Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (150)

Search Parameters:
Keywords = Faradaic reaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3098 KB  
Article
Electrocatalytic Hydrogenation of 5-Hydroxymethylfurfural to 2,5-Bis(hydroxymethyl)furan Using CuIr Bimetallic Nanowires
by Chen Chen, Chenhao Yang, Hongke Li, Yiran Liu, Yao Chen and Yunlei Zhang
Catalysts 2026, 16(2), 116; https://doi.org/10.3390/catal16020116 (registering DOI) - 25 Jan 2026
Abstract
Electrocatalytic hydrogenation (ECH) represents an environmentally friendly pathway for converting 5-hydroxymethylfurfural (HMF) into the high-value chemical 2,5-bis(hydroxymethyl)furan (BHMF). However, its selectivity and Faradaic efficiency are often constrained by competitive hydrogen evolution at the cathode and insufficient supply of active hydrogen at the surface. [...] Read more.
Electrocatalytic hydrogenation (ECH) represents an environmentally friendly pathway for converting 5-hydroxymethylfurfural (HMF) into the high-value chemical 2,5-bis(hydroxymethyl)furan (BHMF). However, its selectivity and Faradaic efficiency are often constrained by competitive hydrogen evolution at the cathode and insufficient supply of active hydrogen at the surface. To address this challenge, this study developed an Ir-decorated copper oxide nanowire catalyst (denoted as CuIr) featuring a hydrogen-rich adsorption (Hads) surface. The incorporation of Ir significantly enhances the catalyst’s water dissociation capacity, creating abundant Hads sources that selectively accelerate HMF hydrogenation while suppressing side reactions. Under a mild applied potential of −0.45 V vs. RHE and a current density of approximately −20 mA cm−2, the optimal CuIr40 catalyst achieved near-complete conversion of HMF (99%), a BHMF yield of 99%, and a high Faradaic efficiency of 97% within 120 min of electrolysis. Mechanistic studies reveal that this catalytic leap stems from the synergistic functional interaction between Cu and Ir sites in substrate activation and hydrogen supply. This work presents a novel strategy for designing efficient electrocatalysts for biomass hydrogenation by regulating surface Hads concentration. Full article
Show Figures

Figure 1

17 pages, 3206 KB  
Article
Effect of Channel Height on CO2-to-CH4 Reduction in Microchannel Electrocatalysis
by Zheng-Yan Lei, Nguyen Van Toan, Masaya Toda, Ioana Voiculescu and Takahito Ono
Micromachines 2026, 17(2), 148; https://doi.org/10.3390/mi17020148 - 23 Jan 2026
Viewed by 38
Abstract
Electrocatalytic CO2 reduction is a promising approach to mitigate rising atmospheric CO2 levels while converting CO2 into valuable products such as CH4. Conversion into other useful substances further expands its potential applications. However, the efficiency of the CO [...] Read more.
Electrocatalytic CO2 reduction is a promising approach to mitigate rising atmospheric CO2 levels while converting CO2 into valuable products such as CH4. Conversion into other useful substances further expands its potential applications. However, the efficiency of the CO2 reduction reaction (CO2RR) is strongly influenced by device geometry and CO2 mass transfer in the electrolyte. In this work, we present and evaluate microchannel electrocatalytic devices consisting of a porous Cu cathode and a Pt anode, fabricated via metal-assisted chemical etching (MACE). The porous surfaces generated through MACE enhanced reaction activity. To study the impact of the distance between electrodes, several devices with different channel heights were fabricated and tested. The device with the highest CH4 selectivity had a narrow inter-electrode gap of 50 μm and achieved a Faradaic efficiency of 56 ± 11% at an applied potential of −5 V versus an Ag/AgCl reference electrode. This efficiency was considerably higher than that of the device with larger inter-electrode gaps (300 and 480 μm). This reduced efficiency in the larger channel was attributed to limited CO2 availability at the cathode surface. Bubble visualization experiments further demonstrated that the electrolyte flow rate had a strong impact on supplied CO2 bubble morphology and mass transfer. At a flow rate of 0.75 mL/min, smaller CO2 bubbles were formed, increasing the gas–liquid interfacial area and thereby enhancing CO2 dissolution into the electrolyte. These results underline the critical role of electrode gap design and bubble dynamics in optimizing microchannel electrocatalytic devices for efficient CO2RR. Full article
Show Figures

