Filling a Gap in Quercus Phylogeny: Molecular Phylogenetic Evidence, Morphometric and Biogeographic History of Quercus petraea subsp. pinnatiloba Matt. Liebl from Türkiye
Abstract
1. Introduction
2. Materials and Methods
2.1. Morphometric Analysis
2.2. Phylogenetic Analysis
2.3. Biogeographical Analysis
3. Results
3.1. Leaf Morphometric Analysis
3.2. The Level of Sequence Variation
3.3. Phylogenetic Analyses and Molecular Dating
3.4. Historical Biogeography Reconstructions (RASP)
4. Discussion
4.1. Morphometric Analysis
4.2. Phylogenetic Position
4.3. Molecular Dating and Biogeographic History
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AICc | Corrected Akaike Information Criterion |
BI | Bayesian Inference |
BS | Basal Lamina Shape |
cpDNA | Chloroplast DNA |
ESS | Effective Sample Size |
ITS | Internal Transcribed Spacer (of nuclear ribosomal DNA) |
LDR | Lobe Depth Ratio |
LL | Lamina Length |
LT | Lobe Tip Shape |
LWR | Lobe Width Ratio |
LW | Lobe Width at the Tip of the Widest Lobe |
MCMC | Markov Chain Monte Carlo |
ML | Maximum Likelihood |
NL | Number of Lobes |
nrDNA | Nuclear Ribosomal DNA |
NV | Number of Intercalary Veins |
OB | Lamina Shape or Obversity |
PCR | Polymerase Chain Reaction |
PL | Petiole Length |
PR | Petiole Ratio |
psbA-trnH | Intergenic Spacer Region between psbA and trnH genes in chloroplast DNA |
PV | Venation Percentage |
RASP | Reconstruct Ancestral State in Phylogenies |
rbcL | Ribulose-1,5-bisphosphate Carboxylase/Oxygenase Large Subunit Gene |
subsp. | Subspecies |
SW | Sinus Width |
WP | Leaf Blade Length at its Widest Point |
References
- Nixon, K.C. Infrageneric classification of Quercus (Fagaceae) and typification of sectional names. Ann. Sci. Forest. 1993, 50 (Suppl. S1), 25s–34s. [Google Scholar] [CrossRef]
- Tekpinar, A.D.; Aktaş, C.; Kansu, Ç.; Duman, H.; Kaya, Z. Phylogeography and phylogeny of genus Quercus L. (Fagaceae) in Turkey implied by variations of trnT(UGU)-L(UAA)-F(GAA) chloroplast DNA region. Tree Genet. Genomes 2021, 17, 40. [Google Scholar] [CrossRef]
- Hedge, I.C.; Yaltirik, F. Quercus L. In Flora of Turkey and the East Aegean Islands, 7th ed.; Edinburgh University Press: Edinburgh, UK, 1982; Volume 7, pp. 659–683. [Google Scholar]
- Yaltırık, F. Türkiye Meşeleri Teşhis Kılavuzu; Yenilik Basımevi: İstanbul, Turkey, 1984. (In Turkish) [Google Scholar]
- Mataraci, T. Quercus. Turkiye Bitkileri Listesi (Damarli Bitkiler); Guner, A., Aslan, S., Ekim, T., Vural, M., Babac, M.T., Eds.; Nezahat Gokyigit Botanik Bahçesi ve Flora Araştırmaları Derneği Yayını: Istanbul, Turkey, 2012; pp. 506–511. (In Turkish) [Google Scholar]
- Denk, T.; Grimm, G.W. The oaks of western Eurasia: Traditional classifications and evidence from two nuclear markers. Taxon 2010, 59, 351–366. [Google Scholar] [CrossRef]
- Hubert, F.; Grimm, G.W.; Jousselin, E.; Berry, V.; Franc, A.; Kremer, A. Multiple nuclear genes stabilize the phy-logenetic backbone of the genus Quercus. Syst. Biodivers. 2014, 12, 405–423. [Google Scholar] [CrossRef]
- Hipp, A.L.; Manos, P.S.; Hahn, M.; Avishai, M.; Bodénès, C.; Cavender-Bares, J.; Crowl, A.A.; Deng, M.; Denk, T.; Fitz-Gibbon, S.; et al. Genomic landscape of the global oak phylogeny. New Phytol. 2020, 226, 1198–1212. [Google Scholar] [CrossRef] [PubMed]
