Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = Fe-based nanocrystalline alloys

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3510 KB  
Article
Anomalous Precipitation of the γ-Fe Phase in Fe-Based Nanocrystalline Alloys and Its Impact on Soft Magnetic Properties
by You Wu, Lingxiang Shi, Ranbin Wang, Jili Jia, Wenhui Guo, Yunshuai Su, Hengtong Bu, Siqi Xiang, Weihong Yang, Mingli Fu, Yang Shao and Kefu Yao
Materials 2025, 18(12), 2867; https://doi.org/10.3390/ma18122867 - 17 Jun 2025
Viewed by 873
Abstract
High-Cu-content (Cu-content > 1.3 at.%) nanocrystalline alloys exhibit wide heat-treatment windows and favorable soft magnetic properties due to the presence of pre-existing α-Fe nanocrystals. By fabricating ribbons with varying thicknesses to tailor cooling rates, distinct structural characteristics were achieved in Fe82B [...] Read more.
High-Cu-content (Cu-content > 1.3 at.%) nanocrystalline alloys exhibit wide heat-treatment windows and favorable soft magnetic properties due to the presence of pre-existing α-Fe nanocrystals. By fabricating ribbons with varying thicknesses to tailor cooling rates, distinct structural characteristics were achieved in Fe82B16.5Cu1.5 alloy ribbons. Notably, the face-centered cubic (fcc) γ-Fe phase was identified in Fe-based nanocrystalline alloys. The precipitation of the fcc γ-Fe phase originates from a phase-selection mechanism under specific cooling conditions, while its retention in the as-quenched ribbon with a thickness of 27 μm is attributed to kinetic suppression during rapid cooling and the nanoscale stabilization effect. The formation of the fcc γ-Fe phase significantly reduced the saturation flux density (Bs) and increased coercivity (Hc), concurrently destabilizing the residual amorphous matrix. By suppressing the precipitation of the γ-Fe and Fe3B phases through precise control of ribbon thickness and annealing parameters, the alloy ribbon with a thickness of 16 μm achieved an optimal combination of Bs (1.82 T) and Hc (8.3 A/m). These findings on anomalous fcc γ-Fe phase precipitation provide novel insights into metastable phase engineering and offer structural design guidelines for alloys containing pre-existing α-Fe nanocrystals. Full article
Show Figures

Figure 1

13 pages, 13782 KB  
Article
Electrodeposited CoFeNi Medium-Entropy Alloy Coating on a Copper Substrate from Chlorides Solution with Enhanced Corrosion Resistance
by Katarzyna Młynarek-Żak, Monika Spilka, Krzysztof Matus, Anna Góral and Rafał Babilas
Coatings 2025, 15(5), 509; https://doi.org/10.3390/coatings15050509 - 24 Apr 2025
Viewed by 1484
Abstract
Medium-entropy alloys (MEAs) exhibit properties comparable or even superior to high-entropy alloys (HEAs). Due to their very good resistance in thermomechanical conditions and corrosive environments and unique electrical and magnetic properties, medium-entropy alloys are good candidates for coating applications. One of the most [...] Read more.
Medium-entropy alloys (MEAs) exhibit properties comparable or even superior to high-entropy alloys (HEAs). Due to their very good resistance in thermomechanical conditions and corrosive environments and unique electrical and magnetic properties, medium-entropy alloys are good candidates for coating applications. One of the most economically effective methods of producing metallic coatings is electrodeposition. In this work, the structure of an electrodeposited CoFeNi medium-entropy alloy coating on a copper substrate from a metal chlorides solution (FeCl2 ∙ 4H2O + CoCl2 ∙ 6H2O + NiCl2 ∙ 6H2O) with the addition of boric acid (H3BO3) was investigated. The coating was characterized by a nanocrystalline structure identified by transmission electron microscopy examination and X-ray diffraction methods. Based on XRD and TEM, the face-centered cubic (FCC) phase of the CoFeNi MEA coating was identified. The high corrosion resistance of the MEA coating in a 3.5% NaCl environment at 25 °C was confirmed by electrochemical tests. Full article
(This article belongs to the Special Issue Advances of Ceramic and Alloy Coatings, 2nd Edition)
Show Figures

