Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (109)

Search Parameters:
Keywords = Fagaceae

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 8813 KB  
Article
Omphalotus yunnanensis: A New Poisonous Mushroom Discovered from China Based on Morphological, Molecular and Toxin-Detection Evidence
by Zhong-Feng Li, Jing Zhang, Xiang-Dong Min, Hong-Shun Zhang, Li Chen, Dai-Neng Li, Yi-Zhe Zhang, Ming-Xuan Yuan, Zhi-Yuan Liu, Jia-Ju Zhong, Meng-Huan Ruan and Hai-Jiao Li
Toxins 2026, 18(1), 40; https://doi.org/10.3390/toxins18010040 - 12 Jan 2026
Cited by 1 | Viewed by 208
Abstract
In the past few years, several mushroom poisoning incidents caused by Omphalotus species have occurred in China. In addition to O. guepiniformis and O. olearius, a new white Omphalotus species, O. yunnanensis, was discovered in Southwestern and Southern China based on [...] Read more.
In the past few years, several mushroom poisoning incidents caused by Omphalotus species have occurred in China. In addition to O. guepiniformis and O. olearius, a new white Omphalotus species, O. yunnanensis, was discovered in Southwestern and Southern China based on morphological, molecular and toxin-detection evidence. Omphalotus yunnanensis is characterized by its small, cream to white basidiomata with a hygrophanous pileal surface, non-bioluminescent lamellae, broadly ellipsoid to subglobose basidiospores (8–12.5 × 7–10 μm), fusoid to ventricose cheilocystidia with occasional apical outgrowths, cream to white pileipellis composed of thick-walled, subsoil to solid hyphae, clavate, and fusoid to ventricose caulocystidia with occasional apical outgrowths. The species has been discovered in tropical to subtropical areas in Southwestern and Southern China. Phylogenetic analyses based on ITS and nrLSU showed that the new species clustered with the Australasian species O. nidiformis, but can be easily distinguished by its smaller, white to cream pileus, non-bioluminescent lamellae, larger basidiospores and growing on Fagaceae species. Illudin S was detected in this new species using UPLC-MS/MS, at 6.98 to 86.1 mg/kg of the content (dry weight), while no illudin M was detected. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

14 pages, 2764 KB  
Article
Cross-Tissue and Spatial Pattern of Carbon Fraction in 41 Fagaceae Species from China
by Yulong Liu, Luna Zhang, Zhecheng Liu, Chengke Dong, Xiaoyi Chao, Yankun Liu and Xingchang Wang
Forests 2026, 17(1), 2; https://doi.org/10.3390/f17010002 - 19 Dec 2025
Viewed by 228
Abstract
Fagaceae trees dominate in the temperate and subtropical forests in East Asia. Understanding the spatial patterns of their carbon contents and the influencing factors can support high-precision forest carbon accounting. A comprehensive understanding of the changes in carbon in multiple organs of trees [...] Read more.
Fagaceae trees dominate in the temperate and subtropical forests in East Asia. Understanding the spatial patterns of their carbon contents and the influencing factors can support high-precision forest carbon accounting. A comprehensive understanding of the changes in carbon in multiple organs of trees such as Fagaceae trees is still lacking at a large scale. This study investigated the inter-tissue variation, spatial patterns, and climatic drivers of carbon fraction across nine tissues (leaves, branches, bark, sapwood, heartwood, stump, coarse roots, medium roots, and fine roots) in 41 Fagaceae species (5 genera) from 12 sites across China’s major forest biomes. The sampling sites ranged from northern temperate to northern-tropical and covered an elevation range of 1200 m. The carbon fraction was measured with dry combustion after dried at 60 °C. Variance decomposition revealed that geographical location was the dominant source of variation (16%–55%), outweighing differences at the species and genus levels. Significant disparities in carbon fraction were observed among tissues, following a general pattern of leaves (517 mg g−1) ≈ fine roots (516 mg g−1) > heartwood (510 mg g−1) > sapwood (504 mg g−1) > branches (501 mg g−1) ≈ medium roots (500 mg g−1) > bark (495 mg g−1) > coarse roots (488 mg g−1) ≈ stump (487 mg g−1). This indicated a “high-at-both-ends” arcuate pattern from leaves to fine roots. Spatially, carbon fractions in most tissues exhibited significant declining trends with increasing latitude and eastward longitude. Generalized additive models identified mean annual temperature and precipitation as the most influential factors for most above-ground tissues, while fine roots were primarily regulated by temperature seasonality. These findings help us understand the differences in tree carbon fraction from an organ perspective, highlighting the critical importance of multi-tissue sampling protocol. We recommend integrating the spatial and climatic drivers for refining forest carbon accounting. More species should be included to separate the species and climatic effects in the future. Full article
Show Figures