- Alberto, F.; Bouffier, L.; Louvet, J.M.; Lamy, J.B.; Delzon, S.; Kremer, A. Adaptive responses for seed and leaf phenology in natural populations of sessile oak along an altitudinal gradient. J. Evol. Biol. 2011, 24, 1442–1454. [Google Scholar] [CrossRef]
- Ekim, T.; Güner, A. The Anatolian Diagonal: Fact or fiction? Proc. R. Soc. Edinb. B Biol. Sci. 1986, 89, 69–77. [Google Scholar] [CrossRef]
- Güner, A.; Aslan, S.; Ekim, T.; Vural, M.; Babaç, M.T. Türkiye Bitkileri Listesi (Damarlı Bitkiler); Nezahat Gökyiğit Botanik Bahçesi ve Flora Araştırmaları Derneği Yayını: İstanbul, Turkey, 2012; pp. 836–839. [Google Scholar]
- Kargioglu, M.; Serteser, A.; Senkul, C.; Konuk, M. Bioclimatic characteristic of oak species Quercus macranthera subsp. syspirensis and Quercus petraea subsp. pinnatiloba in Turkey. J. Environ. Biol. 2011, 32, 127–131. [Google Scholar] [PubMed]
- Mehrnia, M.; Nejadsattari, T.; Assadi, M.; Mehregan, I. Taxonomic study of the genus Quercus L. sect. Quercus in the Zagros forests of Iran. Iran. J. Bot. 2013, 19, 62–74. [Google Scholar] [CrossRef]
- POWO. Plants of the World Online; Facilitated by the Royal Botanic Gardens, Kew. Available online: https://powo.science.kew.org/ (accessed on 13 March 2025).
- Jensen, R.J. Using leaf shape to identify taxa in a mixed-oak community in land between the lakes, Kentucky. In Proc. Sixth Symp. Nat. Hist. Lower Tennessee and Cumberland River Valleys; Center for Field Biology, Austin Peay State University: Clarksville, TN, USA, 1995; pp. 177–188. [Google Scholar]
- Borazan, A.; Babaç, M.T. Morphometric leaf variation in oaks (Quercus) of Bolu, Turkey. Ann. Bot. Fenn. 2003, 40, 233–242. [Google Scholar]
- Aas, G. Taxonomical impact of morphological variation in Quercus robur and Q. petraea: A contribution to the hybrid controversy. Ann. For. Sci. 1993, 50, 107–114. [Google Scholar] [CrossRef]
- Kremer, A.; Dupouey, J.L.; Deans, J.D.; Cottrell, J.; Csaikl, U.; Finkeldey, R.; Espinel, S.; Jensen, J.; Kleinschmit, J.; Van Dam, B.; et al. Leaf morphological differentiation between Quercus robur and Quercus petraea is stable across western European mixed oak stands. Ann. For. Sci. 2002, 59, 777–787. [Google Scholar] [CrossRef]
- Yücedağ, C.; Gailing, O. Morphological and genetic variation within and among four Quercus petraea and Q. robur natural populations. Turk. J. Biol. 2013, 37, 619–629. [Google Scholar] [CrossRef]
- Bacilieri, R.; Ducousso, A.; Kremer, A. Genetic, morphological, ecological and phenological differentiation between Quercus petraea (Matt.) Liebl. and Quercus robur L. in a mixed stand of northwest France. Silvae Genet. 1995, 44, 1–10. [Google Scholar]
- Bruschi, P.; Vendramin, G.G.; Bussotti, F.; Grossoni, P. Morphological and molecular differentiation between Quercus petraea (Matt.) Liebl. and Quercus pubescens Willd. (Fagaceae) in Northern and Central Italy. Ann Bot. 2000, 85, 325–333. [Google Scholar] [CrossRef]
- Proietti, E.; Filesi, L.; Di Marzio, P.; Di Pietro, R.; Masin, R.; Conte, A.L.; Fortini, P. Morphology, geometric morphometrics, and taxonomy in relict deciduous oaks woods in northern Italy. Rend Fis Acc Lincei. 2021, 32, 549–564. [Google Scholar] [CrossRef]
