Anthelmintic Activity of Traditional Medicinal Plants Used in Europe
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tumusiime, M.; Ndayisenga, F.; Ntampaka, P. Prevalence of gastrointestinal nematodes, cestodes, and protozoans of goats in Nyagatare District, Rwanda. Vet. Med. Res. Rep. 2022, 13, 339–349. [Google Scholar] [CrossRef]
- Opeto, C.D.; Angwech, H.; Ongwech, A.; Abola, B.; Odongo, S.; Malinga, G.M. Haemonchosis in small ruminants under traditional husbandry systems in Apac District, Northern Uganda. J. Parasitol. Res. 2024, 2024, 8812142. [Google Scholar] [CrossRef]
- Arsenopoulos, K.V.; Fthenakis, G.C.; Katsarou, E.I.; Papadopoulos, E. Haemonchosis: A challenging parasitic infection of sheep and goats. Animals 2021, 11, 363. [Google Scholar] [CrossRef]
- Chan, A.H.E.; Kaenkaew, C.; Pakdee, W.; Sungpradit, S.; Thaenkham, U. Emergence of dual drug-resistant strongylids in goats: First phenotypic and genotypic evidence from Ratchaburi Province, Central Thailand. BMC Vet. Res. 2025, 21, 245. [Google Scholar] [CrossRef]
- Boyko, O.O.; Brygadyrenko, V.V. The viability of Haemonchus contortus (Nematoda, Strongylida) and Strongyloides papillosus (Nematoda, Rhabditida) larvae exposed to various flavourings and source materials used in food production. Zoodiversity 2019, 53, 433–442. [Google Scholar] [CrossRef]
- Boyko, O.O.; Brygadyrenko, V.V. Nematicidal activity of aqueous tinctures of plants against larvae of the nematode Strongyloides papillosus. Trop. Biomed. 2021, 38, 85–93. [Google Scholar] [CrossRef]
- Boyko, O.; Brygadyrenko, V. Nematicidal activity of organic food additives. Diversity 2022, 14, 615. [Google Scholar] [CrossRef]
- Váradyová, Z.; Pisarčíková, J.; Babják, M.; Hodges, A.; Mravčáková, D.; Kišidayová, S.; Königová, A.; Vadlejch, J.; Várady, M. Ovicidal and larvicidal activity of extracts from medicinal-plants against Haemonchus contortus. Exp. Parasitol. 2018, 195, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Dhingra, G.; Dhakad, P.; Tanwar, S. Review on phytochemical constituents and pharmacological activities of plant Calendula officinalis Linn. Biol. Sci. 2022, 2, 216–228. [Google Scholar] [CrossRef]
- Băieş, M.-H.; Cotuţiu, V.-D.; Spînu, M.; Mathe, A.; Cozma-Petruț, A.; Bocǎneţ, V.I.; Cozma, V. Satureja hortensis L. and Calendula officinalis L., two Romanian plants, with in vivo antiparasitic potential against digestive parasites of swine. Microorganisms 2023, 11, 2980. [Google Scholar] [CrossRef] [PubMed]
- Msaada, K.; Salem, N.; Bachrouch, O.; Bousselmi, S.; Tammar, S.; Alfaify, A.; Al Sane, K.; Ben Ammar, W.; Azeiz, S.; Haj Brahim, A.; et al. Chemical composition and antioxidant and antimicrobial activities of wormwood (Artemisia absinthium L.) essential oils and phenolics. J. Chem. 2015, 2015, 804658. [Google Scholar] [CrossRef]
- Beshay, E.V.N. Therapeutic efficacy of Artemisia absinthium against Hymenolepis nana: In vitro and in vivo studies in comparison with the anthelmintic Praziquantel. J. Helminthol. 2017, 92, 298–308. [Google Scholar] [CrossRef]
- Bhat, R.R.; Rehman, M.U.; Shabir, A.; Rahman Mir, M.U.; Ahmad, A.; Khan, R.; Masoodi, M.H.; Madkhali, H.; Ganaie, M.A. Chemical composition and biological uses of Artemisia absinthium (wormwood). In Plant and Human Health. Volume 3. Pharmacology and Therapeutic Uses; Ozturk, M., Hakeem, K.R., Eds.; Springer: Cham, Switzerland, 2019; pp. 37–63. [Google Scholar] [CrossRef]
- Al-Snafi, A.E. Antiparasitic, antiprotozoal, molluscicidal and insecticidal activity of medicinal plants (Part 2)—Plant based review. Sch. Acad. J. Pharm. 2016, 5, 194–207. [Google Scholar] [CrossRef]