Figure 1

12 pages, 259 KB  
Article
Anthelmintic Activity of Traditional Medicinal Plants Used in Europe
by Olexandra Boyko and Viktor Brygadyrenko
Biology 2025, 14(12), 1636; https://doi.org/10.3390/biology14121636 - 21 Nov 2025
Viewed by 794
Abstract
Synthetic anthelmintic drugs not only contribute to the development of pathogen resistance and environmental pollution but also to the development of pathogen resistance. Therefore, identifying the anthelmintic properties of widely used medicinal plants could be of great practical interest to veterinary and human [...] Read more.
Synthetic anthelmintic drugs not only contribute to the development of pathogen resistance and environmental pollution but also to the development of pathogen resistance. Therefore, identifying the anthelmintic properties of widely used medicinal plants could be of great practical interest to veterinary and human medicine. In our experiment, we evaluated the in vitro survivability of the noninvasive and invasive (L1–2 and L3, respectively) larvae of Strongyloides papillosus and Haemonchus contortus subject to aqueous solutions of ethanolic tinctures of traditional medicinal plants (46 species). Most of the plant species we studied belonged to the families Asteraceae (Achillea millefolium, Arctium lappa, Artemisia absinthium, Bidens tripartita, Calendula officinalis, Cynara cardunculus var. scolymus, Echinacea purpurea, Helichrysum arenarium, Inula helenium, Matricaria chamomilla, Silybum marianum, Tanacetum vulgare, Taraxacum officinale, Tragopogon porrifolius), Rosaceae (Agrimonia eupatoria, Fragaria vesca, Sanguisorba officinalis), and Lamiaceae (Leonurus cardiaca, Mentha × piperita, Origanum vulgare, Salvia officinalis, Thymus vulgaris). Other plant families were represented by 1–3 species: Fabaceae (Glycyrrhiza glabra, Hedysarum alpinum, Trifolium pratense), Salicaceae (Populus nigra, P. tremula, Salix alba), Fagaceae (Quercus robur), Betulaceae (Betula pendula), Juglandaceae (Juglans regia), Rhamnaceae (Frangula alnus), Acoraceae (Acorus calamus), Apiaceae (Foeniculum vulgare), Caprifoliaceae (Valeriana officinalis), Cucurbitaceae (Cucurbita pepo), Equisetaceae (Equisetum arvense), Ericaceae (Vaccinium vitis-idaea), Gentianaceae (Centaurium erythraea), Hypericaceae (Hypericum perforatum), Malvaceae (Althaea officinalis), Plantaginaceae (Linaria vulgaris, Plantago major), Poaceae (Zea mays), Polygonaceae (Polygonum aviculare), and Ranunculaceae (Nigella sativa). We determined Artemisia absinthium, Inula helenium, Matricaria chamomilla, Salvia officinalis, and Populus nigra, whose aqueous solutions of alcohol tinctures demonstrated nematocidal properties. The other plants we studied did not affect the viability of parasitic nematode larvae. Full article
12 pages, 2882 KB  
Article
Spatial Patterns of Stem Tissue Carbon Content in Fagaceae Species from Typical Forests in China
by Chengke Dong, Yulong Liu, Luna Zhang, Zhecheng Liu, Huabin Zhao, Wenjing Li, Xiaoyi Chao and Xingchang Wang
Forests 2025, 16(9), 1478; https://doi.org/10.3390/f16091478 - 18 Sep 2025
Cited by 2 | Viewed by 575
Abstract
Fagaceae plants are dominant species in subtropical and temperate forests in China. Studying the geographical pattern of their carbon contents can provide key parameter support for high-precision forest carbon accounting. To investigate the spatial variation and influencing factors of carbon content in bark, [...] Read more.
Fagaceae plants are dominant species in subtropical and temperate forests in China. Studying the geographical pattern of their carbon contents can provide key parameter support for high-precision forest carbon accounting. To investigate the spatial variation and influencing factors of carbon content in bark, sapwood, and heartwood, stem samples from 168 individual trees belonging to 41 species of 5 genera in the Fagaceae family were collected from different regions of China. Carbon was determined with the dry combustion method using an elemental analyzer. The variation in carbon content was partitioned, carbon content among tissues were compared, spatial patterns with latitude and longitude and relative importance of interpreting variables were quantified. The carbon content of stem tissues ranged from 411 to 563 mg·g−1. Variation was primarily driven by geographical location (34%–53%), followed by residuals (26%–40%). The inter-species difference also made significant contributions, ranging from 23% (bark) and 21% (sapwood) to 18% (heartwood). Generally, the carbon content among the three tissues followed the order: bark (494 ± 26 mg g−1) (±SD) < sapwood (503 ± 21 mg g−1) < heartwood (509 ± 23 mg g−1). There was an obvious geographical variation pattern in stem carbon content. The carbon content of different tissues gradually decreased with northward latitude and westward longitude. Aridity index (with a relative importance of 22%), longitude (38%), and solar radiation (27%) were the most important driving factors of bark, sapwood, and heartwood C, while the influence of temperature and precipitation was weak. The results highlight the importance of geographical and environmental gradients over taxonomic differences and provide critical parameters for improving forest carbon storage estimates in China. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