- Schwarz, O. Monographie der Eichen Europas und des Mittelmeergebietes. In Repertorium Specierum Novarum Regni Vegetabilis, Sonderbeih. D; Selbstverlag: Hardegsen, Germany, 1936; Volume 1–5, pp. 1–200. [Google Scholar]
- Matyas, V. Quercus. In Synopsis Flora Vegetationisque Hungariae; Soo, R., Ed.; Akademiai Kiado: Budapest, Hungary, 1970; Volume 4, pp. 507–540. (In Hungarian) [Google Scholar]
- Matula, R. Comparison of general tree characteristics of less known oak species Quercus dalechampii Ten. and Quercus polycarpa Schur. J. For. Sci. 2008, 54, 333–339. [Google Scholar] [CrossRef]
- Camus, A. Les Chênes: Monographie du Genre Quercus, 3 vols. 1936–1954; Lechevalier: Paris, France, 1936. [Google Scholar]
- Hayek, A. Prodromus florae peninsulae Balcanicae, 1936–1954, rev. ed.; Koeltz: Königstein, Germany, 1927. [Google Scholar]
- Brullo, S.; Guarino, R.; Siracusa, G. Revisione tassonomica delle querce caducifoglie della Sicilia. Webbia 1999, 54, 1–72. [Google Scholar] [CrossRef]
- Di Pietro, R.; Viscosi, V.; Peruzzi, L.; Fortini, P. A review of the application of the name Quercus dalechampii. Taxon 2012, 61, 1311–1316. [Google Scholar] [CrossRef]
- Raab-Straube, E.; von Raus, T. Euro+ Med-Checklist Notulae, 1. Willdenowia 2013, 43, 151–164. [Google Scholar] [CrossRef]
- Kučera, P. New name for Central Europaean oak formerly labelled as Quercus dalechampii. Biologia 2018, 73, 313–317. [Google Scholar] [CrossRef]
- Enescu, C.M.; Curtu, A.L.; Șofletea, N. Is Quercus virgiliana a distinct morphological and genetic entity among European white oaks? Turk. J. Agric. For. 2013, 37, 632–641. [Google Scholar] [CrossRef]
- Fortini, P.; Di Marzio, P.; Di Pietro, R. Differentiation and hybridization of Quercus frainetto, Q. petraea, and Q. pubescens (Fagaceae): Insights from macromorphological leaf traits and molecular data. Plant Syst. Evol. 2015, 301, 375–385. [Google Scholar] [CrossRef]
- Fortini, P.; Di Marzio, P.; Conte, A.L.; Antonecchia, G.; Proietti, E.; Di Pietro, R. Morphological and molecular results from a geographical transect focusing on Quercus pubescens/Q. virgiliana ecological-altitudinal vicariance in peninsular Italy. Plant Biosyst. 2022, 156, 1498–1511. [Google Scholar] [CrossRef]
- Dayrat, B. Towards integrative taxonomy. Biol. J. Linn. Soc. 2005, 85, 407–415. [Google Scholar] [CrossRef]
- Padial, J.M.; Miralles, A.; De la Riva, I.; Vences, M. The integrative future of taxonomy. Front. Zool. 2010, 7, 16. [Google Scholar] [CrossRef]
- Toumi, L.; Lumaret, R. Allozyme characterisation of four Mediterranean evergreen oak species. Biochem. Syst. Ecol. 2001, 29, 799–817. [Google Scholar] [CrossRef]
- Bellarosa, R.; Delre, V.; Schirone, B.; Maggini, F. Ribosomal RNA genes in Quercus spp. (Fagaceae). Plant Syst. Evol. 1990, 172, 127–139. [Google Scholar] [CrossRef]
- Bellarosa, R.; Simeone, M.C.; Papini, A.; Schirone, B. Utility of ITS sequence data for phylogenetic reconstruction of Italian Quercus spp. Mol. Phylogenet. Evol. 2005, 34, 355–370. [Google Scholar] [CrossRef] [PubMed]
- Pirie, M.D.; Balca, M.P.; Vargas, Z.; Botermans, M.; Bakker, F.T.; Chatrou, L.W. Ancient paralogy in the cpDNA trnL-F region in Annonaceae: Implications for plant molecular systematics. Am. J. Bot. 2007, 94, 1003–1016. [Google Scholar] [CrossRef] [PubMed]
