Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (173)

Search Parameters:
Keywords = Fabry–Pérot (FP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 7216 KiB  
Article
Low-Finesse Fabry–Perot Cavity Design Based on a Reflective Sphere
by Ju Wang, Ye Gao, Jinlong Yu, Hao Luo, Xuemin Su, Xu Han, Yang Gao, Ben Cai and Chuang Ma
Photonics 2025, 12(7), 723; https://doi.org/10.3390/photonics12070723 - 17 Jul 2025
Viewed by 236
Abstract
Low-finesse Fabry–Perot (F–P) cavities, widely applied in the field of micro-displacement measurement, offer significant advantages in reducing the influence of higher-order reflections and improving the accuracy of measurement systems. Generally, an F–P cavity finesse of 0.5 is required to achieve high-precision micro-displacement measurements. [...] Read more.
Low-finesse Fabry–Perot (F–P) cavities, widely applied in the field of micro-displacement measurement, offer significant advantages in reducing the influence of higher-order reflections and improving the accuracy of measurement systems. Generally, an F–P cavity finesse of 0.5 is required to achieve high-precision micro-displacement measurements. However, in optical design, low-finesse cavities impose strict requirements on reflectivity, and maintaining fine stability during cavity movement is challenging. Achieving ideal orthogonal interference with a finesse of 0.5 thus presents considerable difficulties. This study proposes a novel low-finesse F–P cavity design that employs a high-reflectivity spherical reflector and the end face of a fiber collimator as the reflective surfaces of the cavity. By utilizing beam divergence characteristics and geometric parameters, a structure with a finesse of approximately 0.5 is quantitatively designed, enabling a simplified implementation without the need for angular alignment. Compared with conventional approaches, this method eliminates the need for precise angular alignment of the reflective surfaces, significantly simplifying implementation. The experimental results show that, under fixed receiving field angles and beam radii of the fiber collimators, ideal orthogonal interference can be achieved by selecting the radius of the reflective sphere. Under varying working distances, the average finesse values of the interference spectra measured by Collimators 1 and 2 are 0.496 and 0.502, respectively, both close to the theoretical design value of 0.5, thereby meeting the design requirements. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

12 pages, 6651 KiB  
Article
Research on Metal Mesh Coupling Mirrors Utilizing Metasurfaces for Optically Pumped Gas THz Lasers
by Lijie Geng, Zhenxiang Fu, Shuaifei Song, Chenglong Bi, Wenyan Zhang, Ruiliang Zhang, Kun Yang and Yanchen Qu
Photonics 2025, 12(7), 642; https://doi.org/10.3390/photonics12070642 - 24 Jun 2025
Viewed by 247
Abstract
Optically pumped gas terahertz (THz) lasers (OPGTLs) as reliable sources of THz radiation have been extensively utilized within THz application areas. In this paper, a substrate-free metal mesh coupler based on the metasurfaces principle was designed for continuous wave OPGTL, which is suitable [...] Read more.
Optically pumped gas terahertz (THz) lasers (OPGTLs) as reliable sources of THz radiation have been extensively utilized within THz application areas. In this paper, a substrate-free metal mesh coupler based on the metasurfaces principle was designed for continuous wave OPGTL, which is suitable for the Fabry–Perot (FP) THz resonator. The parameters of substrate-free metal mesh are calculated by the Ulrich equivalent circuit model, and the influence of metal mesh period and linewidth on its transmittance is analyzed quantitatively. Taking the THz laser with the 118.8 µm of CH3OH optically pumped by the 9.6 µm CO2 laser line for instance, two kinds of metal mesh were devised as input and output couplers of the resonator, and the transmittance and reflectance of the metal meshes are verified by the finite-difference time-domain (FDTD) method. Furthermore, the transmitted and reflected light fields of the FP resonant cavity metal mesh mirrors were simulated by using the FDTD method under the vertical incidence of both pump light and THz waves. Validation of the optical field characteristics of the substrate-free metal meshes confirmed their suitability as ideal input and output coupling cavity mirrors for FP resonant cavities in optically pumped gas THz lasers. Full article
(This article belongs to the Special Issue Recent Advances in Infrared Lasers and Applications)
Show Figures