- Shawon, S.I.; Reyda, R.N.; Qais, N. Traditional uses and modern pharmacological investigations of Bidens frondosa and Bidens tripartita. In The Genus Bidens. Chemistry and Pharmacology; Bibi, Y., Zahara, K., Qayyum, A., Jenks, M.A., Eds.; Springer: Singapore, 2025; pp. 275–289. [Google Scholar] [CrossRef]
- Romero, M.D.C.; Valero, A.; Martín-Sánchez, J.; Navarro-Moll, M.C. Activity of Matricaria chamomilla essential oil against anisakiasis. Phytomedicine 2012, 19, 520–523. [Google Scholar] [CrossRef]
- Akram, W.; Ahmed, S.; Rihan, M.; Arora, S.; Khalid, M.; Ahmad, S.; Ahmad, F.; Haque, S.; Vashishth, R. An updated comprehensive review of the therapeutic properties of chamomile (Matricaria chamomilla L.). Int. J. Food Prop. 2023, 27, 133–164. [Google Scholar] [CrossRef]
- Baranauskienė, R.; Kazernavičiūtė, R.; Pukalskienė, M.; Maždžierienė, R.; Venskutonis, P.R. Agrorefinery of Tanacetum vulgare L. into valuable products and evaluation of their antioxidant properties and phytochemical composition. Ind. Crops Prod. 2014, 60, 113–122. [Google Scholar] [CrossRef]
- Di Napoli, A.; Zucchetti, P. A comprehensive review of the benefits of Taraxacum officinale on human health. Bull. Natl. Res. Cent. 2021, 45, 110. [Google Scholar] [CrossRef]
- Atwa, M.T.M.; Abd-Elrazek, A.M.; Salem, N.I.S. Dandelion (Taraxacum officinale) improves the therapeutic efficiency of Praziquantel in experimental schistosomiasis. Acta Parasitol. 2022, 67, 773–783. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, Z.; Wu, S.-C. Health benefits of Silybum marianum: Phytochemistry, pharmacology, and applications. J. Agric. Food Chem. 2020, 68, 11644–11664. [Google Scholar] [CrossRef]
- Taghipour, A.; Ghaffarifar, F.; Horton, J.; Dalimi, A.; Sharifi, Z. Silybum marianum ethanolic extract: In vitro effects on protoscolices of Echinococcus granulosus G1 strain with emphasis on other Iranian medicinal plants. Trop. Med. Health 2021, 49, 71. [Google Scholar] [CrossRef]
- Moharram, F.A.-E.; Marzouk, M.S.; El Dib, R.A.M.; El-Shenawy, S.M.; Abdel-Rahman, R.F.; Ibrahim, R.R. Hepatoprotective, gastroprotective, antioxidant activity and phenolic constituents of Quercus robur leaves. J. Pharm. Sci. Res. 2015, 7, 1055–1065. [Google Scholar]
- Fakour, S.; Meshgi, B. Evaluation of the anthelmintic effects of Quercus robur extract against ovine gastrointestinal nematodes. J. Vet. Res. 2016, 71, 389–394. [Google Scholar]
- Şöhretoğlu, D.; Renda, G. The polyphenolic profile of oak (Quercus) species: A phytochemical and pharmacological overview. Phytochem. Rev. 2020, 19, 1379–1426. [Google Scholar] [CrossRef]
- Wakabayashi, K.A.L.; de Melo, N.I.; Aguiar, D.P.; de Oliveira, P.F.; Groppo, M.; da Silva Filho, A.A.; Rodrigues, V.; Cunha, W.R.; Tavares, D.C.; Magalhães, L.G.; et al. Anthelmintic effects of the essential oil of fennel (Foeniculum vulgare Mill., Apiaceae) against Schistosoma mansoni. Chem. Biodivers. 2015, 12, 1105–1114. [Google Scholar] [CrossRef] [PubMed]
- Selvaraju, A.; Kaviya, S.; Dhanraj, K. Manoj phytochemical analysis and anthelmintic potential of Nigella sativa against the trematode, Cotylophoron cotylophorum. J. Pharmacogn. Phytochem. 2019, 8, 3161–3166. [Google Scholar]
- Noreen, S.; Tufail, T.; Badar Ul Ain, H.; Awuchi, C.G. Pharmacological, nutraceutical, functional and therapeutic properties of fennel (Foeniculum vulgare). Int. J. Food Prop. 2023, 26, 915–927. [Google Scholar] [CrossRef]
- Zajac, A.M.; Conboy, G.A. Veterinary Clinical Parasitology, 8th ed.; Willey-Blackwell: Hoboken, NJ, USA, 2012; 354p. [Google Scholar]
- Van Wyk, A.; Cabaret, J.; Michael, L.M. Morphological identifcation of nematode larvae of small ruminants and cattle simplifed. Vet. Parasitol. 2011, 119, 277–306. [Google Scholar] [CrossRef] [PubMed]
- Van Wyk, J.A.; Mayhew, E. Morphological identifcation of parasitic nematode infective larvae of small ruminants and cattle: A practical lab guide. Onderstepoort J. Vet. Res. 2013, 80, a539. [Google Scholar] [CrossRef]
