Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = FRP-confined concrete cylinder

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4967 KB  
Article
Effect of Pre-Damage on the Behavior of Axially and Eccentrically Compressed Concrete Cylinders Confined with PBO-FRCM
by Maciej Pazdan, Tomasz Trapko and Michał Musiał
Materials 2025, 18(12), 2881; https://doi.org/10.3390/ma18122881 - 18 Jun 2025
Viewed by 310
Abstract
In the case of strengthening building structures, the process usually involves elements that have a certain loading history and are typically subjected to loading during the strengthening process. In scientific research, on the other hand, strengthening is usually applied to elements that are [...] Read more.
In the case of strengthening building structures, the process usually involves elements that have a certain loading history and are typically subjected to loading during the strengthening process. In scientific research, on the other hand, strengthening is usually applied to elements that are not representative of real structures. This article presents a study of the effect of pre-damage on the behavior of eccentrically compressed concrete cylinders confined with PBO-FRCM (fabric-reinforced cementitious matrix with PBO fibers) composite. Concrete confinement introduces a favorable triaxial stress state, which leads to an increase in the compressive strength of concrete. FRCM systems are an alternative to FRP (fiber-reinforced polymer) composites. Replacing the polymer matrix with a mineral matrix primarily improves the fire resistance of the strengthening system. The elements were made of concrete with a compressive strength of about 40 MPa, which is typical for current reinforced concrete columns. Pre-damage was induced by loading the test elements to 80% of the average compressive strength and then fully unloading. The elements were then strengthened with three layers of PBO-FRCM composite and subjected to axial or eccentric compression with force applied at two different eccentricities. In addition to electric strain gauges, a digital image correlation system was used for measurements, to identify the initiation of PBO mesh overlap delamination. This study analyzed the elements in terms of load-bearing capacity, deformability, ductility, and failure mechanisms. In general, there was no negative effect of pre-damage on the behavior of the tested elements. Full article
(This article belongs to the Special Issue Strengthening, Repair, and Retrofit of Reinforced Concrete)
Show Figures

Figure 1

31 pages, 4528 KB  
Article
Probabilistic Prediction Model for Ultimate Conditions Under Compression of FRP-Wrapped Concrete Columns Based on Bayesian Inference
by Feng Cao, Ran Zhu, Jun-Xing Zheng, Hai-Bin Huang and Dong Liang
Buildings 2025, 15(10), 1720; https://doi.org/10.3390/buildings15101720 - 19 May 2025
Viewed by 534
Abstract
The compressive strength and ultimate strain of FRP-confined concrete cylinders are the key indicators for evaluating their mechanical properties. Accurate prediction of compressive strength and ultimate strain is essential for reliability analysis and design of such components. However, the existing ultimate condition under [...] Read more.
The compressive strength and ultimate strain of FRP-confined concrete cylinders are the key indicators for evaluating their mechanical properties. Accurate prediction of compressive strength and ultimate strain is essential for reliability analysis and design of such components. However, the existing ultimate condition under compression models lack sufficient prediction accuracy, and the results exhibit significant uncertainty. This study proposes a Bayesian model updating method based on Markov Chain Monte Carlo (MCMC) sampling to improve the prediction accuracy of the ultimate condition under compression for FRP-confined concrete cylinders and to quantify the uncertainty of the prediction results. First of all, 1016 sets of experimental data on the ultimate condition under compression of FRP-confined concrete cylinders from previous studies were collected. Subsequently, the probabilistic updating model and evaluation system were established based on Bayesian parameter estimation principle, MCMC sampling, WAIC, and DIC. Then, several representative empirical models for predicting the ultimate condition under compression are selected, and their prediction performance is evaluated using the experimental data. Finally, a Bayesian updating problem is established for typical ultimate condition under compression models, and the posterior distributions of model parameters are obtained using MCMC sampling to select the best model, and the prediction performance of the optimal model is assessed using the experimental data. The results show that, compared with existing empirical models, the Bayesian inference-based probabilistic calculation model provides predictions closer to the experimental values, while also reasonably quantifying the uncertainty of the ultimate condition under compression prediction. Full article
Show Figures