Figure 1

11 pages, 9569 KiB  
Article
MgO-Based Fabry-Perot Vibration Sensor with a Fiber-Optic Collimator for High-Temperature Environments
by Jiacheng Tu, Qirui Zhao, Jiantao Hu, Yuhao Huang, Haiyang Wang, Jia Liu and Pinggang Jia
Photonics 2025, 12(6), 524; https://doi.org/10.3390/photonics12060524 - 22 May 2025
Viewed by 2289
Abstract
In this paper, a MgO-based high-temperature Fabry-Perot (F-P) vibration sensor with a fiber-optic collimator is proposed and experimentally demonstrated at 1000 °C. The sensor is composed of a sensing unit and a fiber-optic collimator. The F-P cavity is formed by the upper surface [...] Read more.
In this paper, a MgO-based high-temperature Fabry-Perot (F-P) vibration sensor with a fiber-optic collimator is proposed and experimentally demonstrated at 1000 °C. The sensor is composed of a sensing unit and a fiber-optic collimator. The F-P cavity is formed by the upper surface of the inertial mass block and the countersunk hole of the cover layer. The length of the F-P cavity changes with external vibrations. The sensing unit is prepared by wet etching technology and three-layer direct bonding technology, which ensure its stability and reliability in high-temperature environments. The experimental results indicate that the sensor can operate stably within a range from room temperature up to 1000 °C. The sensitivity and non-linearity of the sensor at 1000 °C are 1.3224 nm/g and 3.8%, respectively. Furthermore, the sensor operates at frequencies of up to 4 kHz while remaining unaffected by lateral vibration signals. The high-temperature F-P vibration sensor can effectively deal with the fiber damage in extreme environments and exhibits considerable potential for widespread applications. Full article
(This article belongs to the Special Issue Emerging Trends in Fiber Optic Sensing)
Show Figures

Figure 1

17 pages, 14203 KiB  
Article
Low-Profile Omnidirectional and Wide-Angle Beam Scanning Antenna Array Based on Epsilon-Near-Zero and Fabry–Perot Co-Resonance
by Jiaxin Li, Lin Zhao, Dan Long and Hui Xie
Electronics 2025, 14(10), 2012; https://doi.org/10.3390/electronics14102012 - 15 May 2025
Viewed by 813
Abstract
To address the inherent contradiction between low-profile design and high gain in traditional omnidirectional antennas, as well as the narrow bandwidth constraints of ENZ antennas, this study presents a dual-mode ENZ-FP collaborative resonant antenna array design utilizing a substrate-integrated waveguide (SIW). Through systematic [...] Read more.
To address the inherent contradiction between low-profile design and high gain in traditional omnidirectional antennas, as well as the narrow bandwidth constraints of ENZ antennas, this study presents a dual-mode ENZ-FP collaborative resonant antenna array design utilizing a substrate-integrated waveguide (SIW). Through systematic analysis of ENZ media’s quasi-static field distribution, we innovatively integrated it with Fabry–Perot (F–P) resonance, achieving unprecedented dual-band omnidirectional radiation at 5.18 GHz and 5.72 GHz within a single ENZ antenna configuration for the first time. The directivity of both frequencies reached 12.0 dBi, with a remarkably low profile of only 0.018λ. We then extended this design to an ENZ-FP dual-mode beam-scanning array. By incorporating phase control technology, we achieved wide-angle scanning despite low-profile constraints. The measured 3 dB beam coverage angles at the dual frequencies were ±63° and ±65°, respectively. Moreover, by loading the impedance matching network, the −10 dB impedance bandwidth of the antenna array was further extended to 2.4% and 2.7%, respectively, thus overcoming the narrowband limitations of the ENZ antenna and enhancing practical applicability. The antennas were manufactured using PCB (Printed Circuit Board) technology, offering high integration and cost efficiency. This provides a new paradigm for UAV (Unmanned Aerial Vehicle) communication and radar detection systems featuring multi-band operation, a low-profile design, and flexible beam control capabilities. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