- Savolainen, V.; Fay, M.; Albach, D.C.; Backlund, A.; Bank, M.; Cameron, K.M.; Johnson, S.A.; Lledo, M.D.; Pintaud, J.-C.; Powell, M.; et al. Phylogeny of the eudicots: A nearly complete familial analysis based on rbcL gene sequences. Kew Bull. 2000, 55, 257–309. [Google Scholar] [CrossRef]
- Alvarez, I.; Wendel, J.F. Ribosomal ITS sequences and plant phylogenetic inference. Mol. Phylogenet. Evol. 2003, 29, 417–434. [Google Scholar] [CrossRef]
- Koch, M.; Bani, B.; German, D.; Huang, X. Phylogenetics, phylogeography and vicariance of polyphyletic Grammosciadium (Apiaceae: Careae) in Anatolia. Bot. J. Linn. Soc. 2017, 185, 168. [Google Scholar] [CrossRef]
- Bilgin, R. Back to the suture: The distribution of intraspecific genetic diversity in and around Anatolia. Int. J. Mol. Sci. 2011, 12, 4080–4103. [Google Scholar] [CrossRef]
- Chen, D.M.; Zhang, X.X.; Kang, H.Z.; Sun, X.; Yin, S.; Du, H.M.; Yamanaka, N.; Gapare, W.; Wu, H.X.; Liu, C. Phylogeography of Quercus variabilis based on chloroplast DNA sequence in East Asia: Multiple glacial refugia and mainland-migrated island populations. PLoS ONE 2012, 7, e47268. [Google Scholar] [CrossRef]
- Aranda, I.; Gil, L.; Pardos, J. Seasonal water relations of three broadleaved species (Fagus sylvatica L., Quercus petraea (Mattuschka) Liebl., and Quercus pyrenaica Willd.) in a mixed stand in the centre of the Iberian Peninsula. For. Ecol. Manag. 1996, 84, 219–229. [Google Scholar] [CrossRef]
- Yılmaz, A.E.; Babaç, M.T. Molecular diversity among Turkish oaks (Quercus) using random amplified polymorphic DNA (RAPD) analysis. Afr. J. Biotechnol. 2013, 12, 6358–6365. [Google Scholar] [CrossRef]
- Yılmaz, A. Phylogenetic relationships of the genus Quercus L. (Fagaceae) from three different sections. Afr. J. Biotechnol. 2016, 15, 2265–2271. [Google Scholar] [CrossRef]
- Yılmaz, A. The importance in DNA barcoding of the regions which is covering rRNA genes and its sequences in the genus Quercus L. Bangladesh J. Plant Taxon. 2020, 27, 261–271. [Google Scholar]
- Dimopoulos, P.; Raus, T.; Bergmeier, E.; Constantinidis, T.; Iatrou, G.; Kokkini, S.; Strid, A.; Tzanoudakis, D. Vascular plants of Greece. An annotated checklist: 1–372; Botanic Gardens and Botanical Museum Berlin-Dahlem, Berlin and Hellenic Botanical Society: Athens, Greece, 2013. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Van Rossum, G.; Drake, F.L. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009. [Google Scholar]
- Oldfield, S.; Eastwood, A. The Red List of Oaks; Botanic Gardens Conservation International (BGCI): Richmond, UK, 2015. [Google Scholar]
- Hsiao, C.; Chatterton, N.J.; Asay, K.H.; Jensen, K.B. Phylogenetic relationships of the monogenomic species of the wheat tribe, Triticeae (Poaceae), inferred from nuclear rDNA (internal transcribed spacer) sequences. Genome 1995, 38, 221–223. [Google Scholar] [CrossRef]
- Azuma, H.; Thien, L.; Kawano, S. Molecular phylogeny of Magnolia (Magnoliaceae) inferred from cpDNA sequences and evolutionary divergence of the floral scents. J. Plant Res. 1999, 112, 291–306. [Google Scholar] [CrossRef]
- FinchTV (Version 1.4.0) [Computer Software]. (n.d.). Geospiza, Inc. Available online: http://www.geospiza.com (accessed on 15 May 2025).