- Boyko, O.O.; Brygadyrenko, V.V. Nematocidial activity of aqueous solutions of plants of the families Cupressaceae, Rosaceae, Asteraceae, Fabaceae, Cannabaceae and Apiaceae. Biosyst. Divers. 2019, 27, 227–232. [Google Scholar] [CrossRef]
- Gugosyan, Y.A.; Boyko, O.O.; Brygadyrenko, V.V. Morphological variation of four species of Strongyloides (Nematoda, Rhabditida) parasitising various mammal species. Biosyst. Divers. 2019, 27, 85–98. [Google Scholar] [CrossRef]
- Tariq, K.A.; Chishti, M.Z.; Ahmad, F.; Shawl, A.S. Anthelmintic efficacy of Achillea millifolium against gastrointestinal nematodes of sheep: In vitro and in vivo studies. J. Helminthol. 2008, 82, 227–233. [Google Scholar] [CrossRef]
- Ali, S.I.; Gopalakrishnan, B.; Venkatesalu, V. Pharmacognosy, phytochemistry and pharmacological properties of Achillea millefolium L.: A review. Phytother. Res. 2017, 31, 1140–1161. [Google Scholar] [CrossRef]
- Bashir, S.; Noor, A.; Zargar, M.I.; Siddiqui, N.A. Ethnopharmacology, phytochemistry, and biological activities of Achillea millefolium: A comprehensive review. In Edible Plants in Health and Diseases. Volume II: Phytochemical and Pharmacological Properties; Masoodi, M.H., Rehman, M.U., Eds.; Springer: Singapore, 2022; pp. 457–481. [Google Scholar] [CrossRef]
- Shyam, M.; Sabina, E.P. Harnessing the power of Arctium lappa root: A review of its pharmacological properties and therapeutic applications. Nat. Prod. Bioprospecting 2024, 14, 49. [Google Scholar] [CrossRef]
- Maleki, E.; Yegdaneh, A.; Akbari, S.; Sedigheh, S. Anti-leishmanial effect of the hydroalcoholic extract of the leaves, roots and seeds of Arctium lappa. Avicenna J. Phytomed. 2025, 15, 1030–1046. [Google Scholar] [CrossRef]
- Buza, V.; Cătană, L.; Andrei, S.M.; Ștefănuț, L.C.; Răileanu, Ș.; Matei, M.C.; Vlasiuc, I.; Cernea, M. In vitro anthelmintic activity assessment of six medicinal plant aqueous extracts against donkey strongyles. J. Helminthol. 2020, 94, e147. [Google Scholar] [CrossRef] [PubMed]
- Tariq, K.A.; Chishti, M.Z.; Ahmad, F.; Shawl, A.S. Anthelmintic activity of extracts of Artemisia absinthium against ovine nematodes. Vet. Parasitol. 2008, 160, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Zazharskyi, V.V.; Brygadyrenko, V.V.; Zazharska, N.M.; Borovik, I.V.; Boyko, O.O.; Kulishenko, O.M.; Davydenko, P.O. Antibacterial and nematicidal activities of extracts from plants of the Asteraceae family. Regul. Mech. Biosyst. 2024, 15, 587–593. [Google Scholar] [CrossRef]
- Buza, V.; Matei, M.-C.; Ștefănuț, L.C. Inula helenium: A literature review on ethnomedical uses, bioactive compounds and pharmacological activities. Lucr. Ştiinţ. Ser. Med. Vet. 2020, 63, 53–59. [Google Scholar]
- Hajaji, S.; Alimi, D.; Jabri, M.A.; Abuseir, S.; Gharbi, M.; Akkari, H. Anthelmintic activity of Tunisian chamomile (Matricaria recutita L.) against Haemonchus contortus. J. Helminthol. 2018, 92, 168–177. [Google Scholar] [CrossRef]
- Kļaviņa, A.; Keidāne, D.; Ganola, K.; Lūsis, I.; Šukele, R.; Bandere, D.; Kovalcuka, L. Anthelmintic activity of Tanacetum vulgare L. (leaf and flower) extracts against Trichostrongylidae nematodes in sheep in vitro. Animals 2023, 13, 2176. [Google Scholar] [CrossRef]
- Gul, V.; Huseynova, A.; Maharramov, S. Anthelmintic effect of essential oil and extract produced from Salvia sclarea L. (Lamiaceae) on nematodes living in gastrointestinal system of sheep. Ann. Med. Res. 2021, 27, 252–258. [Google Scholar] [CrossRef]
- Štrbac, F.; Krnjajić, S.; Stojanović, D.; Ratajac, R.; Simin, N.; Orčić, D.; Rinaldi, L.; Ciccone, E.; Maurelli, M.P.; Cringoli, G.; et al. In vitro and in vivo anthelmintic efficacy of peppermint (Mentha x piperita L.) essential oil against gastrointestinal nematodes of sheep. Front. Vet. Sci. 2023, 10, 1232570. [Google Scholar] [CrossRef]