Figure 1

23 pages, 8944 KB  
Review
Stress-Induced Magnetic Anisotropy in Fe-Based Amorphous/Nanocrystalline Alloys: Mechanisms, Advances and Challenges
by Jianqiang Zhang, Yanjun Qin, Xiaobin Liu, Yuxiang Zhao, Wenqiang Dang, Xiaozhen Fan, Xinyi Chen, Yuanrong Yu, Zixuan Yang, Shipeng Gao, Duanqiang Wu and Yunzhang Fang
Materials 2025, 18(7), 1499; https://doi.org/10.3390/ma18071499 - 27 Mar 2025
Cited by 4 | Viewed by 2113
Abstract
Fe-based amorphous and nanocrystalline alloys, such as FINEMET and its improved variants, are highly valued as green energy-saving materials due to their unique magnetic properties, including high permeability, low coercivity, and near-zero saturation magnetostriction. These characteristics have enabled their extensive use in power [...] Read more.
Fe-based amorphous and nanocrystalline alloys, such as FINEMET and its improved variants, are highly valued as green energy-saving materials due to their unique magnetic properties, including high permeability, low coercivity, and near-zero saturation magnetostriction. These characteristics have enabled their extensive use in power electronics and information technology. However, the full potential of these alloys remains unfulfilled due to insufficient understanding of their stress sensitivity. This study focuses on the development history, heat treatment, annealing processes, chemical composition, and underlying mechanisms of Fe-based amorphous and nanocrystalline alloys, aiming to provide insights into stress-induced magnetic anisotropy and guide the development of greener and more efficient soft magnetic materials. Full article
Show Figures

Figure 1

17 pages, 7045 KB  
Article
Correlation of Viscosity, Precursor Structure, Nanocrystallized Structure with Soft Magnetic Properties in FeSiCuBNbAlPSn Alloys
by Menglei Sun, Aina He, Ning Zhang, Bojun Zhang, Yaqiang Dong, Jiawei Li, Qikui Man and Baogen Shen
Metals 2025, 15(3), 262; https://doi.org/10.3390/met15030262 - 28 Feb 2025
Viewed by 1005
Abstract
The interplay between melting viscosity, amorphous forming ability (AFA), nanocrystalline structure, and soft magnetic properties (SMPs) in Fe-based multicomponent alloys remains unclear. This study systematically explores the effects of Sn doping on the viscosity, precursor structure, and nanocrystallization behavior of Fe-Si-B-Nb-Cu-Al-P alloys. Sn [...] Read more.
The interplay between melting viscosity, amorphous forming ability (AFA), nanocrystalline structure, and soft magnetic properties (SMPs) in Fe-based multicomponent alloys remains unclear. This study systematically explores the effects of Sn doping on the viscosity, precursor structure, and nanocrystallization behavior of Fe-Si-B-Nb-Cu-Al-P alloys. Sn doping reduces melting viscosity and induces an abnormal viscosity rise during cooling, lowering the fragility parameter ratio (F) between high- and low-temperature zones, thereby enhancing the AFA of the precursor ribbons. High-temperature heat preservation treatment (HTP) of the melt further reduces the F, improves precursor disorder, and refines nanocrystals, leading to reduced average magnetocrystalline anisotropy and optimized SMPs. The HTP-treated Sn-dopped alloy shows superior SMPs, including low coercivity of 0.4 A/m and high permeability of 32,400 at 5 kHz, making it highly promising for advanced electromagnetic device applications. This work reveals the relationship between viscosity, precursor structure, nanocrystalline structure, and SMPs of Fe-based alloys, which provides an approach for the optimization of SMPs. Full article
Show Figures