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Nylander, J.A.A. MrModeltest v2. Program Distributed by the Author; Uppsala University: Uppsala, Sweden, 2004. [Google Scholar]
- Bouckaert, R.; Vaughan, T.G.; Barido-Sottani, J.; Duchêne, S.; Fourment, M.; Gavryushkina, A.; Heled, J.; Jones, G.; Kühnert, D.; De Maio, N.; et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 2019, 15, e1006650. [Google Scholar] [CrossRef] [PubMed]
- Grímsson, F.; Zetter, R.; Grimm, G.W.; Denk, T. Fossil Fagaceae from the Cenozoic of Iceland and their biogeographic implications. Acta Palaeobot. 2016, 56, 237–268. [Google Scholar]
- Rambaut, A.; Suchard, M.A.; Xie, D.; Drummond, A.J. Tracer v1.6. Available online: http://beast.bio.ed.ac.uk/Tracer (accessed on 10 May 2025).
- TreeAnnotator (Version 2.7.7) [Computer Software]. (20 July 2025). In BEAST 2. Available online: https://www.beast2.org/treeannotator/ (accessed on 23 July 2025).
- Rambaut, A. Figtree v1.4.3. Available online: http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 1 May 2025).
- Yu, Y.; Harris, A.J.; Blair, C.; He, X. RASP (Reconstruct Ancestral State in Phylogenies): A tool for historical biogeography. Mol. Phylogenet. Evol. 2015, 87, 46–49. [Google Scholar] [CrossRef]
- Yu, Y.; Blair, C.; He, X.J. RASP 4: Ancestral state reconstruction tool for multiple genes and characters. Mol. Biol. Evol. 2020, 37, 604–606. [Google Scholar] [CrossRef]
- Yu, Y.; Harris, A.J.; He, X.J. S-DIVA (statistical dispersal-vicariance analysis): A tool for inferring biogeographic histories. Mol. Phylogenet. Evol. 2010, 56, 848–850. [Google Scholar] [CrossRef] [PubMed]
- Özüdoğru, B.; Akaydın, G.; Erik, S.; Al-Shehbaz, I.A.; Mummenhoff, K. Phylogeny, diversification and biogeographic implications of the eastern Mediterranean endemic genus Ricotia (Brassicaceae). Taxon 2015, 64, 727–740. [Google Scholar] [CrossRef]
- Ateş, M.A.; Fırat, M.; Kaya, Z. Updated-extended molecular time and molecular phylogeny of Gundelia species native to Turkey. Plant Syst. Evol. 2021, 307, 47. [Google Scholar] [CrossRef]
- Davis, P.H. (Ed.) Flora of Turkey and the East Aegean Islands; Vols. 1–9; Edinburgh University Press: Edinburgh, UK, 1985. [Google Scholar]
- Jackson, D.A. Stopping rules in principal components analysis: A comparison of heuristical and statistical approaches. Ecology 1993, 74, 2204–2214. [Google Scholar] [CrossRef]
- Sauquet, H.; Ho, S.Y.W.; Gandolfo, M.A.; Jordan, G.J.; Wilf, P.; Cantrill, D.J.; Bayly, M.J.; Bromham, L.; Brown, G.K.; Carpenter, R.J.; et al. Testing the impact of calibration on molecular divergence times using a fossil-rich group: The case of Nothofagus (Fagales). Syst. Biol. 2012, 61, 289–313. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Huberty, C.J.; Olejnik, S. Applied MANOVA and Discriminant Analysis, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Fortini, P.; Di Pietro, R.; Proietti, E.; Cardoni, S.; Quaranta, L.; Simeone, M.C. Dissecting the continuum and unravelling the phylogeographic knot of plastid DNA in European white oaks (Quercus sect. Quercus): Ancient signatures and multiple diversity reservoirs. Eur. J. For. Res. 2024, 143, 107–127. [Google Scholar] [CrossRef]
- Gugerli, F.; Walser, J.C.; Dounavi, K.; Holderegger, R.; Finkeldey, R. Coincidence of small-scale spatial discontinuities in leaf morphology and nuclear microsatellite variation of Quercus petraea and Q. robur in a mixed forest. Ann. Bot. 2007, 99, 712–722. [Google Scholar] [CrossRef]
- Kaplan, Z.; Danihelka, J.; Chrtek, J.; Kirschner, J.; Kubát, K.; Šumberová, K.; Wild, J. Distributions of vascular plants in the Czech Republic. Part 11. Preslia 2022, 94, 335–427. [Google Scholar] [CrossRef]
- Euro+Med Plantbase. Quercus pinnatiloba C. Koch. Available online: https://europlusmed.org/cdm_dataportal/taxon/cb1b72e2-d2a0-46bf-a2ef-7d65948e95ec (accessed on 12 April 2025).