- Štrbac, F.; Krnjajić, S.; Maurelli, M.P.; Stojanović, D.; Simin, N.; Orčić, D.; Ratajac, R.; Petrović, K.; Knežević, G.; Cringoli, G.; et al. A potential anthelmintic phytopharmacological source of Origanum vulgare (L.) essential oil against gastrointestinal nematodes of sheep. Animals 2023, 13, 45. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.E.; Benincasa, B.I.; Fachin, A.L.; França, S.C.; Contini, S.S.H.T.; Chagas, A.C.S.; Beleboni, R.O. Thymus vulgaris L. essential oil and its main component thymol: Anthelmintic effects against Haemonchus contortus from sheep. Vet. Parasitol. 2016, 228, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Boyko, O.; Brygadyrenko, V. Survival of nematode larvae after treatment with eugenol, isoeugenol, thymol, and carvacrol. Front. Biosci Elite Ed. 2023, 15, 25. [Google Scholar] [CrossRef]
- Boyko, O.O.; Brygadyrenko, V.V. Sustainability of pasture ecosystems: The use of plant-based mixtures in the fight against helminths. Biosyst. Divers. 2025, 33, e2532. [Google Scholar] [CrossRef]
- Zazharskyi, V.V.; Brygadyrenko, V.V.; Zazharska, N.M.; Boyko, O.O.; Borovik, I.V.; Kulishenko, O.M.; Davydenko, P.O. Antibacterial and nematocidal activities of extracts of plants of the families Poaceae, Cyperaceae, Asparagaceae, Convolvulaceae, Crassulaceae, Rosaceae, Lamiaceae, and Boraginaceae. Regul. Mech. Biosyst. 2025, 16, e25045. [Google Scholar] [CrossRef]
- Maestrini, M.; Molento, M.B.; Forzan, M.; Perrucci, S. In vitro anthelmintic activity of an aqueous extract of Glycyrrhiza glabra and of glycyrrhetinic acid against gastrointestinal nematodes of small ruminants. Parasite 2021, 28, 64. [Google Scholar] [CrossRef]
- Mir, F.H.; Tanveer, S.; Para, B.A. Evaluation of anthelmintic efficacy of ethanolic leaf extract of Juglans regia L. on Ascaridia galli: A comprehensive in vitro and in vivo study. Vet. Res. Commun. 2024, 48, 2321–2330. [Google Scholar] [CrossRef]
- Al-Shaibani, I.R.M.; Phulan, M.S.; Arijo, A.; Qureshi, T.A.; Kumbher, A.M. Anthelmintic activity of Nigella sativa L., seeds on gastrointestinal nematodes of sheep. Pak. J. Nematol. 2008, 26, 207–218. [Google Scholar]
| Plant | Nematode Species | Mortality 1 of Nematode Larvae in Control, % | Mortality of Nematode Larvae in 0.01% Solution, % | Mortality of Nematode Larvae in 0.1% Solution, % | Mortality of Nematode Larvae in 1.0% Solution, % |
|---|---|---|---|---|---|
| Achillea millefolium L. | L1–2 of S. papillosus | 18.1 ± 3.3 a | 18.0 ± 4.2 a | 20.5 ± 0.9 a | 33.7 ± 3.3 b |
| (Asteraceae) | L3 of S. papillosus | 15.2 ± 3.2 a | 14.5 ± 2.7 a | 14.3 ± 2.5 a | 15.0 ± 4.7 a |
| Inflorescences | L3 of H. contortus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
| Arctium lappa L. | L1–2 of S. papillosus | 11.3 ± 2.4 a | 14.2 ± 9.0 a | 12.3 ± 3.5 a | 16.4 ± 3.0 a |
| (Asteraceae) | L3 of S. papillosus | 11.2 ± 1.3 a | 11.7 ± 5.2 a | 11.5 ± 7.1 a | 12.4 ± 2.0 a |
| Rhizomes | L3 of H. contortus | 0.0 ± 0.0 a | 2.4 ± 5.3 a | 2.0 ± 4.5 a | 2.5 ± 5.6 a |
| Artemisia absinthium L. | L1–2 of S. papillosus | 1.5 ± 3.4 a | 0.0 ± 0.0 a | 1.8 ± 4.1 a | 85.5 ± 16.5 b |
| (Asteraceae) | L3 of S. papillosus | 14.1 ± 4.1 a | 15.6 ± 6.7 a | 14.5 ± 3.2 a | 19.4 ± 6.7 a |
| Aboveground part | L3 of H. contortus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
| Bidens tripartita L. | L1–2 of S. papillosus | 9.4 ± 6.3 a | 13.8 ± 13.0 a | 13.6 ± 11.6 a | 16.7 ± 12.4 a |
| (Asteraceae) | L3 of S. papillosus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
| Aboveground part | L3 of H. contortus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