Figure 1

11 pages, 1123 KB  
Article
Simulation Research on Low-Frequency Magnetic Noise in Fe-Based Nanocrystalline Magnetic Shields
by Shuai Kang, Wenfeng Fan, Jixi Lu and Wei Quan
Materials 2025, 18(2), 330; https://doi.org/10.3390/ma18020330 - 13 Jan 2025
Cited by 2 | Viewed by 1388
Abstract
Depending on high permeability, high Curie temperature, and low eddy current loss noise, nanocrystalline alloys, as the innermost layer, exhibit great potential in the construction of cylindrical magnetic shielding systems with a high shielding coefficient and low magnetic noise. This study compares a [...] Read more.
Depending on high permeability, high Curie temperature, and low eddy current loss noise, nanocrystalline alloys, as the innermost layer, exhibit great potential in the construction of cylindrical magnetic shielding systems with a high shielding coefficient and low magnetic noise. This study compares a magnetic noise of 1 Hz, simulated by the finite element method (FEM), of a cylindrical nanocrystalline magnetic shield with different structural parameters based on the measured initial permeability of commercial Fe-based nanocrystalline (1K107). The simulated results demonstrate that the magnetic noise is irrelevant to the pump and probe hole diameter. The magnetic noise of a nanocrystalline cylinder with a fixed length gradually increases with the rise in aspect ratio. The radial and axial magnetic noise of a nanocrystalline cylinder with a fixed diameter can reach optimal values when the aspect ratio is 1.3 and 1.4, respectively. The layer thickness of a nanocrystalline cylinder is negatively correlated to magnetic noise. Additionally, by comparing the 1 Hz magnetic noise of a cylindrical nanocrystalline magnetic shield with varying initial permeability, it can be concluded that an increase in loss factor results in an increase in magnetic noise. These results are useful for the design of a high-performance passive magnetic shield with low magnetic noise. Full article
Show Figures

Figure 1

14 pages, 4008 KB  
Article
Structural, Magnetic, and Mössbauer Study on Nb and Heat Treatment of Fe-Si-B-P-Cu-Nb Ribbons
by Hyunkyung Lee, Hyunkyung Choi, Young Rang Uhm and Haein Choi-Yim
Metals 2024, 14(12), 1381; https://doi.org/10.3390/met14121381 - 2 Dec 2024
Viewed by 2055
Abstract
This study aims to enhance the amorphous formation ability and magnetic properties that are crucial for the production of high-quality nanocrystalline alloys. The structural, thermal, and magnetic characteristics of the alloy ribbons were analyzed through a systematic adjustment of Nb content, and, including [...] Read more.
This study aims to enhance the amorphous formation ability and magnetic properties that are crucial for the production of high-quality nanocrystalline alloys. The structural, thermal, and magnetic characteristics of the alloy ribbons were analyzed through a systematic adjustment of Nb content, and, including Nb, significantly improved the amorphous formation ability and thermal stability of the alloy, which is vital for nanocrystalline production. By varying the Nb content within Fe85-xSi2B8P4Cu1Nbx (x = 0.0, 0.5, 1.0, and 1.5), we explored finer adjustments to achieve homogeneous amorphousness during the melt spinning process. Careful control over the Nb content facilitated the production of amorphous ribbons with consistent homogeneity, which was critical for the subsequent fabrication of nanocrystalline structures through heat treatment. As a result, the amorphous ribbon of Fe85.5Si2B8P4Cu1Nb0.5 showed a low coercivity of 7 A/m. The heat treatment showed a remarkably high saturation magnetic flux density of 1.94 T. Additionally, the grain size (D) decreased as the Nb content increased, with D values ranging from 25.09 nm to 24.29 nm, as calculated by the Scherrer formula. Mössbauer spectroscopy confirmed the formation of nanocrystalline and residual amorphous phases. The hyperfine magnetic field values (Beff) decreased from 25.7 T to 24.7 T in the amorphous samples and reached 33.0 T in the nanocrystalline phases. This study highlights Nb’s positive impact on thermal stability and amorphous formation capacity in Fe-Si-B-P-Cu alloys, culminating in the successful fabrication of nanocrystalline ribbons with superior structural and magnetic properties. Full article
(This article belongs to the Special Issue Metallic Magnetic Materials: Manufacture, Properties and Applications)
Show Figures