Figure 1

19 pages, 13847 KB  
Article
Effect of GFRP and CFPR Hybrid Confinement on the Compressive Performance of Concrete
by Marina L. Moretti
Fibers 2025, 13(2), 12; https://doi.org/10.3390/fib13020012 - 24 Jan 2025
Cited by 1 | Viewed by 1009
Abstract
Application of hybrid jackets consisting of comparatively stiff FRP materials for the seismic retrofit of substandard RC columns, aiming at reducing the risk of buckling and of brittle failure, which are typical to older columns, is a promising challenge. Given the sparsity of [...] Read more.
Application of hybrid jackets consisting of comparatively stiff FRP materials for the seismic retrofit of substandard RC columns, aiming at reducing the risk of buckling and of brittle failure, which are typical to older columns, is a promising challenge. Given the sparsity of similar experimental data, the objective of this paper is to study the hybrid effect in concrete confined with conventional carbon- and glass- reinforced polymer fabrics (CFRP and GFRP, respectively). Twenty-six concrete cylinders, wrapped by one to three layers of CFRP and GFRP with different fiber configurations, were tested in compression. A clear hybrid effect was observed, consisting of a less brittle failure and an improved confinement as compared to the behavior of simple jackets. Furthermore, hybrid specimens, in which a CFRP layer is substituted by a GFRP layer, appear to display similar efficiency in confinement compared to specimens with a stiffer jacket consisting of more CFRP sheets, which are expected to experience 30 to 40% higher lateral pressure owing to the stiffer jacket. A design model to estimate peak concrete compressive strength and axial strain is proposed. The results are promising towards the potential application of similar hybrid jackets for the seismic rehabilitation of older RC columns. Full article
(This article belongs to the Special Issue Fracture Behavior of Fiber-Reinforced Building Materials)
Show Figures

Figure 1

20 pages, 5934 KB  
Article
Axial Compressive Behavior of CFRP and MWCNT Incorporated GFRP Confined Concrete Cylinders after Exposure to Various Aggressive Environments
by Sruthi Sreekumar Kavitha, Mini K. Madhavan, Karingamanna Jayanarayanan and Prabir Kumar Sarker
J. Compos. Sci. 2024, 8(8), 313; https://doi.org/10.3390/jcs8080313 - 9 Aug 2024
Cited by 1 | Viewed by 1300
Abstract
Fiber-reinforced polymer confinement is considered to be effective in the retrofitting of concrete structures. The current study explores the effectiveness of one- and two-layer carbon fiber reinforced polymer (CFRP) and multiwalled carbon nanotube (MWCNT) incorporated three-layer glass fiber reinforced polymer (GFRP) confinement on [...] Read more.
Fiber-reinforced polymer confinement is considered to be effective in the retrofitting of concrete structures. The current study explores the effectiveness of one- and two-layer carbon fiber reinforced polymer (CFRP) and multiwalled carbon nanotube (MWCNT) incorporated three-layer glass fiber reinforced polymer (GFRP) confinement on concrete cylinders under aggressive exposures, such as acid, alkaline, marine, water, and elevated temperatures. At 1 wt.% MWCNT by weight of the epoxy matrix, mechanical characteristics of the laminate show a significant improvement. In the case of acid exposure, the axial load-carrying capacity of concrete specimens with single-layer CFRP confinement was equal to that of MWCNT incorporated three-layer GFRP confinement (GF3C1-AC). The axial strain of GF3C1-AC was 23% and 12% higher than one and two-layer CFRP confinement. After exposure at 400 °C, in comparison with one- and two-layer CFRP confinement, the axial strain of MWCNT incorporated three-layer GFRP confined specimens increased by 50% and 20%, respectively, which proved the efficacy of MWCNT as a heat-resistant nanofiller. The ultrasonic pulse velocity (UPV) test indicates that the confinement system protects the concrete core from sudden failure by impeding crack propagation. The test results proved that the MWCNT incorporated FRP system can be considered as a prospective substitute for CFRP systems for retrofitting applications in severe environmental conditions. Full article
Show Figures