21 pages, 3101 KB  
Article
Filling a Gap in Quercus Phylogeny: Molecular Phylogenetic Evidence, Morphometric and Biogeographic History of Quercus petraea subsp. pinnatiloba Matt. Liebl from Türkiye
by Pelin Acar
Diversity 2025, 17(9), 599; https://doi.org/10.3390/d17090599 - 26 Aug 2025
Viewed by 1048
Abstract
Quercus petraea subsp. pinnatiloba is a narrowly distributed oak taxon in southeastern Türkiye, and its taxonomic position has long remained uncertain. This study aims to clarify its distinctiveness by integrating morphological, molecular, and biogeographical evidence. Principal Component Analysis (PCA) and Stepwise Discriminant Analysis [...] Read more.
Quercus petraea subsp. pinnatiloba is a narrowly distributed oak taxon in southeastern Türkiye, and its taxonomic position has long remained uncertain. This study aims to clarify its distinctiveness by integrating morphological, molecular, and biogeographical evidence. Principal Component Analysis (PCA) and Stepwise Discriminant Analysis (SDA) of 14 leaf traits revealed that subsp. pinnatiloba constitutes a morphologically stable and distinctly differentiated group from other Q. petraea subspecies and closely related taxa, characterized by key diagnostic traits such as petiole length (PL), lamina length (LL), length of leaf blade at its broadest point (WP), and lobe width at the tip of the widest lobe (LW). Phylogenetic analyses based on nuclear ITS and plastid markers (rbcL, psbA-trnH) confirmed its placement within sect. Quercus, yet consistently distinguished it genetically from other subspecies for the first time. Molecular dating (BEAST) suggested divergence in the Miocene (11 Mya with 95% HPD 3.01, 20.95) while RASP biogeographical analysis indicated an origin in the Euro-Siberian region with later dispersal into the Mediterranean. These integrative results support its recognition at species rank as Quercus pinnatiloba, clarifying its phylogenetic placement and underscoring the conservation importance of this lineage. Full article
(This article belongs to the Section Phylogeny and Evolution)
Show Figures

Graphical abstract

13 pages, 1100 KB  
Article
Molecular Networking-Guided Annotation of Flavonoid Glycosides from Quercus mongolica Bee Pollen
by Yerim Joo, Eunbeen Shin, Hyunwoo Kim, Mi Kyeong Lee and Seon Beom Kim
Int. J. Mol. Sci. 2025, 26(16), 7930; https://doi.org/10.3390/ijms26167930 - 17 Aug 2025
Viewed by 1567
Abstract
Bee pollen is a primary and secondary metabolite-rich natural product collected by pollinators such as honeybees. Polyphenols, particularly flavonoids, are well known for their potent antioxidant activities. Numerous phytochemical and biological studies have focused on Quercus mongolica, a member of the Fagaceae [...] Read more.
Bee pollen is a primary and secondary metabolite-rich natural product collected by pollinators such as honeybees. Polyphenols, particularly flavonoids, are well known for their potent antioxidant activities. Numerous phytochemical and biological studies have focused on Quercus mongolica, a member of the Fagaceae family. However, research focusing specifically on pollen is limited. Moreover, bee pollen chemical composition varies significantly depending on its geographical origin and cultivation conditions. In this study, the flavonoid glycosides of Q. mongolica pollen were profiled using LC–MS/MS-based molecular networking, which revealed that the largest molecular cluster corresponded to flavonoid glycosides. A total of 69 flavonoid glycosides, primarily comprising 2 kaempferol derivatives, 14 quercetin derivatives, and 46 isorhamnetin derivatives, were annotated based on MS/MS fragmentation patterns, spectral library matches in GNPS (Global Natural Products Social Molecular Networking), and comparison with previously reported data. Two primary compounds, isorhamnetin 3-O-β-D-xylopyranosyl (1→6)-β-D-glucopyranoside and isorhamnetin-3-O-neohesperidoside, were identified by comparison with reference standards. This study offers foundational insights into the flavonoid diversity of Q. mongolica pollen, contributing to a broad understanding of its secondary metabolite profile. Full article
Show Figures

