst. Experimentally, factors including initial dye concentration, catalyst dosage, H2O2 dosage, pH, and temperature, which significantly influence the oxidative degradation rate of RhB, are carefully studied. The RhB (1000 ppm) degradation ratio reaches 93.7% within 60 min under low catalyst and H2O2 dosage. The catalyst also shows slight metal leaching (almost 1.4% of total Fe and 4.0% of total Cu leached after a complete degradation of 25 μmol RhB under conditions of 15 mg catalyst dosage, 20 mL RhB solution (600 ppm), and 200 μL 30 wt% H2O2 dosage, at pH of 2.5, at 40 °C), good catalytic activity for degrading organic pollutants, excellent reusability, and good catalytic stability (the degradation ratio is nearly 82.95% in the 8th cycle reaction). The synergistic effect between Fe and Cu species plays a vital role in promoting the redox cycle of Fe(III)/Fe(II) and enhancing the generation of ·OH. It is suitable for ultrahigh-concentration organic pollutant degradation in practical wastewater treatment applications. Full article
(This article belongs to the Special Issue Nanostructured Materials for Electrocatalysis)
Show Figures

Graphical abstract

28 pages, 6457 KiB  
Article
Photocatalytic and Photo-Fenton-like Degradation of Cationic Dyes Using SnFe2O4/g-C3N4 Under LED Irradiation: Optimization by RSM-BBD and Artificial Neural Networks (ANNs)
by Yassine Elkahoui, Fatima-Zahra Abahdou, Majda Ben Ali, Said Alahiane, Mohamed Elhabacha, Youssef Boutarba and Souad El Hajjaji
Reactions 2025, 6(2), 23; https://doi.org/10.3390/reactions6020023 - 28 Mar 2025
Viewed by 1276
Abstract
The development of heterostructures incorporating photocatalysts optimized for visible-light activity represents a major breakthrough in the field of environmental remediation research, offering innovative and sustainable solutions for environmental purification. This study explores the photocatalytic capabilities of a SnFe2O4/g-C3 [...] Read more.
The development of heterostructures incorporating photocatalysts optimized for visible-light activity represents a major breakthrough in the field of environmental remediation research, offering innovative and sustainable solutions for environmental purification. This study explores the photocatalytic capabilities of a SnFe2O4/g-C3N4 heterojunction nanocomposite, successfully synthesized from graphitic carbon nitride (g-C3N4) and tin ferrate (SnFe2O4) and applied to the degradation of the cationic dye brilliant cresyl blue (BCB) in an aqueous solution. These two components are particularly attractive due to their low cost and ease of fabrication. Various characterization techniques, including XRD, FTIR, SEM, and TEM, were used to confirm the successful integration of SnFe2O4 and g-C3N4 phases in the synthesized catalysts. The photocatalytic and photo-Fenton-like activity of the heterojunction composites was evaluated by the degradation of brilliant cresyl blue under visible LED illumination. Compared to the pure components SnFe2O4 and g-C3N4, the SnFe2O4/g-C3N4 nanocomposite demonstrated a superior photocatalytic performance. Furthermore, the photo-Fenton-like performance of the composites is much higher than the photocatalytic performances. The significant improvement in photo-Fenton activity is attributed to the synergistic effect between SnFe2O4 and g-C3N4, as well as the efficient separation of photoexcited electron/hole pairs. The recyclability of the SnFe2O4/g-C3N4 composite toward BCB photo-Fenton like degradation was also shown. This study aimed to assess the modeling and optimization of photo-Fenton-like removal BCB using the SnFe2O4/g-C3N4 nanomaterial. The main parameters (photocatalyst dose, initial dye concentration, H2O2 volume, and reaction time) affecting this system were modeled by two approaches: a response surface methodology (RSM) based on a Box–Behnken design and artificial neural network (ANN). A comparison was made between the predictive accuracy of RSM for brilliant cresyl blue (BCB) removal and that of the artificial neural network (ANN) approach. Both methodologies provided satisfactory and comparable predictions, achieving R2 values of 0.97 for RSM and 0.99 for ANN. Full article
(This article belongs to the Special Issue Feature Papers in Reactions in 2025)
Show Figures