Figure 1

16 pages, 4770 KB  
Article
Compressive Performance of Longitudinal Steel-FRP Composite Bars in Concrete Cylinders Confined by Different Type of FRP Composites
by Maojun Duan, Yu Tang, Yusheng Wang, Yang Wei and Jiaqing Wang
Polymers 2023, 15(20), 4051; https://doi.org/10.3390/polym15204051 - 11 Oct 2023
Cited by 3 | Viewed by 1630
Abstract
This paper presents an experimental study on the compressive performance of longitudinal steel-fiber-reinforced polymer composite bars (SFCBs) in concrete cylinders confined by different type of fiber-reinforced polymer (FRP) composites. Three types of concrete cylinders reinforced with (or without) longitudinal SFCBs and different transverse [...] Read more.
This paper presents an experimental study on the compressive performance of longitudinal steel-fiber-reinforced polymer composite bars (SFCBs) in concrete cylinders confined by different type of fiber-reinforced polymer (FRP) composites. Three types of concrete cylinders reinforced with (or without) longitudinal SFCBs and different transverse FRP confinements were tested under monotonic compression. The results showed that the post-yield stiffness of SFCBs is higher when confined with high elastic modulus carbon fiber-reinforced polymer (CFRP) composite than with low elastic modulus basalt fiber-reinforced polymer (BFRP) composite. Decreasing confinement spacing did not significantly improve the compressive strength of SFCBs in concrete cylinders. The compressive failure strain of SFCBs could possibly reach 88% of its tensile peak strain in concrete cylinders confined by CFRP sheets, which is significantly higher than the value (around 50%) in previous studies. Existing design equations, which applied a strength reduction factor or a maximum compressive strain of concrete to consider the compressive contributions of SFCBs in concrete members, underestimate the load-carrying capacity of SFCB-reinforced concrete cylinders. The design equation that considers the actual compressive stress of SFCBs gives the most accurate prediction; however, its applicability and accuracy need to be verified with more experimental data. Full article
Show Figures

Figure 1

12 pages, 7691 KB  
Article
Experimental Investigation of Concrete Cylinders Confined with PBO FRCM Exposed to Elevated Temperatures
by Reem Talo, Farid Abed, Ahmed El Refai and Yazan Alhoubi
Fire 2023, 6(8), 322; https://doi.org/10.3390/fire6080322 - 18 Aug 2023
Cited by 11 | Viewed by 2333
Abstract
Externally bonded fiber-reinforced polymers (FRPs) have been widely used for strengthening and retrofitting applications. However, their efficacy is hindered by the poor resistance of their epoxy resins to elevated temperatures and their limited compatibility with concrete substrates. To address these limitations, fabric-reinforced cementitious [...] Read more.
Externally bonded fiber-reinforced polymers (FRPs) have been widely used for strengthening and retrofitting applications. However, their efficacy is hindered by the poor resistance of their epoxy resins to elevated temperatures and their limited compatibility with concrete substrates. To address these limitations, fabric-reinforced cementitious matrix (FRCM), also known as textile reinforced mortar (TRM), systems have emerged as an alternative solution. In this study, experimental tests were performed on concrete cylinders confined with FRCM systems that consisted of mineral mortar and poliparafenilenbenzobisoxazole fabric (PBO). The cylinders with concrete strengths of 30, 45, and 70 MPa, were confined with one or two FRCM layers, and were subjected to different target temperatures (100, 400, and 800 °C). The experimental results highlighted the confinement effect of FRCMs on the compressive strength of the tested cylinders. Cylinders exposed to 100 °C exhibited a slight increase in their compressive strength, while no specific trend was observed in the compressive strength of cylinders heated to 400 °C. Specimens heated up to 800 °C experienced a significant reduction in strength, reaching up to 82%. Full article
Show Figures