Graphical abstract

16 pages, 4006 KB  
Article
Nesting and Foraging Preferences of Four Sympatric Species of Cavity-Nesting Leafcutting Bees (Hymenoptera: Megachilidae)
by Qianlei Dai, Junjie Hu, Xuan Liu, Jia Wan, Jiabao Wei, Dongshuo Yang and Chunling He
Insects 2025, 16(8), 831; https://doi.org/10.3390/insects16080831 - 11 Aug 2025
Viewed by 1837
Abstract
Megachilidae are crucial pollinators of cultivated and wild vegetation, playing a vital role in ecosystem pollination services, however, there is still a lack of information regarding the ecology and behavior of these species. This study aims to analyze the nesting ecology strategies of [...] Read more.
Megachilidae are crucial pollinators of cultivated and wild vegetation, playing a vital role in ecosystem pollination services, however, there is still a lack of information regarding the ecology and behavior of these species. This study aims to analyze the nesting ecology strategies of four sympatric species of leafcutting bees and their interactions with pollen source plants. Data were collected from April to October from 2019 to 2022 in the Jiyuan section of the Taihang Mountain National Nature Reserve (approximately 35°10′–35°25′ N, 111°55′–112°10′ E) using trap nest methods. Through the dissection of nesting tubes, their structural characteristics were revealed, and the pollen sources collected by the bees were identified. Our results showed that nesting activity of leafcutting bees lasted from May to October, with a preference for nesting tubes of 6 to 10 mm in diameter and 131 to 170 mm in length. We documented 48 plant species used as foraging sources, belonging to 17 orders, 24 families, and 33 genera, with the Fagaceae family (9 species) being predominant. The results indicate that the distinctive traits of these species—such as the asynchronous nesting periods, the types of nesting materials, the dimensions of cavities, and differential utilization of floral resources—likely play a critical role in niche differentiation among sympatric species, thereby ensuring the maintenance and persistence of Megachilidae populations in this region. Full article
(This article belongs to the Section Social Insects and Apiculture)
Show Figures

Figure 1

21 pages, 7490 KB  
Article
Exploring the Biocultural Nexus of Gastrodia elata in Zhaotong: A Pathway to Ecological Conservation and Economic Growth
by Yanxiao Fan, Menghua Tian, Defen Hu and Yong Xiong
Biology 2025, 14(7), 846; https://doi.org/10.3390/biology14070846 - 11 Jul 2025
Cited by 2 | Viewed by 2722
Abstract
Gastrodia elata, known as Tianma in Chinese, is a valuable medicinal and nutritional resource. The favorable climate of Zhaotong City, Yunnan Province, China, facilitates its growth and nurtures rich biocultural diversity associated with Tianma in the region. Local people not only cultivate [...] Read more.
Gastrodia elata, known as Tianma in Chinese, is a valuable medicinal and nutritional resource. The favorable climate of Zhaotong City, Yunnan Province, China, facilitates its growth and nurtures rich biocultural diversity associated with Tianma in the region. Local people not only cultivate Tianma as a traditional crop but have also developed a series of traditional knowledge related to its cultivation, processing, medicinal use, and culinary applications. In this study, field surveys employing ethnobotanical methods were conducted in Yiliang County, Zhaotong City, from August 2020 to May 2024, focusing on Tianma. A total of 114 key informants participated in semi-structured interviews. The survey documented 23 species (and forms) from seven families related to Tianma cultivation. Among them, there were five Gastrodia resource taxa, including one original species, and four forms. These 23 species served as either target cultivated species, symbiotic fungi (promoting early-stage Gastrodia germination), or fungus-cultivating wood. The Fagaceae family, with 10 species, was the most dominant, as its dense, starch-rich wood decomposes slowly, providing Armillaria with a long-term, stable nutrient substrate. The cultural importance (CI) statistics revealed that Castanea mollissima, G. elata, G. elata f. flavida, G. elata f. glauca, G. elata f. viridis, and Xuehong Tianma (unknown form) exhibited relatively high CI values, indicating their crucial cultural significance and substantial value within the local community. In local communities, traditionally processed dried Tianma tubers are mainly used to treat cardiovascular diseases and also serve as a culinary ingredient, with its young shoots and tubers incorporated into dishes such as cold salads and stewed chicken. To protect the essential ecological conditions for Tianma, the local government has implemented forest conservation measures. The sustainable development of the Tianma industry has alleviated poverty, protected biodiversity, and promoted local economic growth. As a distinctive plateau specialty of Zhaotong, Tianma exemplifies how biocultural diversity contributes to ecosystem services and human well-being. This study underscores the importance of biocultural diversity in ecological conservation and the promotion of human welfare. Full article
(This article belongs to the Special Issue Young Researchers in Conservation Biology and Biodiversity)
Show Figures