Figure 1

12 pages, 3328 KB  
Article
Enhanced Thermal Stability of Carbonyl Iron Nanocrystalline Microwave Absorbents by Pinning Grain Boundaries with SiBaFe Alloy Nanoparticles
by Yifan Xu, Zhihong Chen, Ziwen Fu, Yuchen Hu, Yunhao Luo, Wei Li and Jianguo Guan
Nanomaterials 2024, 14(10), 869; https://doi.org/10.3390/nano14100869 - 16 May 2024
Cited by 1 | Viewed by 1861
Abstract
Nanocrystalline carbonyl iron (CI) particles are promising microwave absorbents at elevated temperature, whereas their excessive grain boundary energy leads to the growth of nanograins and a deterioration in permeability. In this work, we report a strategy to enhance the thermal stability of the [...] Read more.
Nanocrystalline carbonyl iron (CI) particles are promising microwave absorbents at elevated temperature, whereas their excessive grain boundary energy leads to the growth of nanograins and a deterioration in permeability. In this work, we report a strategy to enhance the thermal stability of the grains and microwave absorption of CI particles by doping a SiBaFe alloy. Grain growth was effectively inhibited by the pinning effect of SiBaFe alloy nanoparticles at the grain boundaries. After heat treatment at 600 °C, the grain size of CI particles increased from ~10 nm to 85.1 nm, while that of CI/SiBaFe particles was only 32.0 nm; with the temperature rising to 700 °C, the grain size of CI particles sharply increased to 158.1 nm, while that of CI/SiBaFe particles was only 40.8 nm. Excellent stability in saturation magnetization and microwave absorption was also achieved in CI/SiBaFe particles. After heat treatment at 600 °C, the flaky CI/SiBaFe particles exhibited reflection loss below −10 dB over 7.01~10.11 GHz and a minimum of −14.92 dB when the thickness of their paraffin-based composite was 1.5 mm. We provided a low-cost and efficient kinetic strategy to stabilize the grain size in nanoscale and microwave absorption for nanocrystalline magnetic absorbents working at elevated temperature. Full article
(This article belongs to the Special Issue Advances in Stimuli-Responsive Nanomaterials: 2nd Edition)
Show Figures

Figure 1

10 pages, 1474 KB  
Article
Degradation of Azo Dye Solutions by a Nanocrystalline Fe-Based Alloy and the Adsorption of Their By-Products by Cork
by Wael Ben Mbarek, Maher Issa, Victoria Salvadó, Lluisa Escoda, Mohamed Khitouni and Joan-Josep Suñol
Materials 2023, 16(24), 7612; https://doi.org/10.3390/ma16247612 - 12 Dec 2023
Cited by 3 | Viewed by 1487
Abstract
In this study, the efficiency of mechanically alloyed Fe80Si10B10 in degrading basic red 46 azo dye is investigated. Moreover, the influences of different parameters, such as pH and time, on the elimination of the aromatic derivatives obtained as [...] Read more.
In this study, the efficiency of mechanically alloyed Fe80Si10B10 in degrading basic red 46 azo dye is investigated. Moreover, the influences of different parameters, such as pH and time, on the elimination of the aromatic derivatives obtained as by-products of the fracture of the azo group are also analyzed. After beginning the reduction to the normal conditions of pH (4.6) and temperature, the experimental findings showed a discoloration of 97.87% after 20 min. The structure and morphology of the nanocrystalline Fe80Si10B10 powder were characterized by SEM and XRD before and after use in the degradation process. The XRD patterns of the Fe–Si–B powder after redox reaction suggest that the valent zero Fe of the alloy is the reducing agent. Powdered cork was then used as a biosorbent for the removal of the by-products generated, resulting in increasing removal percentages from pH 7 (26%) to pH 9 (62%) and a contact time of 120 min. The FTIR spectrum of the cork after adsorption shows a shift of the bands, confirming the interaction with the aromatic amines. The present findings show that metallic powders and natural cork perform well together in removing azo dye solutions and their degradation products. Full article
(This article belongs to the Special Issue Modeling and Simulation of Solid State Phenomena in Metals and Alloys)
Show Figures