Figure 1

12 pages, 1388 KB  
Article
Ageing and Water Detection in Hydroscopic Organic Electrolytes
by Eva Alonso-Muñoz, Janwa El Maiss, Wejdene Gongi, Divya Balakrishnan, Delphine Faye, Karine Mougin and César Pascual García
Electrochem 2026, 7(1), 2; https://doi.org/10.3390/electrochem7010002 - 16 Jan 2026
Viewed by 118
Abstract
Electrolyte degradation and trace water contamination critically affect the lifetime and safety of lithium-ion batteries. In organic-based electrolytes such as acetonitrile (MeCN), even small amounts of water can trigger PF6 hydrolysis, producing HF, POF3, and related species that contribute [...] Read more.
Electrolyte degradation and trace water contamination critically affect the lifetime and safety of lithium-ion batteries. In organic-based electrolytes such as acetonitrile (MeCN), even small amounts of water can trigger PF6 hydrolysis, producing HF, POF3, and related species that contribute to electrolyte ageing and alter interfacial reactions. This study explores the electrochemical signatures of ageing and moisture contamination in Bu4NPF6- and LiPF6-based MeCN electrolytes through a systematic cyclic voltammetry protocol. Platinum electrodes with different surface morphologies—flat, Nafion-coated, and nanostructured—were compared to assess their sensitivity to water-induced degradation. Cathodic Faradaic currents appearing around −0.7 to −1.0 V vs. Ag/AgCl were attributed to the protonic species generated by PF6-induced hydrolysis. The presence of LiPF6, commonly used in battery electrolytes, further increases the concentration of anions responsible for the protonic species, therefore contributing to the acceleration of the electrolyte degradation. Experiments using a Nafion proton-conductive membrane assess the protonic origin of these peaks. Meanwhile, nanostructured platinum exhibits approximately four times higher current responses and enhanced sensitivity to water additions, reflecting the influence of surface roughness and active area. Overall, the findings indicate that electrode morphology significantly influences the detectability of ageing- and water-driven reactions, supporting the potential of nanostructured Pt as a diagnostic material for in situ monitoring. Full article
(This article belongs to the Special Issue Feature Papers in Electrochemistry)
Show Figures

Figure 1

14 pages, 5788 KB  
Article
Trisferrocenyltrithiophosphite-Copper(I) Bromide Composites for Electrochemical CO2 Reduction
by Mikhail Khrizanforov, Ilya Bezkishko, Anastasiia Samorodnova, Ruslan Shekurov, Radis Gainullin, Kirill Kholin, Igor Yanilkin, Aidar Gubaidullin, Alexey Galushko and Vasili Miluykov
Int. J. Mol. Sci. 2026, 27(2), 789; https://doi.org/10.3390/ijms27020789 - 13 Jan 2026
Viewed by 130
Abstract
Copper-based catalysts have emerged as promising materials for electrochemical carbon dioxide reduction reactions, owing to copper’s unique ability to facilitate multi-electron transfer processes and produce valuable products such as methanol and ethanol. In this study, novel trisferrocenyltrithiophosphite–copper(I) bromide composites with Cu-to-ligand molar ratios [...] Read more.
Copper-based catalysts have emerged as promising materials for electrochemical carbon dioxide reduction reactions, owing to copper’s unique ability to facilitate multi-electron transfer processes and produce valuable products such as methanol and ethanol. In this study, novel trisferrocenyltrithiophosphite–copper(I) bromide composites with Cu-to-ligand molar ratios of 1:1 and 2:1 were synthesized and evaluated for their catalytic performance. The composites were characterized by a combination of techniques, including powder X-ray diffraction (PXRD), linear sweep voltammetry (LSV), potentiostatic testing, chromatographic analysis, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Electrochemical measurements demonstrated significant current enhancements in the presence of CO2, highlighting the composites’ catalytic activity. Potentiostatic tests revealed excellent stability, with only a 9% decline in current density over 5 h of electrolysis. Product analysis via gas chromatography indicated the formation of methanol for the 1:1 composite and ethanol for the 2:1 composite with Faradaic efficiencies of 5.79% and 9.26%, respectively. While absolute efficiencies remain modest due to competitive hydrogen evolution, these results demonstrate a tunable catalytic performance based on the Cu-to-ligand ratio. SEM and XPS studies further supported the formation of active catalytic centers and changes in the oxidation states of copper during CO2 reduction. PXRD analysis confirmed the retention of structural integrity for both composites before and after catalytic testing. Full article
(This article belongs to the Special Issue Recent Advances in Electrochemical-Related Materials)
Show Figures