Figure 1

22 pages, 1210 KB  
Article
Ecological Dynamics of Forest Stands with Castanopsis argentea (Blume) A.DC. in a Mountain Ecosystem: Vegetation Structure, Diversity, and Carbon Stock Under Tourism Pressure
by Reny Sawitri, Nur Muhammad Heriyanto, I Wayan Susi Dharmawan, Rozza Tri Kwatrina, Hendra Gunawan, Raden Garsetiasih, Mariana Takandjandji, Anita Rianti, Vivin Silvaliandra Sihombing, Nina Mindawati, Pratiwi, Titi Kalima, Fenky Marsandi, Marfuah Wardani, Denny and Dodo
Land 2025, 14(6), 1187; https://doi.org/10.3390/land14061187 - 30 May 2025
Viewed by 1869
Abstract
Saninten (Castanopsis argentea (Blume) A.DC.) is a protected plant that grows in the Mount Gede Pangrango National Park (MGPNP) area in West Java. Its population is limited, and as a valuable biological resource, Castanopsis has traditionally been utilized by indigenous communities, particularly those [...] Read more.
Saninten (Castanopsis argentea (Blume) A.DC.) is a protected plant that grows in the Mount Gede Pangrango National Park (MGPNP) area in West Java. Its population is limited, and as a valuable biological resource, Castanopsis has traditionally been utilized by indigenous communities, particularly those residing in proximity to the forest. However, the expansion and development of tourism pose a potential threat to the ecosystems of C. argentea and other endemic plant species, as well as to the wildlife that depend on these habitats. Comprehensive data on biodiversity, species composition, forest structure, and carbon stock status are crucial for assessing the potential impact of future tourism development. Our investigation was conducted from November 2023 to March 2024 in a three-hectare utilization zone within the confines of the national park. The findings documented a total of 36 species across 23 distinct plant families, with the families Fagaceae, Moraceae, and Myrtaceae exhibiting the highest levels of dominance. The regeneration of stands at the study site predominantly comprised arboreal species with the most substantial carbon stocks, including C. acuminatissima (Blume) A.DC. (Riung anak), C. argentea (Saninten), and Litsea sp. (Huru). C. argentea supplies several functions within this ecosystem that are interconnected with other components. With aboveground carbon stocks reaching 560.47 tons C/ha, the forest demonstrates high sequestration potential, reinforcing the need to conserve mature stands for both biodiversity and climate benefits. Therefore, in the future, the conservation of C. argentea will benefit the maintenance of the ecosystem’s attractiveness without adversely affecting the social and cultural structures of the local population. Full article
Show Figures