18 pages, 10372 KiB  
Article
Acoustic Fabry–Perot Resonance Detector for Passive Acoustic Thermometry and Sound Source Localization
by Yan Yue, Zhifei Dong and Zhi-mei Qi
Sensors 2025, 25(8), 2445; https://doi.org/10.3390/s25082445 - 12 Apr 2025
Viewed by 460
Abstract
Acoustic temperature measurement (ATM) and sound source localization (SSL) are two important applications of acoustic sensors. The development of novel acoustic sensors capable of both ATM and SSL is an innovative research topic with great interest. In this work, an acoustic Fabry-Perot resonance [...] Read more.
Acoustic temperature measurement (ATM) and sound source localization (SSL) are two important applications of acoustic sensors. The development of novel acoustic sensors capable of both ATM and SSL is an innovative research topic with great interest. In this work, an acoustic Fabry-Perot resonance detector (AFPRD) and its cross-shaped array were designed and fabricated, and the passive ATM function of the AFPRD and the SSL capability of the AFPRD array were simulated and experimentally verified. The AFPRD consists of an acoustic waveguide and a microphone with its head inserted into the waveguide, which can significantly enhance the microphone’s sensitivity via the FP resonance effect. As a result, the frequency response curve of AFPRD can be easily measured using weak ambient white noise. Based on the measured frequency response curve, the linear relationship between the resonant frequency and the resonant mode order of the AFPRD can be determined, the slope of which can be used to calculate the ambient sound velocity and air temperature. The AFPRD array was prepared by using four bent acoustic waveguides to expand the array aperture, which combined with the multiple signal classification (MUSIC) algorithm can be used for distant multi-target localization. The SSL accuracy can be improved by substituting the sound speed measured in real time into the MUSIC algorithm. The AFPRD’s passive ATM function was verified in an anechoic room with white noise as low as 17 dB, and the ATM accuracy reached 0.4 °C. The SSL function of the AFPRD array was demonstrated in the outdoor environment, and the SSL error of the acoustic target with a sound pressure of 35 mPa was less than 1.2°. The findings open up a new avenue for the development of multifunctional acoustic detection devices and systems. Full article
(This article belongs to the Special Issue Recent Advances in Optical and Optoelectronic Acoustic Sensors)
Show Figures

Figure 1

18 pages, 11919 KiB  
Article
Double-Cavity Fabry–Perot Interferometer Sensor Based on Polymer-Filled Hollow Core Fiber for Simultaneous Measurement of Temperature and Gas Pressure
by Yixin Zhu, Yufeng Zhang, Qianhao Tang, Shengjie Li, Huaijin Zheng, Dezhi Liang, Haibing Xiao, Chenlin Du, Yongqin Yu and Shuangchen Ruan
Sensors 2025, 25(8), 2396; https://doi.org/10.3390/s25082396 - 10 Apr 2025
Cited by 1 | Viewed by 699
Abstract
A double-cavity Fabry-Perot (F-P) interferometer sensor based on a polymer-filled hollow core fiber (HCF) has been proposed and experimentally verified. The double cavity of the sensor is formed by filling the hollow core fiber with two kinds of polymer materials and curing these [...] Read more.
A double-cavity Fabry-Perot (F-P) interferometer sensor based on a polymer-filled hollow core fiber (HCF) has been proposed and experimentally verified. The double cavity of the sensor is formed by filling the hollow core fiber with two kinds of polymer materials and curing these materials, with the other end of the hollow core fiber connected to a single-mode fiber (SMF). The three reflective surfaces of the sensor reflect three beams of light, which interfere to form a spectrum with an envelope. By using Fast Fourier Transform (FFT) and a Fourier filter, the spectrum of each cavity can be separated and, based on this, the demodulation matrix of the sensor can be constructed. By controlling the length of the polymer cavity, a single sensor cavity can achieve high temperature and gas pressure sensitivity, with values of 2.05 nm/°C and 17.63 nm/MPa, respectively. More importantly, the sensor can be used under an environment of 40–110 °C and 0–3.0 MPa, with simple fabrication, good robustness, and better stability and repeatability compared to similar sensors. Based on its high sensitivity and large measurement range, this sensor has broad application prospects in industrial manufacturing and harsh environmental monitoring fields. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