Figure 1

24 pages, 2470 KB  
Review
Metal–Support Interactions in Single-Atom Catalysts for Electrochemical CO2 Reduction
by Alexandra Mansilla-Roux, Mayra Anabel Lara-Angulo and Juan Carlos Serrano-Ruiz
Nanomaterials 2026, 16(2), 103; https://doi.org/10.3390/nano16020103 - 13 Jan 2026
Viewed by 307
Abstract
Electrochemical CO2 reduction (CO2RR) is a promising route to transform a major greenhouse gas into value-added fuels and chemicals. However, its deployment is still hindered by the sluggish activation of CO2, poor selectivity toward multielectron products, and competition [...] Read more.
Electrochemical CO2 reduction (CO2RR) is a promising route to transform a major greenhouse gas into value-added fuels and chemicals. However, its deployment is still hindered by the sluggish activation of CO2, poor selectivity toward multielectron products, and competition with the hydrogen evolution reaction (HER). Single-atom catalysts (SACs) have emerged as powerful materials to address these challenges because they combine maximal metal utilization with well-defined coordination environments whose electronic structure can be precisely tuned through metal–support interactions. This minireview summarizes current understanding of how structural, electronic, and chemical features of SAC supports (e.g., porosity, heteroatom doping, vacancies, and surface functionalization) govern the adsorption and conversion of key CO2RR intermediates and thus control product distributions from CO to CH4, CH3OH and C2+ species. Particular emphasis is placed on selectivity descriptors (e.g., coordination number, d-band position, binding energies of *COOH and *OCHO) and on rational design strategies that exploit curvature, microenvironment engineering, and electronic metal–support interactions to direct the reaction along desired pathways. Representative SAC systems based primarily on N-doped carbons, complemented by selected examples on oxides and MXenes are discussed in terms of Faradaic efficiency (FE), current density and operational stability under practically relevant conditions. Finally, the review highlights remaining bottlenecks and outlines future directions, including operando spectroscopy and data-driven analysis of dynamic single-site ensembles, machine-learning-assisted DFT screening, scalable mechanochemical synthesis, and integration of SACs into industrially viable electrolyzers for carbon-neutral chemical production. Full article
Show Figures

Figure 1

15 pages, 3759 KB  
Article
Synthesis and Structural Characterization of Ni/Mn-Doped Co-RGO Composites for Supercapacitor Electrodes
by Andriono Manalu, Moraida Hasanah, Winfrontstein Naibaho, Mario Geraldi Simanjuntak and Maren Sius Girsang
Electrochem 2026, 7(1), 1; https://doi.org/10.3390/electrochem7010001 - 24 Dec 2025
Viewed by 375
Abstract
In this study, Ni/Mn-doped cobalt–reduced graphene oxide (Co-RGO) composites were successfully synthesized as advanced electrode materials for supercapacitors. The structural and morphological properties of the composites were characterized using FTIR, XRD, SEM, TEM, and UV–Vis spectroscopy. Their electrochemical performance was evaluated through electrochemical [...] Read more.
In this study, Ni/Mn-doped cobalt–reduced graphene oxide (Co-RGO) composites were successfully synthesized as advanced electrode materials for supercapacitors. The structural and morphological properties of the composites were characterized using FTIR, XRD, SEM, TEM, and UV–Vis spectroscopy. Their electrochemical performance was evaluated through electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and galvanostatic charge–discharge (GCD). Among the prepared samples, Co-RGO doped with Ni/Mn at a 40:10 ratio exhibited the most outstanding capacitive behavior, achieving a specific capacitance of 7414 F g−1 at a current density of 10 A g−1, along with a high energy density of 565 Wh kg−1 and a power density of 4998 W kg−1. The high capacitance arises from faradaic pseudocapacitive reactions rather than electric double-layer capacitance, eliminating the need for a large surface area. These results confirm that Ni doping significantly enhances pseudocapacitance and conductivity in the Co-RGO matrix, making Ni/Mn (40:10)–Co-RGO a potential material for advanced energy storage systems. Full article
Show Figures