Figure 1

18 pages, 3132 KB  
Article
Comparative and Phylogenetic Analysis of the Complete Chloroplast Genomes of Lithocarpus Species (Fagaceae) in South China
by Shi Shi, Ziyan Zhang, Xinhao Lin, Linjing Lu, Keyi Fu, Miaoxin He, Shiou Yih Lee, Hui Yin and Jingwei Yu
Genes 2025, 16(6), 616; https://doi.org/10.3390/genes16060616 - 22 May 2025
Cited by 1 | Viewed by 1313
Abstract
Background/Objectives: In South China, Lithocarpus species dominate mixed evergreen broadleaf forests, forming symbiotic relationships with ectomycorrhizal fungi and serving as food resources for diverse fauna, including frugivorous birds and mammals. The limited understanding of chloroplast genomes in this genus restricts our insights [...] Read more.
Background/Objectives: In South China, Lithocarpus species dominate mixed evergreen broadleaf forests, forming symbiotic relationships with ectomycorrhizal fungi and serving as food resources for diverse fauna, including frugivorous birds and mammals. The limited understanding of chloroplast genomes in this genus restricts our insights into its species diversity. This study investigates the chloroplast genome (cp genome) sequences from seven Lithocarpus species, aims to elucidate their structural variation, evolutionary relationships, and functional gene content to provide effective support for future genetic conservation and breeding efforts. Methods: We isolated total DNA from fresh leaves and sequenced the complete cp genomes of these samples. To develop a genomic resource and clarify the evolutionary relationships within Lithocarpus species, comparative chloroplast genome studies and phylogenetic investigations were performed. Results: All studied species exhibited a conserved quadripartite chloroplast genome structure, with sizes ranging from 161,495 to 163,880 bp. Genome annotation revealed 130 functional genes and a GC content of 36.72–37.76%. Codon usage analysis showed a predominance of leucine-encoding codons. Our analysis identified 322 simple sequence repeats (SSRs), which were predominantly palindromic in structure (82.3%). All eight species exhibited the same 19 SSR categories in similar proportions. Eight highly variable regions (ndhF, ycf1, trnS-trnG-exon1, trnk(exon1)-rps16(exon2), rps16(exon2), rbcL-accD, and ccsA-ndh) have been identified, which could be valuable as molecular markers in future studies on the population genetics and phylogeography of this genus. The phylogeny tree provided critical insights into the evolutionary trajectory of Fagaceae, suggesting that Lithocarpus was strongly supported as monophyletic, while Quercus was inferred to be polyphyletic, showing a significant cytonuclear discrepancy. Conclusions: We characterized and compared the chloroplast genome features across eight Lithocarpus species, followed by comprehensive phylogenetic analyses. These findings provide critical insights for resolving taxonomic uncertainties and advancing systematic research in this genus. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Adaptive Evolution in Trees)
Show Figures

Figure 1

14 pages, 6773 KB  
Article
Preparation and Characterization of a Novel Eco-Friendly Acorn-Based Wood Adhesive with High Performance
by Liu Yang, Manli Xing, Xiaobo Xue, Xi Jin, Yujie Wang, Fei Xiao, Cheng Li and Fei Wang
Forests 2025, 16(5), 853; https://doi.org/10.3390/f16050853 - 20 May 2025
Cited by 2 | Viewed by 1053
Abstract
With the concept of sustainable development gaining increasing traction, the high-value utilization of forest biomass has received growing attention. In this study, an acorn-based wood adhesive was developed using Quercus fagaceae, offering a sustainable alternative that not only supports the multifunctional use [...] Read more.
With the concept of sustainable development gaining increasing traction, the high-value utilization of forest biomass has received growing attention. In this study, an acorn-based wood adhesive was developed using Quercus fagaceae, offering a sustainable alternative that not only supports the multifunctional use of acorn shell resources, but also reduces dependence on fossil-based materials in traditional wood adhesives, a development of significant importance to the wood industry. The effects of various crosslinking agents and phenolic resin (PF) additions on the performance of the acorn-based adhesive (AS) were investigated. Among the crosslinking agents tested, isocyanate (MDI), epoxy resin E51, and trimethylolpropane diglycidyl ether (TTE), PF demonstrated the best bonding performance. The modified AS adhesive with a 30% PF addition showed the highest bonding strength (0.93 MPa) and superior water resistance. These improvements are attributed to the formation of a stable, multi-dimensional crosslinked network structure resulting from the interaction between gelatinized starch molecules and PF resin. Moreover, the AS-PF adhesive exhibited a remarkably low formaldehyde emission of 0.14 mg/L, representing a 90.67% reduction compared to the national E1 standard. The incorporation of PF also enhanced the adhesive’s mildew resistance and toughness. These findings highlight the potential of acorn-based adhesives as a sustainable alternative for applications in the wood and bamboo industries. Full article
Show Figures