Figure 1

13 pages, 2168 KB  
Article
Unveiling the Magnetic and Structural Properties of (X2YZ; X = Co and Ni, Y = Fe and Mn, and Z = Si) Full-Heusler Alloy Microwires with Fixed Geometrical Parameters
by Mohamed Salaheldeen, Valentina Zhukova, Mihail Ipatov and Arcady Zhukov
Crystals 2023, 13(11), 1550; https://doi.org/10.3390/cryst13111550 - 29 Oct 2023
Cited by 10 | Viewed by 1864
Abstract
We studied Ni2FeSi-, Co2FeSi-, and Co2MnSi-based full-Heusler alloy glass-coated microwires with the same geometric parameters, i.e., fixed nucleus and total diameters, prepared using the Taylor–Ulitovsky method. The fabrication of X2YZ (X = Co and Ni, [...] Read more.
We studied Ni2FeSi-, Co2FeSi-, and Co2MnSi-based full-Heusler alloy glass-coated microwires with the same geometric parameters, i.e., fixed nucleus and total diameters, prepared using the Taylor–Ulitovsky method. The fabrication of X2YZ (X = Co and Ni, Y = Fe and Mn, and Z = Si)-based glass-coated microwires with fixed geometric parameters is quite challenging due to the different sample preparation conditions. The XRD analysis showed a nanocrystalline microstructure for all the samples. The space groups Fm3¯m (FCC) and Im3¯m (BCC) with disordered B2 and A2 types are observed for Ni2FeSi and Co2FeSi, respectively. Meanwhile, a well-defined, ordered L21 type was observed for Co2MnSi GCMWs. The change in the positions of Ni, Co and Mn, Fe in X2YSi resulted in a variation in the lattice cell parameters and average grain size of the sample. The room-temperature magnetic behavior showed a dramatic change depending on the chemical composition, where Ni2FeSi MWs showed the highest coercivity (Hc) compared to Co2FeSi and Co2MnSi MWs. The Hc value of Ni2FeSi MWs was 16 times higher than that of Co2MnSi MWs and 3 times higher than that of Co2FeSi MWs. Meanwhile, the highest reduced remanence was reported for Co2FeSi MWs (Mr = 0.92), being about 0.82 and 0.22 for Ni2FeSi and Co2MnSi MWs, respectively. From the analysis of the temperature dependence of the magnetic properties (Hc and Mr) of X2YZ MWs, we deduced that the Hc showed a stable tendency for Co2MnSi and Co2FeSi MWs. Meanwhile, two flipped points were observed for Ni2FeSi MWs, where the behavior of Hc changed with temperature. For Mr, a monotonic increase on decreasing the temperature was observed for Co2FeSi and Ni2FeSi MWs, and it remained roughly stable for Co2MnSi MWs. The thermomagnetic curves at low magnetic field showed irreversible magnetic behavior for Co2MnSi and Co2FeSi MWs and regular ferromagnetic behavior for Ni2FeSi MWs. The current result illustrates the ability to tailor the structure and magnetic behavior of X2YZ MWs at fixed geometric parameters. Additionally, a different behavior was revealed in X2YZ MWs depending on the degree of ordering and element distribution. The tunability of the magnetic properties of X2YZ MWs makes them suitable for sensing applications. Full article
(This article belongs to the Topic Advanced Magnetic Alloys)
Show Figures