Figure 1

32 pages, 9002 KB  
Article
Development of a Reliable Machine Learning Model to Predict Compressive Strength of FRP-Confined Concrete Cylinders
by Prashant Kumar, Harish Chandra Arora, Alireza Bahrami, Aman Kumar and Krishna Kumar
Buildings 2023, 13(4), 931; https://doi.org/10.3390/buildings13040931 - 31 Mar 2023
Cited by 20 | Viewed by 3510
Abstract
The degradation of reinforced concrete (RC) structures has raised major concerns in the concrete industry. The demolition of existing structures has shown to be an unsustainable solution and leads to many financial concerns. Alternatively, the strengthening sector has put forward many sustainable solutions, [...] Read more.
The degradation of reinforced concrete (RC) structures has raised major concerns in the concrete industry. The demolition of existing structures has shown to be an unsustainable solution and leads to many financial concerns. Alternatively, the strengthening sector has put forward many sustainable solutions, such as the retrofitting and rehabilitation of existing structural elements with fiber-reinforced polymer (FRP) composites. Over the past four decades, FRP retrofits have attracted major attention from the scientific community, thanks to their numerous advantages such as having less weight, being non-corrodible, etc., that help enhance the axial, flexural, and shear capacities of RC members. This study focuses on predicting the compressive strength (CS) of FRP-confined concrete cylinders using analytical models and machine learning (ML) models. To achieve this, a total of 1151 specimens of cylinders have been amassed from comprehensive literature studies. The ML models utilized in the study are Gaussian process regression (GPR), support vector machine (SVM), artificial neural network (ANN), optimized SVM, and optimized GPR models. The input parameters that have been used for prediction include the geometrical characteristics of specimens, the mechanical properties of FRP composite, and the CS of concrete. The results of the five ML models are compared with nineteen analytical models. The results evaluated from the ML algorithms imply that the optimized GPR model has been found to be the best among all other models, demonstrating a higher correlation coefficient, root mean square error, mean absolute percentage error, mean absolute error, a-20 index, and Nash–Sutcliffe efficiency values of 0.9960, 3.88 MPa, 3.11%, 2.17 MPa, 0.9895, and 0.9921, respectively. The R-value of the optimized GPR model is 0.37%, 0.03%, 5.14%, and 2.31% higher than that of the ANN, GPR, SVM, and optimized SVM models, respectively, whereas the root mean square error value of the ANN, GPR, SVM, and optimized SVM models is, respectively, 81.04%, 12.5%, 471.77%, and 281.45% greater than that of the optimized GPR model. Full article
(This article belongs to the Special Issue Research on Performance of Buildings Structures and Materials)
Show Figures

Figure 1

23 pages, 3700 KB  
Article
Effects of Small Deviations in Fiber Orientation on Compressive Characteristics of Plain Concrete Cylinders Confined with FRP Laminates
by Ali Banaeipour, Mohammadreza Tavakkolizadeh, Muhammad Akbar, Zahoor Hussain, Krzysztof Adam Ostrowski, Alireza Bahadori and Mariusz Spyrka
Materials 2023, 16(1), 261; https://doi.org/10.3390/ma16010261 - 27 Dec 2022
Cited by 15 | Viewed by 3362
Abstract
The effectiveness of concrete confinement by fiber-reinforced polymer (FRP) materials is highly influenced by the orientation of fibers in the FRP laminates. In general, acceptable deviation limit from the intended direction is given as 5° in most design guidelines, without solid bases and [...] Read more.
The effectiveness of concrete confinement by fiber-reinforced polymer (FRP) materials is highly influenced by the orientation of fibers in the FRP laminates. In general, acceptable deviation limit from the intended direction is given as 5° in most design guidelines, without solid bases and reasoning. In this paper, a numerical study using finite element modeling was conducted to assess the effects of small deviations in fiber orientation from the hoop direction on compressive behavior of concrete cylinders confined with FRP. Different fiber angles of 0°, 2°, 5°, 8°, 10° and 15° with respect to hoop direction, unconfined concrete compressive strengths of 20, 35 and 50 MPa, FRP thicknesses of 0.2, 0.5 and 1.0 mm and FRP moduli of elasticity of 50 and 200 GPa were considered. The results showed that total dissipated energy (Et), ultimate axial strain (εcu) and compressive strength (fcu) exhibited the most reduction with deviation angle. For 5° deviation in fiber orientation, the average reduction in fcu, εcu and Et were 2.4%, 2.8% and 4.5%, respectively. Furthermore, the calculated allowable limit of deviation in fiber orientation for a 2.5% reduction in fcu, εcu and Et were 6°, 3° and 2°, respectively, with a 95% confidence. Full article
Show Figures