11 pages, 3454 KiB  
Article
Analysis of Vibration Sensitivity and Zero-Expansion Temperature for a Cubic Fabry-Pérot Cavity with Reinforced-Support
by Fanchao Meng, Long Chen, Lingqiang Meng and Jianjun Jia
Appl. Sci. 2025, 15(7), 3826; https://doi.org/10.3390/app15073826 - 31 Mar 2025
Viewed by 370
Abstract
In this paper, the vibration sensitivity and zero-expansion temperature of a 100 mm cubic Fabry-Pérot (FP) cavity with reinforced-support are analyzed. Initially, the reinforced-support FP cavity was simulated and analyzed. Simulation results indicate that vibration sensitivity of the FP cavity is less than [...] Read more.
In this paper, the vibration sensitivity and zero-expansion temperature of a 100 mm cubic Fabry-Pérot (FP) cavity with reinforced-support are analyzed. Initially, the reinforced-support FP cavity was simulated and analyzed. Simulation results indicate that vibration sensitivity of the FP cavity is less than 1.5 × 10−10/g, and zero-expansion temperature of the FP cavity is influenced by the support structure by approximately 1 °C. Subsequently, experiments were carried out. The experimental results demonstrate that vibration sensitivities of the reinforced-support FP cavity in the Z, X, and Y directions are 1.73 × 10−10/g, 2.09 × 10−11/g, and 2.13 × 10−11/g, respectively. The zero-expansion temperature is about 29.5 °C. The vibration sensitivity of the reinforced-support FP cavity is comparable to that of the four-point support FP cavity, and zero-expansion temperature of the FP cavity is affected limitedly by the support structure. The same vibration sensitivity as the four-point support cavity and robust vibration resistance may expand the application of the transportable or spaceborne ultra-stable laser with cubic FP cavity. Full article
Show Figures

Figure 1

12 pages, 3073 KiB  
Article
A Novel Fiber-Optical Fabry–Perot Microtip Sensor for 2-Propanol
by João M. Leça, Paulo Antunes, Florinda M. Costa, António J. S. Teixeira and Marta S. Ferreira
Sensors 2025, 25(7), 2178; https://doi.org/10.3390/s25072178 - 29 Mar 2025
Viewed by 558
Abstract
2-Propanol in the gaseous phase of clinical samples can serve as a biomarker for disease diagnosis. In this context, a novel fiber-optic Fabry–Perot (FP) interferometric sensor with a microtip structure was developed using the light-guided induced polymerization technique. The optical fiber sensor (OFS) [...] Read more.
2-Propanol in the gaseous phase of clinical samples can serve as a biomarker for disease diagnosis. In this context, a novel fiber-optic Fabry–Perot (FP) interferometric sensor with a microtip structure was developed using the light-guided induced polymerization technique. The optical fiber sensor (OFS) with the best performance, measuring approximately 15 µm in length, exhibited good sensitivity to 2-propanol, with a response of −71.1 ± 2.1 pm/ppm. Additionally, it demonstrated good stability, with a maximum standard deviation of 0.15 nm and an estimated resolution of 3.18 ppm. The good sensitivity and ease of fabrication of this OFS highlight its potential for biomedical applications, particularly in non-invasive disease detection, given the role of 2-propanol as a biomarker for various health conditions. Full article
(This article belongs to the Special Issue Optical Sensors for Gas Monitoring)
Show Figures