Figure 1

12 pages, 2679 KB  
Article
Influence of Nb and Mo Substitution on the Structure and Magnetic Properties of a Rapidly Quenched Fe79.4Co5Cu0.6B15 Alloy
by Lukasz Hawelek, Przemyslaw Zackiewicz, Anna Wojcik, Jacek Hudecki and Tymon Warski
Materials 2023, 16(18), 6288; https://doi.org/10.3390/ma16186288 - 19 Sep 2023
Cited by 2 | Viewed by 1715
Abstract
The importance of amorphous and nanocrystalline Fe-based soft magnetic materials is increasing annually. Thus, characterisation of the chemical compositions, alloying additives, and crystal structures is significant for obtaining the appropriate functional properties. The purpose of this work is to present comparative studies on [...] Read more.
The importance of amorphous and nanocrystalline Fe-based soft magnetic materials is increasing annually. Thus, characterisation of the chemical compositions, alloying additives, and crystal structures is significant for obtaining the appropriate functional properties. The purpose of this work is to present comparative studies on the influence of Nb (1, 2, 3 at.%) and Mo (1, 2, 3 at.%) in Fe substitution on the thermal stability, crystal structure, and magnetic properties of a rapidly quenched Fe79.4Co5Cu0.6B15 alloy. Additional heat treatments in a vacuum (260–640 °C) were performed for all samples based on the crystallisation kinetics. Substantial improvement in thermal stability was achieved with increasing Nb substitution, while this effect was less noticeable for Mo-containing alloys. The heat treatment optimisation process showed that the least lossy states (with a minimum value of coercivity below 10 A/m and high saturation induction up to 1.7 T) were the intermediate state of the relaxed amorphous state and the nanocomposite state of nanocrystals immersed in the amorphous matrix obtained by annealing in the temperature range of 340–360 °C for 20 min. Only for the alloy with the highest thermal stability (Nb = 3%), the α-Fe(Co) nanograin grows, without the co-participation of the hard magnetic Fe3B, in a relatively wide range of annealing temperatures up to 460 °C, where the second local minimum in coercivity and core power losses exists. For the remaining annealed alloys, due to lower thermal stability than the Nb = 3% alloy, the Fe3B phase starts to crystallise at lower annealing temperatures, making an essential contribution to magneto-crystalline anisotropy, thus the substantial increase in coercivity and induction saturation. The air-annealing process tested on the studied alloys for optimal annealing conditions has potential use for this type of material. Additionally, optimally annealed Mo-containing alloys are less lossy materials than Nb-containing alloys in a frequency range up to 400 kHz and magnetic induction up to 0.8 T. Full article
Show Figures

Figure 1

11 pages, 3799 KB  
Article
Microstructure, Magnetic Properties, and Application of FINEMET-Type Alloys with Co Addition
by Agnieszka Łukiewska, Mirosław Łukiewski, Mariusz Hasiak and Hanna Łukiewska
Appl. Sci. 2023, 13(8), 4693; https://doi.org/10.3390/app13084693 - 7 Apr 2023
Cited by 3 | Viewed by 3440
Abstract
The choice of materials for cores of electrotechnical devices is currently related to energy saving and global warming problems. Nanocrystalline alloys are emerging as materials for cores in these devices in addition to amorphous materials already commonly used due to their better magnetic [...] Read more.
The choice of materials for cores of electrotechnical devices is currently related to energy saving and global warming problems. Nanocrystalline alloys are emerging as materials for cores in these devices in addition to amorphous materials already commonly used due to their better magnetic properties at high operating frequencies. The thermal stability of the magnetic properties of cores is also an important criterion. Keeping these criteria in mind, a study of microstructure and magnetic properties was carried out in this work, and FeCoNbBCu-type material was selected for use as the core of a choke operating in a DC/DC converter in interleaved topology. On the basis of the conducted studies, it was found that good magnetic properties and the best thermal stability were shown by Fe58Co25Nb3B13Cu1 alloy. Using RALE software, the technical parameters of the choke core were determined and compared with the same parameters for a choke core made of FINEMET-type alloy. Full article
(This article belongs to the Special Issue Alloys: Evolution of Microstructure and Texture)
Show Figures

Figure 1

11 pages, 10465 KB  
Article
Measurement and Simulation of Magnetic Properties of Nanocrystalline Alloys under High-Frequency Pulse Excitation
by Changgeng Zhang, Min Zhang and Yongjian Li
Materials 2023, 16(7), 2850; https://doi.org/10.3390/ma16072850 - 3 Apr 2023
Cited by 6 | Viewed by 2496
Abstract
In order to broaden the application of nanocrystalline soft magnetic materials in electrical engineering under extreme conditions, nanocrystalline alloys must also have good characteristics under high-frequency and nonsinusoidal excitation. In this paper, the magnetic properties of Fe-based nanocrystalline alloys excited by high repetition [...] Read more.
In order to broaden the application of nanocrystalline soft magnetic materials in electrical engineering under extreme conditions, nanocrystalline alloys must also have good characteristics under high-frequency and nonsinusoidal excitation. In this paper, the magnetic properties of Fe-based nanocrystalline alloys excited by high repetition frequency pulses were measured. Excitation frequency and duty cycles are two important factors in the study of magnetic properties under pulse excitation. With the amplitude of the pulse remaining constant, different local hysteresis curves were obtained by changing the frequency and duty cycle. The experimental results proved that the higher the frequency is and the smaller the duty cycle is, the narrower the local hysteresis loop is. Finally, the finite element method (FEM) was used to model the magnetic core coupling with an impulse circuit based on the measured magnetic properties. Compared with the experimental results, the simulation results showed that the field-circuit coupling analysis model can effectively reflect the influence law of the frequency and duty cycle on magnetic properties. Full article
(This article belongs to the Special Issue Characterization of Nanostructure Materials)
Show Figures