Figure 1

29 pages, 6092 KiB  
Review
The Evolving Landscape of Advanced Oxidation Processes in Wastewater Treatment: Challenges and Recent Innovations
by Satyam Satyam and Sanjukta Patra
Processes 2025, 13(4), 987; https://doi.org/10.3390/pr13040987 - 26 Mar 2025
Cited by 5 | Viewed by 4053
Abstract
The increasing presence of persistent pollutants in industrial wastewater underscores the shortcomings of conventional treatment methods, prompting the adoption of advanced oxidation processes (AOPs) for sustainable water remediation. This review examines the development of AOPs, focusing on their ability to produce hydroxyl radicals [...] Read more.
The increasing presence of persistent pollutants in industrial wastewater underscores the shortcomings of conventional treatment methods, prompting the adoption of advanced oxidation processes (AOPs) for sustainable water remediation. This review examines the development of AOPs, focusing on their ability to produce hydroxyl radicals and reactive oxygen species (ROS) to mineralize complex pollutants. Homogeneous systems such as Fenton’s reagent show high degradation efficiency. However, challenges like pH sensitivity, catalyst recovery issues, sludge generation, and energy-intensive operations limit their scalability. Heterogeneous catalysts, such as TiO2-based photocatalysts and Fe3O4 composites, offer improved pH adaptability, visible-light activation, and recyclability. Emerging innovations like ultraviolet light emitting diode (UV-LED)-driven systems, plasma-assisted oxidation, and artificial intelligence (AI)-enhanced hybrid reactors demonstrate progress in energy efficiency and process optimization. Nevertheless, key challenges remain, including secondary byproduct formation, mass transfer constraints, and economic feasibility for large-scale applications. Integrating AOPs with membrane filtration or biological treatments enhances treatment synergy, while advances in materials science and computational modeling refine catalyst design and reaction mechanisms. Addressing barriers in energy use, catalyst durability, and practical adaptability requires multidisciplinary collaboration. This review highlights AOPs as pivotal solutions for water security amid growing environmental pollution, urging targeted research to bridge gaps between laboratory success and real-world implementation. Full article
(This article belongs to the Special Issue Advanced Oxidation Processes in Water Treatment)
Show Figures

Figure 1

24 pages, 7946 KiB  
Article
Heterologous Expression of Either Human or Soya Bean Ferritins in Budding Yeast Reveals Common Functions Protecting Against Oxidative Agents and Counteracting Double-Strand Break Accumulation
by Nuria Pujol Carrión and Maria Ángeles de la Torre-Ruiz
Biomolecules 2025, 15(3), 447; https://doi.org/10.3390/biom15030447 - 20 Mar 2025
Viewed by 483
Abstract
Ferritins are globular proteins that, upon self-assembly in nanocages, are capable of bio-safely storing huge concentrations of bioavailable iron. They are present in most cell types and organisms; one of the exceptions is yeast. Heterologous expression of either human or vegetal ferritins in [...] Read more.
Ferritins are globular proteins that, upon self-assembly in nanocages, are capable of bio-safely storing huge concentrations of bioavailable iron. They are present in most cell types and organisms; one of the exceptions is yeast. Heterologous expression of either human or vegetal ferritins in Saccharomyces cerevisiae revealed new and unknown functions for soya bean ferritins; validated this model by confirming previously characterized functions in human ferritins and also demonstrated that, like human H chain, vegetal H1, and H2 chains also shown a tendency to localize in the nucleus when expressed in an eukaryotic cell model lacking plastids and chloroplasts. Furthermore, when expressed in the system budding yeast, the four ferritins (human H and L and soya bean H1 and H2 chains) present equivalent and relevant functions as protectors against oxidative damage and against the accumulation of double-strand breaks in the DNA. We present evidence demonstrating that these effects are exclusively observed with oxidative agents that operate through the Fenton reaction, such as H2O2. Here, we also discuss the ferritin requirement for N-glycosylation to exert these functions. We believe that our approach might contribute to extending the knowledge around ferritin function and its consequent relevance to human health. Full article
(This article belongs to the Special Issue Recent Insights into Metal Binding Proteins)
Show Figures

Figure 1

23 pages, 4220 KiB  
Review
Utilization of Natural Mineral Materials in Environmental Remediation: Processes and Applications
by Di Xu, Yongkui Yang and Lingqun Gan
Minerals 2025, 15(3), 318; https://doi.org/10.3390/min15030318 - 19 Mar 2025
Viewed by 747
Abstract
The discharge of wastewater containing persistent organic pollutants presents significant ecological and health challenges due to their toxicity and resilience. Recent advances in advanced oxidation processes (AOPs) and other remediation mechanisms, notably utilizing natural mineral materials (NMMs), offer promising solutions to these challenges. [...] Read more.
The discharge of wastewater containing persistent organic pollutants presents significant ecological and health challenges due to their toxicity and resilience. Recent advances in advanced oxidation processes (AOPs) and other remediation mechanisms, notably utilizing natural mineral materials (NMMs), offer promising solutions to these challenges. NMMs, with their cost-effectiveness, accessibility, eco-friendly nature, non-toxicity, and unique structural properties, have shown significant promise in environmental remediation and could effectively replace conventional catalysts in related applications. These minerals enable the activation of oxidants, generating reactive oxygen species crucial for the degradation of pollutants. This article reviews the mechanisms of NMMs in various AOPs, including photocatalysis, Fenton-like reactions, and persulfate-activation-based processes, and discusses the potential of these materials in enhancing pollutant degradation efficiency, with a focus on the activation of persulfates and the photo-induced redox processes. The synergy between photocatalytic properties and catalytic activation provided by NMMs offers a robust approach to managing water pollution without the drawbacks of secondary waste production, thus supporting sustainable remediation efforts. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