Figure 1

12 pages, 3145 KiB  
Article
Multi-Channel Sparse-Frequency-Scanning White-Light Interferometry with Adaptive Mode Locking for Pulse Wave Velocity Measurement
by Yifei Xu, Laiben Gao, Cheng Qian, Yiping Wang, Wenyan Liu, Xiaoyan Cai and Qiang Liu
Photonics 2025, 12(4), 316; https://doi.org/10.3390/photonics12040316 - 28 Mar 2025
Cited by 1 | Viewed by 501
Abstract
Fiber-optic Fabry–Pérot (F–P) sensors offer significant potential for non-invasive hemodynamic monitoring, but existing sensing systems face limitations in multi-channel measurement capabilities and dynamic demodulation accuracy. This study introduces a sparse-frequency-scanning white-light interferometry (SFS-WLI) system with an adaptive mode-locked cross-correlation (MLCC) algorithm to address [...] Read more.
Fiber-optic Fabry–Pérot (F–P) sensors offer significant potential for non-invasive hemodynamic monitoring, but existing sensing systems face limitations in multi-channel measurement capabilities and dynamic demodulation accuracy. This study introduces a sparse-frequency-scanning white-light interferometry (SFS-WLI) system with an adaptive mode-locked cross-correlation (MLCC) algorithm to address these challenges. The system leverages telecom-grade semiconductor lasers (191.2–196.15 THz sweep range, 50 GHz step) and a Fibonacci-optimized MLCC algorithm to achieve real-time cavity length demodulation at 5 kHz. Compared to normal MLCC algorithm, the Fibonacci-optimized algorithm reduces the number of computational iterations by 57 times while maintaining sub-nanometer resolution under dynamic perturbations. Experimental validation demonstrated a carotid–radial pulse wave velocity of 5.12 m/s in a healthy male volunteer. This work provides a scalable and cost-effective solution for cardiovascular monitoring with potential applications in point-of-care testing (POCT) and telemedicine. Full article
Show Figures

Figure 1

10 pages, 1998 KiB  
Article
MEMS-Integrated Tunable Fabry–Pérot Microcavity for High-Quality Single-Photon Sources
by Ziyang Zheng, Jiawei Yang, Xuebin Peng and Ying Yu
Photonics 2025, 12(4), 315; https://doi.org/10.3390/photonics12040315 - 28 Mar 2025
Viewed by 2725
Abstract
We propose a micro-electromechanical system (MEMS)-integrated Fabry–Pérot (F–P) microcavity designed for a tunable single-photon source based on a single semiconductor quantum dot (QD). Through theoretical simulations, our design achieved a Purcell factor of 23, a photon extraction efficiency exceeding 88%, and an optical [...] Read more.
We propose a micro-electromechanical system (MEMS)-integrated Fabry–Pérot (F–P) microcavity designed for a tunable single-photon source based on a single semiconductor quantum dot (QD). Through theoretical simulations, our design achieved a Purcell factor of 23, a photon extraction efficiency exceeding 88%, and an optical cavity mode tuning range of more than 30 nm. Experimentally, we fabricated initial device prototypes using a micro-transfer printing process and demonstrated a tuning range exceeding 15 nm. The device exhibits high mechanical stability, full reversibility, and minimal hysteresis, ensuring reliable operation over multiple tuning cycles. Our findings highlight the potential of MEMS-integrated F–P microcavities for scalable, tunable single-photon sources. Furthermore, reaching a strong coupling regime could enable efficient single-photon routing, opening new possibilities for integrated quantum photonic circuits. Full article
Show Figures

Figure 1

18 pages, 6196 KiB  
Article
Optical Fiber Pressure Sensor with Self-Temperature Compensation Structure Based on MEMS for High Temperature and High Pressure Environment
by Ke Li, Yongjie Wang, Gaochao Li, Zhen Xu, Yuanyuan Liu, Ancun Shi, Xiaoyan Yu and Fang Li
Photonics 2025, 12(3), 258; https://doi.org/10.3390/photonics12030258 - 13 Mar 2025
Viewed by 773
Abstract
To meet the pressure measurement requirements of deep earth exploration, we propose an OFPS (optical fiber pressure sensor) with self-temperature compensation based on MEMS technology. A spectral extraction and filtering algorithm, based on FFT (fast Fourier transform), was designed to independently demodulate the [...] Read more.
To meet the pressure measurement requirements of deep earth exploration, we propose an OFPS (optical fiber pressure sensor) with self-temperature compensation based on MEMS technology. A spectral extraction and filtering algorithm, based on FFT (fast Fourier transform), was designed to independently demodulate the composite spectra of multiple FP (Fabry–Pérot) cavities, enabling the simultaneous measurement of pressure and temperature parameters. The sensor was fabricated by etching on an SOI (silicon on insulator) and bonding with glass to form pressure-sensitive FP cavities, with the glass itself serving as the temperature-sensitive component as well as providing temperature compensation for pressure sensing. Experimental results showed that within the pressure range of 0–100 MPa, the sensor exhibited a sensitivity of 0.566 nm/MPa, with a full-scale error of 0.34%, and a linear fitting coefficient (R2) greater than 0.9999. Within the temperature range of 0–160 °C, the temperature sensitivity of the glass cavity is 0.0139 nm/°C and R2 greater than 0.999. Full article
Show Figures