Figure 1

9 pages, 2087 KB  
Article
Effect of Ho Substitution on Magnetic Properties and Microstructure of Nanocrystalline Nd-Pr-Fe-B Alloys
by Caihai Xiao, Weiwei Zeng, Yongli Tang, Cifu Lu, Renheng Tang, Zhigang Zheng, Xuefeng Liao and Qing Zhou
Metals 2022, 12(11), 1922; https://doi.org/10.3390/met12111922 - 9 Nov 2022
Cited by 4 | Viewed by 2117
Abstract
The inevitable thermal demagnetization of magnets at high-temperatures is a key issue for Nd-Fe-B based permanent magnetic materials, especially for electric motors. Here, we report the effect of partially substituting the element Holmium (Ho) on the magnetic properties and microstructure of nanocrystalline melt-spun [...] Read more.
The inevitable thermal demagnetization of magnets at high-temperatures is a key issue for Nd-Fe-B based permanent magnetic materials, especially for electric motors. Here, we report the effect of partially substituting the element Holmium (Ho) on the magnetic properties and microstructure of nanocrystalline melt-spun [(NdPr)1−xHox]14.3Fe76.9B5.9M2.9 (x = 0–0.6; M = Co, Cu, Al and Ga) alloys. It shows that Ho can enter into the main phase and significantly enhance the coercivity (Hcj). A large coercivity of 23.9 kOe is achieved in the x = 0.3 alloy, and the remanent magnetization (Mr) remains in balance. The abnormal elevated temperature behavior of Mr is observed in the alloys with a high amount of Ho substitution, in which the Mr of the x = 0.6 alloy increases with rising temperature from 300 K to 375 K owing to the antiparallel coupling between Ho and Fe moments. As a result, the positive value (0.050%/K) of temperature coefficient α of Mr is achieved in the x = 0.6 alloy within the temperature range of 300–400 K, in excess of that of existing Nd-Fe-B magnets. The temperature coefficient β of Hcj is also improved by Ho substitution, indicating the introduction of Ho in Nd-Fe-B magnets is beneficial for thermal stability. The microstructure observation of x = 0, 0.3 and 0.6 alloys confirmed the grain refinement by Ho substitution, and Ho prefers to remain in the 2:14:1 phase than Nd and Pr. The present finding provides an important reference for the efficient improvement of the thermal stability of Nd-Fe-B-type materials. Full article
(This article belongs to the Special Issue Advances in Metal-Containing Magnetic Materials)
Show Figures