- Manos, P.S.; Doyle, J.J.; Nixon, K.C. Phylogeny, biogeography, and processes of molecular differentiation in Quercus subgenus Quercus (Fagaceae). Mol. Phylogenet. Evol. 1999, 12, 333–349. [Google Scholar] [CrossRef] [PubMed]
- Lang, P.; Dane, F.; Kubisiak, T.L. Phylogeny of Castanea (Fagaceae) based on chloroplast trnT–L sequence data. Tree Genet. Genomes 2006, 2, 132–139. [Google Scholar] [CrossRef]
- Baldwin, B.G.; Sanderson, M.J.; Porter, J.M.; Wojciechowski, M.F.; Campbell, C.S.; Donoghue, M.J. The ITS region of nuclear ribosomal DNA: A valuable source of evidence on angiosperm phylogeny. Ann. Mo. Bot. Gard. 1995, 82, 247–277. [Google Scholar] [CrossRef]
- Denk, T.; Grimm, G.W.; Manos, P.S.; Deng, M.; Hipp, A.L. An updated infrageneric classification of the oaks: Review of previous taxonomic schemes and synthesis of evolutionary patterns. Bot. J. Linn. Soc. 2017, 185, 12–38. [Google Scholar]
- Kansu, Ç.; Malaspina, A.-A.; Tourvas, N.; Değirmenci, F.O.; Papadopoulou, A.; Uluğ, A.; Acar, P.; Semizer-Cumming, D.; Jansen, S.; Neophytou, C.; et al. Genetic differentiation and phylogeography of white oaks (Quercus petraea and Q. pubescens) in the Eastern Mediterranean [Unpublished manuscript], 2025.
- Semerikova, S.A.; Aliev, K.U.; Semerikov, N.V.; Semerikov, V.L. Phylogeography of Oak Species in the Caucasus Based on Results of Chloroplast DNA Analysis. Russ. J. Genet 2023, 59, 669–684. [Google Scholar] [CrossRef]
- Semerikova, S.A.; Aliev, K.U.; Semerikov, V.L. Differentiation and Taxonomic Identification of Roburoid Oaks in the Caucasian and Crimean Regions Using Nuclear Microsatellite Markers. Russ J Genet 2024, 60, 1022–1039. [Google Scholar] [CrossRef]
- Cavender-Bares, J.; González-Rodríguez, A.; Eaton, D.A.; Hipp, A.L.; Beulke, A.; Manos, P.S. Phylogeny and biogeography of the American live oaks (Quercus subsection Virentes): A genomic and population genetics approach. Mol. Ecol. 2015, 24, 3668–3687. [Google Scholar] [CrossRef]
- Crowl, A.A.; Manos, P.S.; McVay, J.D.; Hipp, A.L. Explosive radiation of Quercus: An eastern Asia–western North America disjunction explained by climate change and rapid lineage diversification. New Phytol. 2020, 225, 1240–1255. [Google Scholar]
- Simeone, M.C.; Grimm, G.W.; Papini, A.; Vessella, F.; Cardoni, S.; Tordoni, E.; Piredda, R.; Franc, A.; Denk, T. Plastome data reveal multiple geographic origins of Quercus Group Ilex. PeerJ 2016, 4, e1897. [Google Scholar] [CrossRef] [PubMed]
- Ronquist, F. Dispersal–vicariance analysis: A new approach to the quantification of historical biogeography. Syst. Biol. 1997, 46, 195–203. [Google Scholar] [CrossRef]
- Hewitt, G.M. The genetic legacy of the Quaternary ice ages. Nature 2000, 405, 907–913. [Google Scholar] [CrossRef]
- Médail, F.; Diadema, K. Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J. Biogeogr. 2009, 36, 1333–1345. [Google Scholar] [CrossRef]