| Calendula officinalis L. | L1–2 of S. papillosus | 6.3 ± 0.6 a | 5.4 ± 2.5 a | 6.3 ± 0.9 a | 32.2 ± 11.1 b |
| (Asteraceae) | L3 of S. papillosus | 11.7 ± 4.6 a | 10.4 ± 5.5 a | 13.9 ± 4.1 a | 14.3 ± 2.8 a |
| Inflorescences | L3 of H. contortus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 8.7 ± 8.1 a |
| Cynara cardunculus | L1–2 of S. papillosus | 17.0 ± 3.3 a | 18.1 ± 5.8 a | 18.3 ± 7.2 a | 17.1 ± 1.4 a |
| var. scolymus L. (Asteraceae) | L3 of S. papillosus | 14.1 ± 2.0 a | 14.1 ± 9.4 a | 15.7 ± 10.6 a | 16.1 ± 3.2 a |
| Inflorescences | L3 of H. contortus | 0.0 ± 0.0 a | 3.3 ± 4.6 a | 3.8 ± 5.6 a | 2.9 ± 6.4 a |
| Echinacea purpurea (L.) | L1–2 of S. papillosus | 6.3 ± 0.6 a | 7.2 ± 3.3 a | 31.8 ± 3.5 a | 55.3 ± 7.7 b |
| Moench (Asteraceae) | L3 of S. papillosus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 3.3 ± 7.5 a |
| Inflorescences | L3 of H. contortus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 23.3 ± 13.7 b |
| Echinacea purpurea (L.) | L1–2 of S. papillosus | 6.3 ± 0.6 a | 6.5 ± 1.2 a | 5.2 ± 0.6 a | 8.3 ± 2.3 a |
| Moench (Asteraceae) | L3 of S. papillosus | 2.2 ± 5.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
| Rhizomes | L3 of H. contortus | 3.3 ± 7.5 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 2.9 ± 6.4 a |
| Helichrysum arenarium (L.) | L1–2 of S. papillosus | 2.2 ± 5.0 a | 4.3 ± 6.0 a | 25.5 ± 12.8 b | 32.2 ± 13.5 b |
| Moench (Asteraceae) | L3 of S. papillosus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
| Inflorescences | L3 of H. contortus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
| Inula helenium L. | L1–2 of S. papillosus | 20.7 ± 2.0 a | 18.5 ± 3.7 a | 55.5 ± 10.1 b | 67.7 ± 1.0 c |
| (Asteraceae) | L3 of S. papillosus | 20.8 ± 1.8 a | 21.9 ± 5.4 a | 22.2 ± 2.9 a | 42.8 ± 4.3 b |
| Rhizomes | L3 of H. contortus | 0.0 ± 0.0 a | 6.2 ± 9.1 a | 11.5 ± 11.2 a | 57.2 ± 19.1 b |
| Matricaria chamomilla L. | L1–2 of S. papillosus | 2.2 ± 5.0 a | 33.6 ± 8.0 b | 40.4 ± 4.4 b | 77.6 ± 12.8 c |
| (Asteraceae) | L3 of S. papillosus | 2.0 ± 4.5 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
| Inflorescences | L3 of H. contortus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
| Silybum marianum (L.) | L1–2 of S. papillosus | 17.0 ± 3.3 a | 16.7 ± 10.1 a | 16.3 ± 7.3 a | 16.4 ± 3.6 a |
| Gaertn. (Asteraceae) | L3 of S. papillosus | 14.1 ± 2.0 a | 16.9 ± 7.5 a | 16.5 ± 3.3 a | 16.0 ± 2.3 a |
| Seeds | L3 of H. contortus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
| Tanacetum vulgare L. | L1–2 of S. papillosus | 15.1 ± 3.9 a | 19.2 ± 8.3 ab | 25.5 ± 7.1 ab | 26.2 ± 2.4 b |
| (Asteraceae) | L3 of S. papillosus | 0.0 ± 0.0 a | 6.6 ± 6.0 ab | 8.7 ± 5.9 ab | 10.4 ± 6.4 b |
| Inflorescences | L3 of H. contortus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
| Taraxacum officinale (L.) Webb ex F.H.Wigg. | L1–2 of S. papillosus | 7.3 ± 1.0 a | 7.2 ± 1.2 a | 7.3 ± 1.3 a | 16.2 ± 4.4 b |
| (Asteraceae) | L3 of S. papillosus | 13.3 ± 4.5 a | 10.2 ± 7.8 a | 16.9 ± 4.1 a | 16.4 ± 4.6 a |
| Roots | L3 of H. contortus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 5.6 ± 7.9 a |
| Tragopogon porrifolius L. | L1–2 of S. papillosus | 21.5 ± 3.4 ab | 19.7 ± 6.4 a | 22.8 ± 12.5 ab | 30.5 ± 8.7 b |
| (Asteraceae) | L3 of S. papillosus | 17.0 ± 3.2 a | 17.7 ± 11.7 a | 17.4 ± 16.1 a | 15.0 ± 14.6 a |
| Rhizomes | L3 of H. contortus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
| Plant | Nematode Species | Mortality 1 of Nematode Larvae in Control, % | Mortality of Nematode Larvae in 0.01% Solution, % | Mortality of Nematode Larvae in 0.1% Solution, % | Mortality of Nematode Larvae in 1.0% Solution, % |
|---|---|---|---|---|---|
| Agrimonia eupatoria L. | L1–2 of S. papillosus | 24.5 ± 5.6 a | 23.5 ± 12.5 a | 23.8 ± 12.7 a | 27.2 ± 2.7 a |