Figure 1

12 pages, 2509 KB  
Article
Deformation-Thermal Co-Induced Ferromagnetism of Austenite Nanocrystalline FeCoCr Powders for Strong Microwave Absorption
by Ziwen Fu, Zhihong Chen, Rui Wang, Hanyan Xiao, Jun Wang, Hao Yang, Yueting Shi, Wei Li and Jianguo Guan
Nanomaterials 2022, 12(13), 2263; https://doi.org/10.3390/nano12132263 - 30 Jun 2022
Cited by 6 | Viewed by 2480
Abstract
Nanocrystalline soft magnetic alloy powders are promising microwave absorbents since they can work at diverse frequencies and are stable in harsh environments. However, when the alloy powders are in austenite phase, they are out of the screen for microwave absorbents due to their [...] Read more.
Nanocrystalline soft magnetic alloy powders are promising microwave absorbents since they can work at diverse frequencies and are stable in harsh environments. However, when the alloy powders are in austenite phase, they are out of the screen for microwave absorbents due to their paramagnetic nature. In this work, we reported a strategy to enable strong microwave absorption in nanocrystalline austenite FeCoCr powders by deformation-thermal co-induced ferromagnetism via attritor ball milling and subsequent heat treatment. Results showed that significant austenite-to-martensite transformation in the FeCoCr powders was achieved during ball milling, along with the increase in shape anisotropy from spherical to flaky. The saturation magnetization followed parabolic kinetics during ball milling and rose from 1.43 to 109.92 emu/g after milling for 4 h, while it exhibited a rapid increase to 181.58 emu/g after subsequent heat treatment at 500 °C. A considerable increase in complex permeability and hence magnetic loss capability was obtained. With appropriate modulation of complex permittivity, the resultant absorbents showed a reflection loss of below −6 dB over 8~18 GHz at thickness of 1 mm and superior stability at 300 °C. Our strategy can broaden the material selection for microwave absorbents by involving Fe-based austenite alloys and simply recover the ferromagnetism of industrial products made without proper control of the crystalline phase. Full article
(This article belongs to the Special Issue Advances in Stimuli-Responsive Nanomaterials)
Show Figures

Figure 1

18 pages, 7226 KB  
Article
Microstructure and Corrosion Behavior of Laser Cladding FeCoNiCrBSi Based High-Entropy Alloy Coatings
by Hongling Zhang, Wenjuan Li, Huanhuan Xu, Liang Chen, Junshan Zeng, Zhibing Ding, Wenmin Guo and Bin Liu
Coatings 2022, 12(5), 628; https://doi.org/10.3390/coatings12050628 - 4 May 2022
Cited by 19 | Viewed by 3482
Abstract
High-entropy amorphous alloys designed based on the concept of multi-principal components have the comprehensive advantages of high passivation element content and amorphous structure, and are considered as one of the promising alternative protective materials in extreme marine environments. However, based on the composition [...] Read more.
High-entropy amorphous alloys designed based on the concept of multi-principal components have the comprehensive advantages of high passivation element content and amorphous structure, and are considered as one of the promising alternative protective materials in extreme marine environments. However, based on the composition of traditional amorphous alloys, the multi-principal design significantly reduces its glass forming ability. In order to improve the glass formation ability of high-entropy amorphous alloys, this study attempts to design Fe19.6Co19.6Ni19.6Cr19.6(B13.72Si5.88)19.6Y2 alloy by microalloying on the basis of traditional FeCoNiCrBSi high-entropy amorphous alloy. The traditional Fe43.6Co6Ni17.4Cr9B17.5Si1.5Nb5 iron-based amorphous alloy was selected as the comparison material. Then, spherical alloy powders were prepared by gas atomization. The amorphous nanocrystalline composite coatings were deposited on the 304 stainless steel by laser cladding technology. The microstructure of the coatings was characterized by scanning electron microscopy and X-ray diffractometer. The corrosion behavior of laser cladding coatings in 3.5 wt.% NaCl solution were investigated in detail. The results show that the Fe43.6Co6Ni17.4Cr9B17.5Si1.5Nb5 powder is composed of FCC, Laves and boride phases. Whereas the Fe19.6Co19.6Ni19.6Cr19.6(B13.72Si5.88)19.6Y2 high-entropy amorphous alloy powder is composed of FCC and boride phases. Due to the remelting and multiple heat treatments during the preparation of the laser cladding coatings, borides were precipitated in both coatings. The microstructure of the two coatings from the bonding area with the substrate to the top layer are plane grains, dendrite, equiaxed grains and amorphous phase, respectively. Fe19.6Co19.6Ni19.6Cr19.6(B13.72Si5.88)19.6Y2 high-entropy amorphous alloy coating exhibits high corrosion potential, passivation film resistance and low corrosion current density in 3.5 wt.% NaCl solution. In addition, the passivation film formed on the coating has higher Cr content and lower defect concentration, showing more excellent corrosion resistance. Full article
Show Figures

Figure 1

Back to TopTop