Figure 1

15 pages, 1634 KB  
Article
Changes in the Species Composition and Structure of Large-Diameter Trees Along a Narrow Latitudinal Gradient in Subtropical China
by Mengxian Li, Fei Huang and Xiaorong Jia
Diversity 2025, 17(5), 309; https://doi.org/10.3390/d17050309 - 24 Apr 2025
Viewed by 1125
Abstract
In recent years, the cultivation techniques of large-diameter forests have garnered increasing attention due to their significant ecological and economic values. However, the effects of small-scale latitudinal changes on the species distribution and community composition of large-diameter trees remain poorly understood. This study [...] Read more.
In recent years, the cultivation techniques of large-diameter forests have garnered increasing attention due to their significant ecological and economic values. However, the effects of small-scale latitudinal changes on the species distribution and community composition of large-diameter trees remain poorly understood. This study aims to investigate the effects of narrow latitudinal gradients on the species composition and structure of large-diameter forests. Investigating these impacts provides critical insights for silvicultural species selection and forest structure optimization, particularly in the context of global warming, and is essential for the sustainable development of large-diameter forests. In this study, three forest communities along a small-scale latitudinal gradient in subtropical China were selected to study the community structure of large-diameter trees by analyzing species composition and species diversity. The community structure was also studied by analyzing species rank curves, the diameter structure, PCoA, MRPP, and indicator species. The results revealed that as latitude increased, the proportion of rare species rose from 43.8% in LL (low-latitude) to 63.2% in HL (high-latitude) areas, while the stem density of dominant species and the number of stems per species also increased. Additionally, species composition homogeneity decreased (based on PCoA and MRPP analysis), age-class structures became more complex, and the proportion of tropical genera gradually declined, whereas temperate genera increased. These findings indicate that small-scale latitudinal variation is a key driver of changes in the composition and structure of large-diameter forests. Currently, the northern Guangdong region is suitable for large-diameter forest development, with Fagaceae species (particularly Castanopsis and Lithocarpus) showing high potential. Specifically, Castanopsis eyrei, Castanopsis fissa, and Ternstroemia gymnanthera are well-suited for large-diameter stand cultivation in Guangdong. For mixed large-diameter forests, Machilus chinensis, Cinnamomum porrectum, and Schima superba are recommended as optimal associated species. However, as global warming progresses, the suitability of tree species for afforestation may shift, necessitating adaptive management strategies. Full article
Show Figures

Figure 1

19 pages, 3798 KB  
Article
Multimarker Analysis Reveals Ecological Islands in Hybrid Complexes: The Case of Quercus castanea × Q. crassipes Complex (Fagaceae) in Central Mexico
by Leticia Valencia-Cuevas, Fidel Ocampo-Bautista, Laura Alvarez, Silvia Marquina-Bahena, Oscar Ángel De Luna-Bonilla and Efraín Tovar-Sánchez
Diversity 2025, 17(4), 264; https://doi.org/10.3390/d17040264 - 8 Apr 2025
Viewed by 869
Abstract
Hybridization is frequent in oaks and may drive various evolutionary and ecological effects on involved plant populations and their associated species. Quercus castanea is a species of Mexican red oak that has served as a valuable model for examining the effects of hybridization [...] Read more.
Hybridization is frequent in oaks and may drive various evolutionary and ecological effects on involved plant populations and their associated species. Quercus castanea is a species of Mexican red oak that has served as a valuable model for examining the effects of hybridization events. We used a multimarker approach to characterize the morphological expression patterns and chemical production in parental and hybrid genotypes of the Q. castanea × Q. crassipes complex in a hybrid zone in central Mexico. Leaf macro- and micro-morphological (stomata) characters were measured in 27 trees previously recognized as Q. castanea, Q. crassipes, and hybrids (nine trees/taxon). The expression of foliar shape and the production of secondary metabolites and nutritional chemicals between hybrids and parental species were also evaluated. We found that hybrids exhibit a mosaic of macro- and micro-morphological characters, including the expression of intermediate, parental, and transgressive attributes. Parental species were well differentiated based on foliar shapes, with hybrids overlapping in both species, having a greater affinity with Q. crassipes. Chemical analysis also supports three chemical groups, with hybrids producing new metabolites. This multimarker approach evidences the formation of ecological islands in this hybrid oak complex in which Q. castanea is involved, a fact that has consequences at higher levels of organization in ecology. Full article
Show Figures