Figure 1

14 pages, 6014 KiB  
Article
Highly Sensitive Temperature Sensor Based on a UV Glue-Filled Fabry–Perot Interferometer Utilizing the Vernier Effect
by Chengwen Qiang, Chu Chu, Yuhan Wang, Xinghua Yang, Xinyu Yang, Yuting Hou, Xingyue Wen, Pingping Teng, Bo Zhang, Sivagunalan Sivanathan, Adam Jones and Kang Li
Photonics 2025, 12(3), 256; https://doi.org/10.3390/photonics12030256 - 13 Mar 2025
Viewed by 2260
Abstract
A parallel Fabry–Perot interferometer (FPI) optical fiber sensor, enhanced with UV glue, was proposed for environmental temperature detection. The UV glue is applied to the fiber’s sensing region using a coating method, forming an FP cavity through misalignment welding, allowing the FP to [...] Read more.
A parallel Fabry–Perot interferometer (FPI) optical fiber sensor, enhanced with UV glue, was proposed for environmental temperature detection. The UV glue is applied to the fiber’s sensing region using a coating method, forming an FP cavity through misalignment welding, allowing the FP to function as a temperature sensor. In parallel, a reference FPI with a similar free spectral range (FSR) is connected, generating a Vernier effect that amplifies small changes in the refractive index (RI) of the sensing region. The study demonstrates that UV glue enhances the temperature-sensing capabilities of the FP, and when combined with the Vernier effect, it significantly improves the sensitivity of a single interferometric sensor. The temperature sensitivity of the parallel-connected FPI is −2.80219 nm/°C, which is 7.768 times greater than that of a single FPI (−0.36075 nm/°C). The sensor shows high sensitivity, stability, and reversibility, making it promising for temperature-monitoring applications in various fields, including everyday use, industrial production, and the advancement of optical fiber temperature-sensing technologies. Full article
(This article belongs to the Special Issue Optical Fiber Sensors: Design and Application)
Show Figures

Figure 1

21 pages, 8728 KiB  
Article
CH4, C2H6, and C2H4 Multi-Gas Sensing Based on Mid-Infrared Spectroscopy and SVM Algorithm
by Wenyuan Shao, Yunjiang Jia, Xilian Su, Benlei Zhao, Jiachen Jiang, Limei Gao, Xiaosong Zhu and Yiwei Shi
Sensors 2025, 25(5), 1427; https://doi.org/10.3390/s25051427 - 26 Feb 2025
Viewed by 579
Abstract
A multi-gas sensing system based on mid-infrared spectral absorption was developed for the detection of CH4, C2H6, and C2H4. The system utilized a broadband infrared source, a hollow waveguide (HWG) absorption cell, and [...] Read more.
A multi-gas sensing system based on mid-infrared spectral absorption was developed for the detection of CH4, C2H6, and C2H4. The system utilized a broadband infrared source, a hollow waveguide (HWG) absorption cell, and a tunable Fabry–Pérot (FP) detector. The limits of detection (LODs) of CH4, C2H6, and C2H4 were 7.33 ppm, 2.13 ppm, and 8.09 ppm, respectively. For multi-gas measurements, the support vector machine (SVM) algorithm model was employed to calculate the concentration of each component. The root mean square error of prediction (RMSEP) values for CH4, C2H6, and C2H4 were 15.91 ppm (1.26%), 1.64 ppm (0.57%), and 6.95 ppm (0.55%), respectively. The generation of stimulated absorption spectra of mixed gases was realized, and the sample selection of measurement for accurate concentration calculation of each gas was optimized. The system proposed in this work provides a simple, miniaturized, and cost-effective solution for multi-gas sensing. Full article
(This article belongs to the Special Issue Advanced Sensors for Gas Monitoring)
Show Figures