Graphical abstract

29 pages, 3429 KB  
Review
Advances in Layered Double Hydroxide (LDH)-Based Materials for Electrocatalytic Nitrogen Reduction to Ammonia: A Comprehensive Review
by Sayali S. Kulkarni, Ganesh L. Khande, Jayavant L. Gunjakar and Valmiki B. Koli
Nitrogen 2025, 6(4), 106; https://doi.org/10.3390/nitrogen6040106 - 21 Nov 2025
Viewed by 1147
Abstract
Nitrogen (N2), constituting the majority of Earth’s atmosphere, remains indispensable for biological systems and underpins modern agriculture and industry. Traditionally, the Haber–Bosch process has been essential for synthesizing ammonia (NH3) from N2 under high temperature and pressure, but [...] Read more.
Nitrogen (N2), constituting the majority of Earth’s atmosphere, remains indispensable for biological systems and underpins modern agriculture and industry. Traditionally, the Haber–Bosch process has been essential for synthesizing ammonia (NH3) from N2 under high temperature and pressure, but it contributes significantly to global CO2 emissions. Recently, carbon-free electrocatalytic nitrogen reduction (e-NRR) has emerged as a promising, eco-friendly, and cost-effective approach for green NH3 production under mild conditions using renewable energy, offering a sustainable alternative to the fossil fuel dependent Haber–Bosch process. This work explores NRR by contrasting the limitations of Haber–Bosch with the advantages of electrocatalysis. Despite progress, electrochemical N2 reduction to NH3 production remains challenging due to low activity, poor selectivity, stability, efficiency, and detection issues. Developing efficient e-NRR electrocatalysts is crucial to enhance activity, suppress hydrogen evolution reaction (HER), boost NH3 yield, and improve Faradaic efficiency. This review highlights the role of layered double hydroxide (LDH) catalysts in e-NRR, summarizing the fundamental process, reaction pathways, and synthesis strategies. Ammonia detection methods, key metrics, and potential contamination issues are compared to inform standard NRR measurement protocols. Lastly, we summarize key findings to synthesize and improve LDH electrocatalysts for NH3 production and a sustainable, carbon-free N2 economy. Full article
Show Figures