Figure 1

22 pages, 8647 KB  
Article
Genomic Signatures of Environmental Adaptation in Castanopsis hainanensis (Fagaceae)
by Sha Li, Xing Chen, Yang Wu and Ye Sun
Plants 2025, 14(7), 1128; https://doi.org/10.3390/plants14071128 - 5 Apr 2025
Viewed by 1088
Abstract
As an endemic Castanopsis species on Hainan Island, Castanopsis hainanensis Merr. is uniquely adapted to tropical climatic conditions and occupies a relatively narrow habitat range. Given its long generation times, limited dispersal capacity, and ecological and economic importance, understanding the genomic processes shaping [...] Read more.
As an endemic Castanopsis species on Hainan Island, Castanopsis hainanensis Merr. is uniquely adapted to tropical climatic conditions and occupies a relatively narrow habitat range. Given its long generation times, limited dispersal capacity, and ecological and economic importance, understanding the genomic processes shaping this dominant tree species is critical for conservation. Its adaptation to specialized habitats and distinct geographical distribution provide valuable insights into biodiversity challenges in island ecosystems. This study employs genome-wide single-nucleotide polymorphism (SNP) markers to investigate genetic structure, population dynamics, and adaptive variation. Analyses revealed weak genetic divergence among populations, suggesting high gene flow. Demographic reconstruction indicated a historical population bottleneck, consistent with MaxEnt modeling projections of future range contraction under climate change. Selective sweep and genotype–environment association (GEA) analyses identified SNPs strongly correlated with environmental variables, particularly moisture and temperature. Using these SNPs, we quantified the risk of non-adaptedness (RONA) across climate scenarios, pinpointing regions at heightened vulnerability. Gene Ontology (GO) enrichment highlighted the key genes involved in plant growth and stress adaptation. By integrating genomic and environmental data, this study establishes a framework for deciphering adaptive mechanisms of C. hainanensis and offers actionable insights for informed conservation strategies to mitigate climate-driven biodiversity loss. Full article
(This article belongs to the Special Issue Plant Phylogeny, Taxonomy and Evolution)
Show Figures

Figure 1

16 pages, 2926 KB  
Article
Floristic Inventory and Diversity of Urban Green Spaces in the Municipality of Assemini (Sardinia, Italy)
by Marco Sarigu, Lina Podda, Giacomo Calvia, Andrea Lallai and Gianluigi Bacchetta
Plants 2025, 14(7), 1102; https://doi.org/10.3390/plants14071102 - 2 Apr 2025
Cited by 1 | Viewed by 1599
Abstract
Urban greenery is a key component of green infrastructure, contributing to environmental sustainability and urban well-being. Between 2019 and 2020, a comprehensive inventory of ornamental flora was conducted in Assemini (Sardinia, Italy), documenting 198 vascular plant taxa, including 155 exotic, 41 native, and [...] Read more.
Urban greenery is a key component of green infrastructure, contributing to environmental sustainability and urban well-being. Between 2019 and 2020, a comprehensive inventory of ornamental flora was conducted in Assemini (Sardinia, Italy), documenting 198 vascular plant taxa, including 155 exotic, 41 native, and 2 cryptogenic species from 65 families. Among the exotic species, most were neophytes (63%), and 14% were archaeophytes. In terms of life forms, scapose phanerophytes, with a tree-like growth habit, dominated (45%), while Mediterranean and American chorotypes were the most represented, each accounting for 21%. A total of 7356 plants were recorded, comprising trees (61.3%), shrubs (32.3%), and climbers (5.7%), belonging to 90 shrub, 89 tree, and 19 climber taxa. The highest number of plants was found in “Green Areas” and “Schools”, which also exhibited the greatest biodiversity, with 136 different taxa each. The most planted species were Quercus ilex, Nerium oleander, and Olea europaea. The survey also identified 21 allergenic, 36 toxic, and 35 mechanically harmful species, primarily located in “Green Areas” and “Schools”. Biodiversity analysis using the Shannon Index revealed significant diversity, with Fabaceae, Apocynaceae, and Fagaceae emerging as the most represented families. These findings highlight the importance of plant inventories in urban green space management for sustainable planning. Well-maintained green spaces can enhance ecological resilience, improve public health, and promote social cohesion in future urban developments. Full article
Show Figures

Figure 1

Back to TopTop