- Petit, R.J.; Bodenes, C.; Ducousso, A.; Roussel, G.; Kremer, A. Hybridization as a mechanism of invasion in oaks. New Phytol. 2004, 161, 151–164. [Google Scholar] [CrossRef]
- Nieto Feliner, G. Patterns and processes in plant phylogeography in the Mediterranean Basin: A review. Perspect. Plant Ecol. Evol. Syst. 2014, 16, 265–278. [Google Scholar] [CrossRef]
- Magri, D.; Vendramin, G.G.; Comps, B.; Dupanloup, I.; Geburek, T.; Gömöry, D.; Latałowa, M.; Litt, T.; Paule, L.; Roure, J.M.; et al. A new scenario for the Quaternary history of European beech populations: Palaeobotanical evidence and genetic consequences. New Phytol. 2006, 171, 199–221. [Google Scholar] [CrossRef]
- Ekhvaia, J.; Montalbano, G.; Piredda, R.; Simeone, M.C. Phylogeographic structure and morphometric variation in Quercus petraea subsp. iberica (Steven ex M. Bieb.) Menitsky in Georgia. Ann. Bot. 2018, 8, 47–55. [Google Scholar]
- Di Pietro, R.; Quaranta, L.; Mattioni, C.; Simeone, M.C.; Di Marzio, P.; Proietti, E.; Fortini, P. Chloroplast haplotype diversity in the white oak populations of the Italian Peninsula, Sicily, and Sardinia. Forests 2024, 15, 864. [Google Scholar] [CrossRef]
- Petit, R.J.; Brewer, S.; Bordács, S.; Burg, K.; Cheddadi, R.; Coart, E.; Cottrell, J.; Csaikl, U.; van Dam, B.; Kremer, A.; et al. Identification of refugia and post-glacial colonization routes of European white oaks based on chloroplast DNA and fossil pollen evidence. In Temporal and Spatial Patterns of Genetic Variation in Forest Trees; Petit, R.J., Kremer, A., Eds.; Springer: Dordrecht, The Netherlands, 2002; pp. 49–63. [Google Scholar] [CrossRef]
- Grivet, D.; Petit, R.J. Chloroplast DNA phylogeography of the hornbeam in Europe: Evidence for a bottleneck at the east–west contact zone. J. Evol. Biol. 2003, 16, 1118–1128. [Google Scholar]
- Médail, F.; Quézel, P. Biodiversity hotspots in the Mediterranean Basin: Setting global conservation priorities. Conserv. Biol. 1999, 13, 1510–1513. [Google Scholar] [CrossRef]
- Petit, R.; Aguinagalde, I.; de Beaulieu, J.L.; Bittkau, C.; Brewer, S.; Cheddadi, R.; Ennos, R.; Fineschi, S.; Grivet, D.; Lascoux, M. Glacial refugia: Hotspots but not melting pots of genetic diversity. Science 2002, 300, 1563–1565. [Google Scholar] [CrossRef] [PubMed]
No | Variable | Code | Coefficient of Correlation |
---|---|---|---|
1 | Petiole length | PL | 0.858128 |
2 | Lobe Width at the tip of the widest lobe | LW | 0.617328 |
3 | Sinus Width | SW | 0.659195 |
4 | Length of Leaf blade at its Widest Point | WP | 0.792767 |
5 | Number of Lobes | NL | −0.091260 |
6 | Number of Intercalary Veins | NV | −0.200110 |
7 | Basal Lamina Shape | BS | −0.279870 |
8 | Lobe Tip Shape | LT | −0.210570 |
9 | Lamina Shape or Obversity | OB | −0.245720 |
10 | Petiole Ratio | PR | −0.378410 |
11 | Lobe Depth Ratio | LDR | 0.309501 |
12 | Venation Percentage | PV | −0.063140 |
13 | Lobe Width Ratio | LWR | 0.124491 |
Variables | PC1 | PC2 | PC3 |
---|---|---|---|
LL | 0.4224 * | −0.2619 | −0.1118 |