Figure 1

30 pages, 6871 KB  
Article
Robust All-Solid-State Batteries with Sodium Ion Electrolyte, Aluminum and Additive Manufacturing Inconel 625 Electrodes
by Manuela C. Baptista, Antonio B. Vale, Jose M. Costa and Maria Helena Braga
Molecules 2025, 30(22), 4465; https://doi.org/10.3390/molecules30224465 - 19 Nov 2025
Viewed by 975
Abstract
This study investigates all-solid-state batteries employing multifunctional metallic current collectors/electrodes that remain electrochemically inert toward an alkali-based Na ion solid electrolyte. Inconel 625 was evaluated as the positive current collector in combination with aluminum as the negative electrode and the ferroelectric electrolyte Na2.99Ba0.005OCl. [...] Read more.
This study investigates all-solid-state batteries employing multifunctional metallic current collectors/electrodes that remain electrochemically inert toward an alkali-based Na ion solid electrolyte. Inconel 625 was evaluated as the positive current collector in combination with aluminum as the negative electrode and the ferroelectric electrolyte Na2.99Ba0.005OCl. The inertness of both electrodes enabled the construction of a robust device architecture that behaved as a true battery, exhibiting a two-phase equilibrium discharge plateau at ~1.1 V despite the absence of traditional Faradaic reactions. After a one-month rest period, the cell was sequentially discharged through external resistors and retained full functionality for one year. Cyclic voltammetry confirmed a stable electrochemical response over repeated cycling. The final long-term discharge under a 9.47 kΩ load produced a steady ~0.92 V plateau and delivered a total capacity of 35 mAh (~2.3 mAh·cm−2). Post-mortem analyses revealed excellent chemical and mechanical stability of Inconel 625 after extended operation, while aluminum showed superficial surface degradation attributed to residual moisture, with X-ray diffraction indicating the formation of aluminum hydroxide. Scanning Kelvin probe measurements guided electrode selection and provided insight into interfacial energetics, whereas scanning electron microscopy confirmed interface integrity. Complementary density functional theory simulations optimized the crystalline bulk and surfaces of Inconel, demonstrating interfacial stability at the atomic scale. Overall, this work elucidates the fundamental driving forces underlying traditional battery operation by studying a “capacity-less” system, highlighting the central role of interfacial electrostatics in sustaining battery-like discharge behavior in the absence of redox-active electrodes. Full article
Show Figures

Figure 1

14 pages, 2149 KB  
Article
Interface Catalysts of In Situ-Grown TiO2/MXenes for High-Faraday-Efficiency CO2 Reduction
by Shaun Debow, Zichen Shen, Arjun Sathyan Kulathuvayal, Fuzhan Song, Tong Zhang, Haley Fisher, Jesse B. Brown, Yuqin Qian, Zhi-Chao Huang-Fu, Hui Wang, Zachary Zander, Mark S. Mirotznik, Robert L. Opila, Yanqing Su and Yi Rao
Molecules 2025, 30(19), 4025; https://doi.org/10.3390/molecules30194025 - 9 Oct 2025
Viewed by 868
Abstract
Climate change and the global energy crisis have led to an increasing need for greenhouse gas remediation and clean energy sources. The electrochemical CO2 reduction reaction (CO2RR) is a promising solution for both issues as it harvests waste CO2 [...] Read more.
Climate change and the global energy crisis have led to an increasing need for greenhouse gas remediation and clean energy sources. The electrochemical CO2 reduction reaction (CO2RR) is a promising solution for both issues as it harvests waste CO2 and chemically reduces it to more useful forms. However, the high overpotential required for the reaction makes it electrochemically unfavorable. Here, we fabricate a novel electrode composed of TiO2 nanoparticles grown in situ on MXene charge acceptor 2D sheets with excellent CO2RR characteristics. A straightforward solvothermal method was used to grow the nanoparticles on the Ti3C2Tx MXene flakes. The electrochemical performance of the TiO2/MXene electrodes was analyzed. The Faradaic efficiencies of the TiO2/MXene electrodes were determined, with a value of 99.41% at −1.9 V (vs. Ag/AgCl). Density functional theory mechanistic analysis was used to reveal the most likely mechanism resulting in the production of one CO molecule along with a carbonate anion through ∗CO, ∗O, and activated CO22− intermediates. Bader charge analysis corroborated this pathway, showing that CO2 gains a greater negative charge when TiO2/MXene serves as a catalyst compared to MXene or TiO2 alone. These results show that TiO2/MXene nanocomposite electrodes may be very useful in the conversion of CO2 while still being efficient in both time and cost. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Physical Chemistry, 3rd Edition)
Show Figures