| (Rosaceae) | L3 of S. papillosus | 0.0 ± 0.0 a | 7.4 ± 8.0 a | 6.7 ± 6.2 a | 8.3 ± 8.6 a |
| Aboveground part | L3 of H. contortus | 2.5 ± 5.6 a | 3.1 ± 4.3 a | 4.2 ± 5.8 a | 4.0 ± 8.9 a |
| Fragaria vesca L. | L1–2 of S. papillosus | 21.9 ± 8.0 a | 22.1 ± 7.8 a | 24.6 ± 4.0 a | 18.1 ± 12.3 a |
| (Rosaceae) | L3 of S. papillosus | 7.3 ± 10.1 a | 8.7 ± 8.3 a | 9.5 ± 10.4 a | 9.0 ± 12.4 a |
| Leaves | L3 of H. contortus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
| Sanguisorba officinalis L. | L1–2 of S. papillosus | 17.0 ± 3.3 a | 17.8 ± 3.9 a | 17.6 ± 5.2 a | 15.4 ± 3.3 a |
| (Rosaceae) | L3 of S. papillosus | 14.1 ± 2.0 a | 17.8 ± 8.1 a | 16.8 ± 14.3 a | 17.8 ± 2.3 a |
| Rhizomes | L3 of H. contortus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
| Leonurus cardiaca L. | L1–2 of S. papillosus | 11.3 ± 2.4 a | 15.2 ± 8.8 a | 14.8 ± 6.0 a | 16.1 ± 3.0 a |
| (Lamiaceae) | L3 of S. papillosus | 11.2 ± 1.3 a | 16.4 ± 6.2 ab | 16.8 ± 11.0 ab | 19.1 ± 2.5 b |
| Aboveground part | L3 of H. contortus | 0.0 ± 0.0 a | 6.3 ± 4.9 a | 5.5 ± 5.6 a | 6.7 ± 6.2 a |
| Mentha × piperita L. | L1–2 of S. papillosus | 8.3 ± 11.8 a | 0.0 ± 0.0 a | 7.8 ± 7.5 a | 39.4 ± 17.1 b |
| (Lamiaceae) | L3 of S. papillosus | 4.0 ± 8.9 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
| Aboveground part | L3 of H. contortus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
| Origanum vulgare L. | L1–2 of S. papillosus | 21.5 ± 3.4 a | 19.9 ± 12.2 a | 20.4 ± 12.2 a | 24.1 ± 6.7 a |
| (Lamiaceae) | L3 of S. papillosus | 17.0 ± 3.2 a | 18.9 ± 6.8 a | 17.9 ± 9.8 a | 23.5 ± 6.1 a |
| Aboveground part | L3 of H. contortus | 0.0 ± 0.0 a | 5.1 ± 7.0 a | 6.4 ± 7.5 a | 5.6 ± 7.9 a |
| Salvia officinalis L. | L1–2 of S. papillosus | 1.8 ± 4.1 a | 1.5 ± 3.4 a | 51.4 ± 10.7 b | 80.4 ± 7.0 c |
| (Lamiaceae) | L3 of S. papillosus | 12.9 ± 5.1 ab | 9.6 ± 6.4 ab | 10.8 ± 3.2 a | 20.7 ± 4.8 b |
| Aboveground part | L3 of H. contortus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 17.9 ± 6.0 a |
| Thymus vulgaris L. | L1–2 of S. papillosus | 2.2 ± 5.0 a | 2.9 ± 6.4 a | 6.2 ± 8.5 a | 5.4 ± 7.4 a |
| (Lamiaceae) | L3 of S. papillosus | 15.2 ± 2.6 ab | 11.3 ± 1.8 a | 12.3 ± 1.4 a | 23.9 ± 5.6 b |
| Aboveground part | L3 of H. contortus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
| Glycyrrhiza glabra L. | L1–2 of S. papillosus | 1.4 ± 3.2 a | 2.8 ± 4.2 a | 4.4 ± 4.0 a | 21.9 ± 9.5 b |
| (Fabaceae) | L3 of S. papillosus | 4.0 ± 8.9 a | 8.4 ± 8.5 a | 9.8 ± 9.4 a | 6.7 ± 6.2 a |
| Rhizomes | L3 of H. contortus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 6.2 ± 8.5 a |
| Hedysarum alpinum L. | L1–2 of S. papillosus | 15.4 ± 10.2 a | 19.7 ± 10.1 a | 25.1 ± 11.9 a | 25.6 ± 4.7 a |
| (Fabaceae) | L3 of S. papillosus | 4.7 ± 6.5 a | 6.8 ± 6.8 a | 6.7 ± 6.2 a | 6.9 ± 9.6 a |
| Rhizomes | L3 of H. contortus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
| Trifolium pratense L. | L1–2 of S. papillosus | 15.7 ± 4.3 a | 20.5 ± 7.5 ab | 28.7 ± 7.7 b | 35.0 ± 4.1 b |
| (Fabaceae) | L3 of S. papillosus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
| Inflorescences | L3 of H. contortus | 0.0 ± 0.0 a | 1.4 ± 3.2 a | 1.3 ± 2.8 a | 1.3 ± 2.8 a |
| Plant | Nematode Species | Mortality 1 of Nematode Larvae in Control, % | Mortality of Nematode Larvae in 0.01% Solution, % | Mortality of Nematode Larvae in 0.1% Solution, % | Mortality of Nematode Larvae in 1.0% Solution, % |
|---|---|---|---|---|---|
| Populus nigra L. | L1–2 of S. papillosus | 2.4 ± 2.0 a | 25.2 ± 7.0 b | 90.0 ± 1.9 c | 93.2 ± 1.6 c |
| (Salicaceae) | L3 of S. papillosus | 13.5 ± 3.0 a | 12.4 ± 3.9 a | 11.6 ± 3.6 a | 25.5 ± 5.3 b |
| Buds | L3 of H. contortus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 2.2 ± 5.0 a |