15 pages, 2841 KiB  
Article
Development of New Dual-Purpose Environmental Strategies for Effective Antibiotic Degradation Using Red Mud-Based Fenton Oxidation Catalysts
by Yirong Zhao, Junxia Su, Bingqi Zhou, Fujie Li, Kang Mao, Muhammad Umair, Guopei Huang and Hua Zhang
Molecules 2025, 30(6), 1298; https://doi.org/10.3390/molecules30061298 - 14 Mar 2025
Cited by 1 | Viewed by 720
Abstract
Mitigating antibiotic pollution is essential to combating antibiotic resistance, safeguarding ecosystems, ensuring food and water safety, and preserving the efficacy of antibiotics. Simultaneously, the comprehensive utilization of red mud is a key approach to reducing resource waste and ecological damage. This study investigates [...] Read more.
Mitigating antibiotic pollution is essential to combating antibiotic resistance, safeguarding ecosystems, ensuring food and water safety, and preserving the efficacy of antibiotics. Simultaneously, the comprehensive utilization of red mud is a key approach to reducing resource waste and ecological damage. This study investigates the use of iron components from red mud to prepare RM-nZVI/Ni for Fenton-like reactions, aimed at degrading antibiotics in water. By leveraging the inherent iron content in red mud, RM-nZVI/Ni was developed to achieve a dual-purpose environmental strategy: antibiotic degradation and solid waste resource recycling. The results demonstrate that 0.02 g/L of sulfamethoxazole (SMX) can be fully degraded within 15 min using 0.1 g/L of RM-nZVI/Ni and 6 mM of H2O2. Hydroxyl radicals (·OH) and Ni were identified as key contributors to SMX removal. Moreover, this system exhibits universality in degrading common antibiotics such as LFX, NFX, CIP, and TC. LC-MS analysis and DFT theoretical calculations indicate that the degradation byproducts are of lower toxicity or are non-toxic. Additionally, cost analysis suggests that RM-nZVI/Ni is a cost-effective and efficient catalyst. This research gives valuable insights into antibiotic degradation using red mud-based catalysts and offers guidance for expanding the high-value applications of red mud. Full article
Show Figures

Figure 1

17 pages, 4675 KiB  
Article
Piezoelectric-Driven Fenton System Based on Bismuth Ferrite Nanosheets for Removal of N-Acetyl-para-aminophenol in Aqueous Environments
by Chi Zhou, Shenglong Jing, Teng Miao, Nianlai Zhou, Hang Zhang, Yi Zhang, Lin Ge, Wencheng Liu and Zixin Yang
Catalysts 2025, 15(2), 126; https://doi.org/10.3390/catal15020126 - 27 Jan 2025
Viewed by 1065
Abstract
Emerging pollutants, such as N-acetyl-para-aminophenol, pose significant challenges to environmental sustainability, and Bi2Fe2O2 (BFO) nanomaterials are an emerging class of piezoelectric materials. This study presents a novel piezoelectric-driven Fenton system based on Bi2Fe4O [...] Read more.
Emerging pollutants, such as N-acetyl-para-aminophenol, pose significant challenges to environmental sustainability, and Bi2Fe2O2 (BFO) nanomaterials are an emerging class of piezoelectric materials. This study presents a novel piezoelectric-driven Fenton system based on Bi2Fe4O9 nanosheets for the efficient degradation of organic pollutants. BFO nanosheets with varying thicknesses were synthesized, and their piezoelectric properties were confirmed through piezoresponse force microscopy and heavy metal ion reduction experiments. The piezoelectric electrons generated within the BFO nanosheets facilitate the in situ production of hydrogen peroxide, which in turn drives the Fenton-like reaction. Furthermore, the piezoelectric electrons enhance the redox cycling of iron in the Fenton process, boosting the overall catalytic efficiency. The energy band structure of BFO nanosheets is well-suited for this process, enabling efficient hydrogen peroxide generation and promoting Fe3+ reduction. The findings demonstrate that thinner BFO nanosheets exhibit superior piezoelectric activity, leading to enhanced catalytic performance. Additionally, the incorporation of gold nanodots onto BFO nanosheets further boosts their piezocatalytic efficiency, particularly in the reduction of Cr (VI). The system exhibited robust oxidative capacity, stability, and recyclability, with reactive oxygen species (ROS) verified via electron paramagnetic resonance spectroscopy. Overall, BFO nanosheets, with their optimal energy band structure, self-supplied hydrogen peroxide, and enhanced Fe3+ reduction, represent a promising, sustainable solution for advanced oxidation processes in wastewater treatment and other applications. Full article
(This article belongs to the Special Issue Sustainable Catalysis for Green Chemistry and Energy Transition)
Show Figures

Graphical abstract

Back to TopTop