Figure 1

27 pages, 2502 KB  
Review
Recent Advances in Transition Metal Dichalcogenide-Based Electrodes for Asymmetric Supercapacitors
by Tianyi Gao, Yue Li, Chin Wei Lai, Ping Xiang, Irfan Anjum Badruddin, Pooja Dhiman and Amit Kumar
Catalysts 2025, 15(10), 945; https://doi.org/10.3390/catal15100945 - 1 Oct 2025
Cited by 3 | Viewed by 1486
Abstract
The global transition toward renewable energy sources has intensified in response to escalating environmental challenges. Nevertheless, the inherent intermittency and instability of renewable energy necessitate the development of reliable energy storage technologies. Supercapacitors are particularly notable for their high specific capacitance, rapid charge [...] Read more.
The global transition toward renewable energy sources has intensified in response to escalating environmental challenges. Nevertheless, the inherent intermittency and instability of renewable energy necessitate the development of reliable energy storage technologies. Supercapacitors are particularly notable for their high specific capacitance, rapid charge and discharge capability, and exceptional cycling stability. Concurrently, the increasing demand for efficient and sustainable energy storage systems has stimulated interest in multifunctional electrode materials that integrate electrocatalytic activity with electrochemical energy storage. Two-dimensional transition metal dichalcogenides (TMDs), owing to their distinctive layered structures, large surface areas, phase state, energy band structure, and intrinsic electrocatalytic properties, have emerged as promising candidates to achieve dual functionality in electrocatalysis and electrochemical energy storage for asymmetric supercapacitors (ASCs). Specifically, their unique electronic properties and catalytic characteristics promote reversible Faradaic reactions and accelerate charge transfer kinetics, thus markedly enhancing charge storage efficiency and energy density. This review highlights recent advances in TMD-based multifunctional electrodes. It elucidates mechanistic correlations between intrinsic electronic properties and electrocatalytic reactions that influence charge storage processes, guiding the rational design of high-performance ASC systems. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Graphical abstract

17 pages, 1724 KB  
Article
New Paste Electrode Based on Copper and Gallium Mixed Metal Oxides-Decorated CNT for Highly Electrocatalyzed Hydrogen Evolution Reaction
by Claudio Barrientos, Silvana Moris, Dana Arias, Gina Pecchi, José Ibarra, Galo Ramírez and Leyla Gidi
Int. J. Mol. Sci. 2025, 26(18), 9057; https://doi.org/10.3390/ijms26189057 - 17 Sep 2025
Cited by 1 | Viewed by 918
Abstract
H2 has become one of the most attractive alternatives to replace fossil fuels in clean energy production, but large-scale production remains a challenge. A key step toward this goal is to develop new efficient electrocatalysts for H2 production. This work presents [...] Read more.
H2 has become one of the most attractive alternatives to replace fossil fuels in clean energy production, but large-scale production remains a challenge. A key step toward this goal is to develop new efficient electrocatalysts for H2 production. This work presents a new mixed metal oxides-decorated CNT paste electrode (MMO@C), which is highly electrocatalytic, for use in the hydrogen evolution reaction (HER). MMO@C is synthesized by a solvothermal method and used as an easy-to-prepare paste electrode. XPS and X-ray analysis indicate that the electrocatalyst corresponds to a mixed surface of Ga2O3-CuO-Cu2O-Cu(OH)2@C. The MMO@C electrocatalyst shows a positive Eo of 0.12 V vs. RHE at −10 mA cm−2 towards the HER in a neutral medium. In neutral and alkaline media, the presence of Ga2O3 facilitates the reduction of CuO to Cu(I) species, which is followed by the formation of Cu(s) active sites. Therefore, the excellent electrocatalytic performance toward the HER in a neutral medium is attributed to the synergistic effect between gallium and copper oxides on the electrode surface. The prominent H2 production using MMO@C electrocatalyst is 1.31 × 10−2 mol cm−2, with a turnover number (TON) of 39,423, a turnover frequency (TOF) of 13,141 h−1, and a faradaic efficiency (FE) of 94.3%. Although the Tafel slope reveals slow reaction kinetics, the outstanding onset potential allows for the coupling of the electrocatalyst to renewable energy production systems, making it an attractive candidate for producing green H2 and for application in membrane water electrolyzers. Full article
(This article belongs to the Special Issue Ion and Molecule Transport in Membrane Systems, 6th Edition)
Show Figures