| Populus tremula L. | L1–2 of S. papillosus | 11.6 ± 3.4 a | 15.0 ± 5.1 ab | 16.6 ± 5.5 ab | 24.9 ± 5.1 b |
| (Salicaceae) | L3 of S. papillosus | 9.3 ± 3.1 a | 9.7 ± 2.4 a | 9.3 ± 3.6 a | 20.4 ± 4.4 b |
| Bark | L3 of H. contortus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 4.8 ± 4.6 a |
| Salix alba L. | L1–2 of S. papillosus | 7.3 ± 1.0 a | 7.4 ± 2.1 a | 5.1 ± 1.0 a | 7.1 ± 1.3 a |
| (Salicaceae) | L3 of S. papillosus | 13.6 ± 2.8 a | 13.1 ± 2.6 a | 12.7 ± 4.4 a | 28.3 ± 3.7 b |
| Bark | L3 of H. contortus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
| Quercus robur L. | L1–2 of S. papillosus | 6.3 ± 0.6 ab | 6.2 ± 0.2 ab | 5.5 ± 1.3 a | 10.9 ± 3.8 b |
| (Fagaceae) | L3 of S. papillosus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 9.2 ± 5.5 b |
| Bark | L3 of H. contortus | 2.5 ± 5.6 a | 2.2 ± 5.0 a | 2.0 ± 4.5 a | 2.9 ± 6.4 a |
| Betula pendula Roth | L1–2 of S. papillosus | 17.0 ± 3.3 a | 17.2 ± 5.2 a | 17.9 ± 9.0 a | 17.5 ± 1.9 a |
| (Betulaceae) | L3 of S. papillosus | 14.1 ± 2.0 a | 14.9 ± 8.9 a | 15.7 ± 4.0 a | 14.9 ± 2.0 a |
| Leaves | L3 of H. contortus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
| Betula pendula Roth | L1–2 of S. papillosus | 10.2 ± 6.1 a | 8.8 ± 8.4 a | 10.5 ± 6.4 a | 11.0 ± 10.1 a |
| (Betulaceae) | L3 of S. papillosus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
| Buds | L3 of H. contortus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
| Juglans regia L. | L1–2 of S. papillosus | 21.9 ± 8.0 a | 19.5 ± 6.3 a | 19.9 ± 5.7 a | 19.1 ± 5.7 a |
| (Juglandaceae) | L3 of S. papillosus | 5.0 ± 7.5 a | 6.7 ± 6.2 a | 7.4 ± 9.1 a | 9.8 ± 9.9 a |
| Leaves | L3 of H. contortus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
| Frangula alnus Mill. | L1–2 of S. papillosus | 21.5 ± 3.4 a | 22.9 ± 12.1 a | 19.4 ± 4.8 a | 20.3 ± 2.2 a |
| (Rhamnaceae) | L3 of S. papillosus | 17.0 ± 3.2 a | 16.7 ± 8.9 a | 19.3 ± 12.3 a | 17.3 ± 5.4 a |
| Fruits | L3 of H. contortus | 0.0 ± 0.0 a | 2.6 ± 3.6 a | 3.5 ± 4.9 a | 4.3 ± 6.0 a |
| Plant | Nematode Species | Mortality 1 of Nematode Larvae in Control, % | Mortality of Nematode Larvae in 0.01% Solution, % | Mortality of Nematode Larvae in 0.1% Solution, % | Mortality of Nematode Larvae in 1.0% Solution, % |
|---|---|---|---|---|---|
| Acorus calamus L. | L1–2 of S. papillosus | 24.5 ± 5.6 a | 29.5 ± 6.7 a | 26.8 ± 8.1 a | 31.2 ± 6.8 a |
| (Acoraceae) | L3 of S. papillosus | 0.0 ± 0.0 a | 3.7 ± 5.2 a | 1.4 ± 3.2 a | 1.7 ± 3.7 a |
| Rhizomes | L3 of H. contortus | 2.5 ± 5.6 a | 5.2 ± 7.1 a | 9.0 ± 8.5 a | 6.1 ± 5.8 a |
| Foeniculum vulgare Mill. | L1–2 of S. papillosus | 21.9 ± 8.0 a | 20.1 ± 5.9 a | 22.0 ± 10.5 a | 19.8 ± 3.4 a |
| (Apiaceae) | L3 of S. papillosus | 5.3 ± 7.7 a | 11.7 ± 9.3 a | 10.2 ± 9.9 a | 11.7 ± 7.2 a |
| Fruits | L3 of H. contortus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
| Valeriana officinalis L. | L1–2 of S. papillosus | 6.3 ± 0.6 a | 8.1 ± 0.9 a | 8.9 ± 2.2 a | 32.4 ± 4.1 b |
| (Caprifoliaceae) | L3 of S. papillosus | 2.9 ± 6.4 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 10.6 ± 10.1 a |
| Rhizomes | L3 of H. contortus | 10.7 ± 15.3 a | 2.9 ± 6.4 a | 2.5 ± 5.6 a | 12.6 ± 12.6 a |
| Cucurbita pepo L. | L1–2 of S. papillosus | 1.4 ± 3.2 a | 0.8 ± 1.9 a | 1.6 ± 2.2 a | 11.5 ± 3.4 b |
| (Cucurbitaceae) | L3 of S. papillosus | 9.3 ± 3.1 ab | 6.5 ± 5.2 a | 6.1 ± 5.6 a | 15.0 ± 3.4 b |
| Seeds | L3 of H. contortus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
| Cucurbita pepo L. | L1–2 of S. papillosus | 6.3 ± 0.6 a | 6.2 ± 1.3 a | 6.6 ± 1.4 a | 7.0 ± 1.3 a |
| (Cucurbitaceae) | L3 of S. papillosus | 9.3 ± 3.1 a | 9.8 ± 2.9 a | 11.9 ± 3.3 ab | 16.1 ± 2.5 b |
| Pericarp | L3 of H. contortus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 6.4 ± 5.9 a |