Figure 1

12 pages, 3771 KiB  
Article
Reflective Semiconductor Optical Amplifier Chip with Low Ripple for C-Band External Cavity Narrow-Linewidth Laser
by Shaojie Li, Haiyang Yu, Haotian Bao, Menghan Ren, Jianguo Liu, Zeqiu Liu and Yulian Cao
Photonics 2025, 12(3), 193; https://doi.org/10.3390/photonics12030193 - 25 Feb 2025
Viewed by 850
Abstract
The main characteristic of a reflective semiconductor optical amplifier chip (RSOA) is that it does not generate optical resonance under electric pumping and maintains the operation state of spontaneous emission. In this paper, a Nb2O5/SiO2/Nb2O [...] Read more.
The main characteristic of a reflective semiconductor optical amplifier chip (RSOA) is that it does not generate optical resonance under electric pumping and maintains the operation state of spontaneous emission. In this paper, a Nb2O5/SiO2/Nb2O5/SiO2 (four-layer Nb2O5/SiO2) film system is employed as the coating material for the output facet of the RSOA. The 3 dB spectral width of the spontaneous emission spectrum from this RSOA reaches 79.4 nm, with a ripple of less than 1 dB occurring across this wavelength range. Notably, around the 1550 nm wavelength, the ripple is as low as 0.5 dB. This represents the best performance reported for this type of chip. The RSOA is packaged as a narrow-linewidth external cavity laser. Under test conditions of 25 °C and 180 mA, the external cavity laser produces an output power of 12.6 mW and achieves a linewidth of 299.8 Hz. Furthermore, by adjusting the Fabry–Pérot (FP) standard cavity, filtering, and other external cavity parameters, the lasing spectrum of the narrow-linewidth external cavity laser based on the RSOA is tunable across a wavelength range from 1535.83 nm to 1561.42 nm, which shows the usability of the proposed ROSA for a C-band external cavity narrow-linewidth laser. Full article
Show Figures

Figure 1

14 pages, 37756 KiB  
Article
Optimized Phase-Generated Carrier Demodulation Algorithm for Membrane-Free Fabry-Pérot Acoustic Sensor with High Sensitivity
by Yang Yang, Xinyu Zhao, Yongqiu Zheng, Juan Cui, Dongqing Zhao, Zhixuan Zheng, Yan Cao and Chenyang Xue
Micromachines 2025, 16(2), 196; https://doi.org/10.3390/mi16020196 - 8 Feb 2025
Viewed by 892
Abstract
Demodulation of fiber optic Fabry–Pérot (F-P) acoustic sensors with high sensitivity and a large dynamic range continues to pose significant challenges. In this paper, we propose an advanced phase-generated carrier (PGC) demodulation algorithm, applied innovatively to membrane-free F-P acoustic sensors operating under high [...] Read more.
Demodulation of fiber optic Fabry–Pérot (F-P) acoustic sensors with high sensitivity and a large dynamic range continues to pose significant challenges. In this paper, we propose an advanced phase-generated carrier (PGC) demodulation algorithm, applied innovatively to membrane-free F-P acoustic sensors operating under high sound pressure. The algorithm optimizes acoustic demodulation results by adjusting the mixing phase delay, achieving the best signal to noise and distortion ratio (SINAD) and total harmonic distortion (THD) (<1%). Additionally, by introducing the cosine component of the acoustic signal obtained directly after filtering the interference signal, into the demodulation algorithm process, the sensitivity of the sensor at high sound pressure is significantly improved. The experimental results show that the ameliorated algorithm obtains a demodulation sensitivity of 34.95 μrad/Pa and a THD of 0.87%, both of which are superior to traditional PGC demodulation algorithms under the same experimental conditions. At the same time, the minimum detectable sound pressure of 129.73 mPa/Hz1/2 was obtained, and the sound pressure tested in the experiment at a frequency of 1 kHz was as high as 3169.78 Pa (164 dB). With the proposed algorithm, the flatness of the frequency response is ±0.82 dB from 100 Hz to 33 kHz, and a dynamic range of up to 102.6 dB was obtained, making it relevant in the field of aerospace acoustic measurements. Full article
Show Figures

Graphical abstract

Back to TopTop