Figure 1

20 pages, 5192 KB  
Article
High Temperature Performance of Concrete Confinement by MWCNT Modified Epoxy Based Fiber Reinforced Composites
by Lakshmi Joseph, Mini K. Madhavan, Karingamanna Jayanarayanan and Alessandro Pegoretti
Materials 2022, 15(24), 9051; https://doi.org/10.3390/ma15249051 - 18 Dec 2022
Cited by 10 | Viewed by 1966
Abstract
The conventional method of fiber reinforced polymer (FRP) wrapping around concrete columns uses epoxy as the binder along with synthetic or natural fibers such as carbon, glass, basalt, jute, sisal etc. as the reinforcement. However, the thermal stability of epoxy is a major [...] Read more.
The conventional method of fiber reinforced polymer (FRP) wrapping around concrete columns uses epoxy as the binder along with synthetic or natural fibers such as carbon, glass, basalt, jute, sisal etc. as the reinforcement. However, the thermal stability of epoxy is a major issue in application areas prone to fire exposure. The current work addressed this major drawback of epoxy by modifying it with a nanofiller, such as multiwalled carbon nanotubes (MWCNT), and reinforcing it using basalt and sisal fibers. The effect of exposure to elevated temperature on the behavior of concrete cylinders externally confined with these FRP systems was analyzed. Three types of specimens were considered: unconfined; confined with sisal fiber reinforced polymer (SFRP); and confined with hybrid sisal basalt fiber reinforced polymer (HSBFRP) specimens. The test samples were exposed to elevated temperature regimes of 100 °C, 200 °C, 300 °C and 400 °C for a period of 2 h. The compressive strengths of unconfined specimens were compared with various confined specimens, and from the test results, it was evident that the mechanical and thermal durability of the FRP systems was substantially enhanced by MWCNT incorporation. The reduction in the compressive strength of the FRP-confined specimens varied depending on the type of the confinement. After two hours of exposure at 400 °C, the compressive strength corresponding to the epoxy–HSBFRP-confined specimens were improved by 15%, whereas a 50% increase in strength corresponding to MWCNT-incorporated epoxy–HSBFRP-confined specimens was observed with respect to unconfined unexposed specimens. The MWCNT-modified epoxy-incorporated FRP-confined systems demonstrated superior performance even at elevated temperatures in comparison to unconfined specimens at ambient temperatures. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

14 pages, 2598 KB  
Article
Experimental Study on Compressive Behavior of Concrete Cylinders Confined by a Novel Hybrid Fiber-Reinforced Polymer Spiral
by Yu Tang, Xiaowan Lu, Yang Wei and Shitong Hou
Polymers 2022, 14(21), 4750; https://doi.org/10.3390/polym14214750 - 5 Nov 2022
Cited by 3 | Viewed by 2383
Abstract
Modern fiber-reinforced polymer (FRP)-reinforced concrete structures are excepted to achieve superior mechanical performances and long service lives, even in harsh service environments. Hybrid FRP material could potentially meet this goal with its relatively high strength-to-cost ratio. This paper presents an experimental study on [...] Read more.
Modern fiber-reinforced polymer (FRP)-reinforced concrete structures are excepted to achieve superior mechanical performances and long service lives, even in harsh service environments. Hybrid FRP material could potentially meet this goal with its relatively high strength-to-cost ratio. This paper presents an experimental study on the compressive behavior of concrete cylinders confined by a novel hybrid fiber-reinforced polymer (HFRP) spiral. Nine types, forming a total of 27 confined or non-confined concrete cylinders, were subjected to an axial compressive-loading test. Concrete cylinders confined either with different spiral types or different spiral spacings were comparatively studied in the experiment. The results showed that the compressive failure modes and the stress–strain relationships of the HFRP-spiral-confined cylinders were similar to those of basalt-fiber-reinforced polymer (BFRP)-spiral-confined cylinders. The actual fracture strain of the HFRP spiral (tested as a single rod) was larger than that of the corresponding carbon-fiber-reinforced polymer (CFRP) bar, indicating the advantageous composite effect of the HFRP spiral. The maximum strain of the HFRP spiral reached over 70% of its ultimate strain in the cylinders compared to the BFRP spiral, which only reached 50%. Most of the existing models overestimated the ultimate stress and strain of the HFRP-spiral-confined cylinders. Wu’s model was proved to be the most accurate model, yet proper modification was required for predicting the peak strain of the HFRP-confined cylinders. Full article
Show Figures