| Equisetum arvense L. | L1–2 of S. papillosus | 21.5 ± 3.4 a | 20.8 ± 10.2 a | 23.0 ± 7.1 a | 22.2 ± 3.4 a |
| (Equisetaceae) | L3 of S. papillosus | 17.0 ± 3.2 a | 15.1 ± 9.8 a | 16.3 ± 11.3 a | 18.0 ± 6.8 a |
| Aboveground part | L3 of H. contortus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
| Vaccinium vitis-idaea L. | L1–2 of S. papillosus | 10.2 ± 6.1 a | 12.2 ± 8.9 a | 12.7 ± 7.3 a | 11.2 ± 6.9 a |
| (Ericaceae) | L3 of S. papillosus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
| Aboveground part | L3 of H. contortus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
| Centaurium erythraea Rafn | L1–2 of S. papillosus | 1.4 ± 3.2 a | 3.5 ± 5.2 a | 4.1 ± 3.9 a | 22.2 ± 1.7 b |
| (Gentianaceae) | L3 of S. papillosus | 9.9 ± 4.4 a | 9.6 ± 4.5 a | 9.5 ± 3.1 a | 30.6 ± 2.5 b |
| Aboveground part | L3 of H. contortus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
| Hypericum perforatum L. | L1–2 of S. papillosus | 15.2 ± 9.4 a | 16.7 ± 6.4 a | 14.4 ± 9.4 a | 17.5 ± 16.8 a |
| (Hypericaceae) | L3 of S. papillosus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
| Aboveground part | L3 of H. contortus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
| Althaea officinalis L. | L1–2 of S. papillosus | 2.2 ± 5.0 a | 13.5 ± 8.0 ab | 24.2 ± 16.0 b | 44.3 ± 26.4 b |
| (Malvaceae) | L3 of S. papillosus | 21.2 ± 4.3 a | 18.7 ± 5.8 a | 20.4 ± 3.9 a | 22.9 ± 1.9 a |
| Rhizomes | L3 of H. contortus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
| Linaria vulgaris Mill. | L1–2 of S. papillosus | 20.7 ± 2.0 a | 19.6 ± 4.9 a | 20.0 ± 5.0 a | 19.6 ± 2.4 a |
| (Plantaginaceae) | L3 of S. papillosus | 20.8 ± 1.8 a | 20.5 ± 4.2 a | 19.8 ± 6.0 a | 22.7 ± 4.3 a |
| Aboveground part | L3 of H. contortus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
| Plantago major L. | L1–2 of S. papillosus | 20.7 ± 2.0 a | 22.2 ± 3.5 a | 19.5 ± 3.5 a | 21.9 ± 4.2 a |
| (Plantaginaceae) | L3 of S. papillosus | 20.8 ± 1.8 a | 20.4 ± 7.0 a | 21.5 ± 6.9 a | 20.9 ± 6.7 a |
| Leaves | L3 of H. contortus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
| Zea mays L. | L1–2 of S. papillosus | 13.7 ± 4.7 a | 13.7 ± 3.7 a | 11.1 ± 3.5 a | 11.4 ± 7.6 a |
| (Poaceae) | L3 of S. papillosus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 5.4 ± 7.4 a |
| Stamens | L3 of H. contortus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
| Polygonum aviculare L. | L1–2 of S. papillosus | 13.7 ± 4.7 a | 14.9 ± 2.2 a | 11.7 ± 2.2 a | 15.5 ± 3.0 a |
| (Polygonaceae) | L3 of S. papillosus | 21.0 ± 4.7 a | 17.5 ± 4.9 a | 20.3 ± 5.6 a | 24.1 ± 3.3 a |
| Aboveground part | L3 of H. contortus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
| Nigella sativa L. | L1–2 of S. papillosus | 2.2 ± 5.0 a | 0.0 ± 0.0 a | 2.5 ± 5.6 a | 6.9 ± 9.6 a |
| (Ranunculaceae) | L3 of S. papillosus | 17.4 ± 2.3 a | 17.8 ± 5.2 a | 17.5 ± 5.1 a | 19.7 ± 2.9 a |
| Seeds | L3 of H. contortus | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 2.5 ± 3.4 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boyko, O.; Brygadyrenko, V. Anthelmintic Activity of Traditional Medicinal Plants Used in Europe. Biology 2025, 14, 1636. https://doi.org/10.3390/biology14121636
Boyko O, Brygadyrenko V. Anthelmintic Activity of Traditional Medicinal Plants Used in Europe. Biology. 2025; 14(12):1636. https://doi.org/10.3390/biology14121636
Chicago/Turabian StyleBoyko, Olexandra, and Viktor Brygadyrenko. 2025. "Anthelmintic Activity of Traditional Medicinal Plants Used in Europe" Biology 14, no. 12: 1636. https://doi.org/10.3390/biology14121636
APA StyleBoyko, O., & Brygadyrenko, V. (2025). Anthelmintic Activity of Traditional Medicinal Plants Used in Europe. Biology, 14(12), 1636. https://doi.org/10.3390/biology14121636