Figure 1

13 pages, 3500 KB  
Article
Hierarchical CuO Nanorods via Cyclic Voltammetry Treatment: Freestanding Electrodes for Selective CO2-to-Formate Conversion
by Lili Wang, Xianlong Lu and Bangwei Deng
Nanomaterials 2025, 15(17), 1349; https://doi.org/10.3390/nano15171349 - 2 Sep 2025
Viewed by 1039
Abstract
Electrochemical CO2 reduction reaction (CO2RR) represents a promising pathway for carbon neutralization. Here, we report hierarchical CuO nanorod arrays synthesized via cyclic voltammetry (CV) treatment as freestanding electrodes for selective CO2RR. The CV activation process generates ultrathin nanosheets [...] Read more.
Electrochemical CO2 reduction reaction (CO2RR) represents a promising pathway for carbon neutralization. Here, we report hierarchical CuO nanorod arrays synthesized via cyclic voltammetry (CV) treatment as freestanding electrodes for selective CO2RR. The CV activation process generates ultrathin nanosheets on CuO nanorods, creating abundant interfaces that facilitate formate production. Optimized CV-2000-CuO achieves 42% Faradaic efficiency (FE) for formate at −1.4 V vs. RHE while suppressing hydrogen evolution reaction (HER). Comprehensive characterization reveals that CV treatment promotes partial surface reduction to metallic Cu and generates high-density grain boundaries during CO2RR operation. These structural features enhance CO2RR activity and stability compared to pristine CuO (P-CuO). This work demonstrates a novel electrode engineering strategy combining freestanding architecture with electrochemical activation for efficient CO2-to-formate conversion. Full article
(This article belongs to the Topic Electrocatalytic Advances for Sustainable Energy)
Show Figures

Figure 1

62 pages, 3631 KB  
Review
Tailoring Electrocatalytic Pathways: A Comparative Review of the Electrolyte’s Effects on Five Key Energy Conversion Reactions
by Goitom K. Gebremariam, Khalid Siraj and Igor A. Pašti
Catalysts 2025, 15(9), 835; https://doi.org/10.3390/catal15090835 - 1 Sep 2025
Cited by 2 | Viewed by 3293
Abstract
The advancement of efficient energy conversion and storage technologies is fundamentally linked to the development of electrochemical systems, including fuel cells, batteries, and electrolyzers, whose performance depends on key electrocatalytic reactions: hydrogen evolution (HER), oxygen evolution (OER), oxygen reduction (ORR), carbon dioxide reduction [...] Read more.
The advancement of efficient energy conversion and storage technologies is fundamentally linked to the development of electrochemical systems, including fuel cells, batteries, and electrolyzers, whose performance depends on key electrocatalytic reactions: hydrogen evolution (HER), oxygen evolution (OER), oxygen reduction (ORR), carbon dioxide reduction (CO2RR), and nitrogen reduction (NRR). Beyond catalyst design, the electrolyte microenvironment significantly influences these reactions by modulating charge transfer, intermediate stabilization, and mass transport, making electrolyte engineering a powerful tool for enhancing performance. This review provides a comprehensive analysis of how fundamental electrolyte properties, including pH, ionic strength, ion identity, and solvent structure, affect the mechanisms and kinetics of these five reactions. We examine in detail how the electrolyte composition and individual ion contributions impact reaction pathways, catalytic activity, and product selectivity. For HER and OER, we discuss the interplay between acidic and alkaline environments, the effects of specific ions, interfacial electric fields, and catalyst stability. In ORR, we highlight pH-dependent activity, selectivity, and the roles of cations and anions in steering 2e versus 4e pathways. The CO2RR and NRR sections explore how the electrolyte composition, local pH, buffering capacity, and proton sources influence activity and the product distribution. We also address challenges in electrolyte optimization, such as managing competing reactions and maximizing Faradaic efficiency. By comparing the electrolyte’s effects across these reactions, this review identifies general trends and design guidelines for enhancing electrocatalytic performance and outlines key open questions and future research directions relevant to practical energy technologies. Full article
(This article belongs to the Section Computational Catalysis)
Show Figures