PL | 0.4423 * | −0.0508 | 0.0974 |
LW | 0.4038 * | 0.1296 | −0.0971 |
SW | 0.2914 | −0.3618 | 0.1593 |
WP | 0.4241 * | −0.0258 | 0.1863 |
NL | −0.1368 | −0.3115 | 0.2142 * |
NV | −0.2015 | −0.1276 | −0.1534 |
BS | −0.1224 | 0.2890 | −0.037 |
LT | −0.1285 | −0.1255 | 0.3578 * |
OB | 0.0258 | 0.3428 * | 0.4935 * |
PR | −0.0233 | 0.4045 * | 0.4429 * |
LDR | 0.2147 | 0.3293 * | −0.2604 |
PV | −0.0393 | 0.2223 | −0.4489 |
LWR | 0.2416 | 0.3589 * | −0.0261 |
nrDNA | cpDNA | Total | ||
---|---|---|---|---|
ITS | rbcL | psbA-trnH | total | |
Number of taxa | 22 | |||
Number of newly generated sequences for the gene (nrDNA/cpDNA) concerned | 2 | |||
Number of sequences used from the NCBI GenBank database | 24 | |||
Number of outgroups used in the phylogenetic tree | 3 | |||
Total number of sequences used in the tree | 26 | |||
Total length (bp) | 657 | 1462 | 292 | 2411 |
GC content (%) | 60.06 | 43.3 | 24.7 | 46.9 |
Conserved sites | 628 | 1442 | 291 | 2362 |
Variable sites | 29 | 19 | 1 | 49 |
Parsimony informative sites | 25 | 16 | 1 | 42 |
Transitional pairs | 81.14 | 60.2 | 99.01 | 75.69 |
Transversional pairs | 18.86 | 38.8 | 0.09 | 24.31 |
Transition/Transversion (tr/tv) (R) ratio | 4.00 | 1.50 | 3.19 | 3.12 |
Nucleotide diversity | 0.010 | 0.001 | 0.001 | 0.010 |
No | Node Name | Mean (Mya) | 95%HPD Lower Mya | 95%HPD Upper Mya | Fossil Calibration Point (**) [Reference] |
---|---|---|---|---|---|
1 | The crown age of Quercus sp. | 30.13 | 13.15 | 49.22 | |
2 | The crown age of sect. Quercus | 20.83 | 8.08 | 36.01 | |
3 | The crown age of sections Ilex and Cerris | 21.1 | 7.13 | 37.83 | |
4 | The crown age of Quercus petraea subsp. pinnatiloba from Q. petraea | 11.04 | 3.01 | 20.95 | |
5 | The crown age of Quercus petraea subsp. pinnatiloba from sect. Quercus | 16.02 | 5.75 | 28.41 | |
6 | The crown age of Trigonobalanus from Quercus sp. | 60 | 59 | 60.89 | 60 Mya [61,72] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acar, P. Filling a Gap in Quercus Phylogeny: Molecular Phylogenetic Evidence, Morphometric and Biogeographic History of Quercus petraea subsp. pinnatiloba Matt. Liebl from Türkiye. Diversity 2025, 17, 599. https://doi.org/10.3390/d17090599
Acar P. Filling a Gap in Quercus Phylogeny: Molecular Phylogenetic Evidence, Morphometric and Biogeographic History of Quercus petraea subsp. pinnatiloba Matt. Liebl from Türkiye. Diversity. 2025; 17(9):599. https://doi.org/10.3390/d17090599
Chicago/Turabian StyleAcar, Pelin. 2025. "Filling a Gap in Quercus Phylogeny: Molecular Phylogenetic Evidence, Morphometric and Biogeographic History of Quercus petraea subsp. pinnatiloba Matt. Liebl from Türkiye" Diversity 17, no. 9: 599. https://doi.org/10.3390/d17090599
APA StyleAcar, P. (2025). Filling a Gap in Quercus Phylogeny: Molecular Phylogenetic Evidence, Morphometric and Biogeographic History of Quercus petraea subsp. pinnatiloba Matt. Liebl from Türkiye. Diversity, 17(9), 599. https://doi.org/10.3390/d17090599