Figure 1

17 pages, 3890 KB  
Article
Multiple Functions of Carbon Additives in NASICON-Type Electrodes for Stabilizing the Sodium Storage Performance
by Trajche Tushev, Sonya Harizanova, Maria Shipochka, Radostina Stoyanova and Violeta Koleva
Molecules 2025, 30(17), 3547; https://doi.org/10.3390/molecules30173547 - 29 Aug 2025
Viewed by 997
Abstract
Recently, there has been increased interest in NASICON-type electrodes for sodium-ion batteries due to their unique combination of intercalation properties, low cost, and safety. However, their commercialization is hindered by the low electrical conductivity. One strategy to overcome this issue is to integrate [...] Read more.
Recently, there has been increased interest in NASICON-type electrodes for sodium-ion batteries due to their unique combination of intercalation properties, low cost, and safety. However, their commercialization is hindered by the low electrical conductivity. One strategy to overcome this issue is to integrate NASICON materials with carbon additives. This study shows that carbon additives improve the sodium storage performance of a NASICON-type electrode in various ways, depending on the additives’ functional groups, texture, and conductivity properties. The proof-of-concept is based on a multi-electron phospho-sulphate electrode, NaFeVPO4(SO4)2 (NFVPS) mixed with carbon black (C) and reduced graphene oxide (rGO). Carbon-coated samples are obtained via a simple ball milling procedure followed by thermal treatment in an argon flow. Sodium storage in the composites occurs through capacitive and Faradaic reactions. The Faradaic reaction is facilitated at the carbon black composite, while the capacitive reaction dominates for the rGO composite. NFVPS operates through two-electron reactions at 20 °C, while the increased temperatures favor the three-electron reaction. The rGO composite outperforms the carbon black composite in terms of cycling stability and rate capability at 20 and 40 °C. The role of the rGO and carbon black in electrochemical performance is discussed based on the different reactivity of hydroxyl/epoxide and carbonyl functional groups with the electrolyte salt, NaPF6, and the solvent, polypropylene carbonate. Full article
(This article belongs to the Special Issue Carbon-Based Electrochemical Materials for Energy Storage)
Show Figures

Graphical abstract

13 pages, 1508 KB  
Article
Grain Boundary Engineering in 3D Porous Silver Electrocatalysts for Enhanced CO2-to-CO Conversion
by Xiaoqian Xu, Song Yang, Yixiang Wang, Ying Chen, Assa Aravindh Sasikala Devi and Feng Hu
Molecules 2025, 30(17), 3475; https://doi.org/10.3390/molecules30173475 - 24 Aug 2025
Viewed by 1094
Abstract
Silver is a promising electrocatalyst for electrochemical CO2 reduction reaction owing to its high selectivity and efficiency for CO production. However, it still faces a fundamental trade-off between reaction activity and stability. Here, we developed a three-dimensional coral-like porous silver (CP-Ag) catalyst [...] Read more.
Silver is a promising electrocatalyst for electrochemical CO2 reduction reaction owing to its high selectivity and efficiency for CO production. However, it still faces a fundamental trade-off between reaction activity and stability. Here, we developed a three-dimensional coral-like porous silver (CP-Ag) catalyst through seed-assisted nanoparticle attachment synthesis, which creates a unique architecture featuring interconnected pores and stable grain boundaries (GBs) between constituent Ag nanoparticles (Ag NPs). Compared to normal Ag NPs, CP-Ag demonstrates superior catalytic performance, maintaining >90% Faradaic efficiency (FE) for CO across a wide potential range (−0.6 to −1.0 V vs. RHE) while achieving 2-times higher current density. Importantly, CP-Ag demonstrated an impressive long-term stability by sustaining nearly 90% FE for CO approximately 40 h at a current density of −50 mA cm−2 in a flow cell. The enhanced catalytic performance arises from three factors: (1) the three-dimensional coral-like morphology increases accessible active sites and promotes charge transfer efficiency; (2) stable GBs between interconnected nanoparticles increase reaction activity; (3) more moderate binding on Ag (100) preferentially promotes *CO intermediate formation. Our findings highlight the importance of simultaneously engineering both morphological and crystallographic features to optimize silver catalysts for CO2 conversion. Full article
(This article belongs to the Special Issue Functional Materials for Small Molecule Electrocatalysis)
Show Figures

Figure 1

Back to TopTop