Figure 1

20 pages, 4157 KB  
Article
Dynamic Splitting Tensile Behaviour of Concrete Confined by Natural Flax and Glass FRP
by Wenjie Wang, Zonglai Mo, Yunpeng Zhang and Nawawi Chouw
Polymers 2022, 14(20), 4424; https://doi.org/10.3390/polym14204424 - 19 Oct 2022
Cited by 6 | Viewed by 2185
Abstract
Flax fibre has been used to reinforce concrete composite, but its dynamic properties have not been thoroughly studied. This study investigates the dynamic splitting tensile properties of plain concrete (PC) confined by flax-fibre-reinforced polymer (FFRP) and glass-fibre-reinforced polymer (GFRP). The dynamic splitting tensile [...] Read more.
Flax fibre has been used to reinforce concrete composite, but its dynamic properties have not been thoroughly studied. This study investigates the dynamic splitting tensile properties of plain concrete (PC) confined by flax-fibre-reinforced polymer (FFRP) and glass-fibre-reinforced polymer (GFRP). The dynamic splitting tensile tests were carried out on PC, FFRP-PC, and GFRP-PC cylinder specimens by the high-speed servo-hydraulic machine, with the impact-induced strain rates ranging from 0.1 to 58 s−1. The effect of the FRP confinement, FRP thickness and strain rate on the dynamic splitting tensile behaviour were assessed. The results indicated that similar confinement effectiveness of FFRP and GFRP is observed. The dynamic tensile strength of 1- and 2-layer FFRP-PC increased by 29% and 67%, and the one- and two-layer GFRP-PC increased by 32% and 84%, respectively. FFRP-PC and GFRP-PC cylinders showed less sensitivity to the strain rate compared with PC. The empirical relationship between the tensile DIF and strain rate for PC, FFRP-PC and GFRP-PC was proposed based on experimental data. The proposed model was developed to predict the dynamic splitting tensile strength. The results suggested the potential of FFRP composites applied into concrete structures under extreme dynamic loadings. Full article
(This article belongs to the Special Issue Mechanical Properties of Fiber Reinforced Polymer Composites)
Show Figures

Figure 1

18 pages, 36584 KB  
Article
Effect of Aggregate Size on the Axial Compressive Behavior of FRP-Confined Coral Aggregate Concrete
by Pengda Li, Deqing Huang, Ruiyu Li, Rongkang Li and Fang Yuan
Polymers 2022, 14(18), 3877; https://doi.org/10.3390/polym14183877 - 16 Sep 2022
Cited by 12 | Viewed by 1947
Abstract
Using locally available raw materials for preparing concrete, such as coral reefs, seawater, and sea sand, is conducive to compensating for the shortage of construction materials used on remote islands. Jacketing fiber-reinforced polymer (FRP), as passive confinement, is a practical approach to enhance [...] Read more.
Using locally available raw materials for preparing concrete, such as coral reefs, seawater, and sea sand, is conducive to compensating for the shortage of construction materials used on remote islands. Jacketing fiber-reinforced polymer (FRP), as passive confinement, is a practical approach to enhance the strength, ductility, and durability of such coral aggregate concrete (CAC). Rational and economical CAC structural design requires understanding the interactions between the CAC fracture process and FRP confinement. The coral aggregate size is the critical parameter of their interaction since it affects the crack propagation of CAC and FRP confinement efficiency. This study conducted axial compression tests on FRP-confined CAC cylinders with varying coral aggregate sizes and FRP confinement levels. The test results indicate that the coral aggregate sizes affected the unconfined CAC strength. In addition, the dilation behavior of FRP-confined CAC varied with aggregate sizes, showing that CAC with smaller coral aggregate featured a more uniform hoop strain distribution and larger FRP rupture strain. These coupling effects are epitomized by the variation in the transition stress on the stress–strain curve, which makes the existing stress–strain models not applicable for FRP-confined CAC. A modified stress–strain model is subsequently proposed. Finally, the practical and environmental implications of the present study are discussed. Full article
(This article belongs to the Special Issue Mechanical Properties of Fiber Reinforced Polymer Composites)
Show Figures

Figure 1

21 pages, 6263 KB  
Article
Hemp FRRP Confined Lightweight Aggregate Concrete (LWAC) Circular Columns: Experimental and Analytical Study
by Suniti Suparp, Krisada Chaiyasarn, Nazam Ali, Chaitanya Krishna Gadagamma, Ahmed W. Al Zand, Ekkachai Yooprasertchai, Qudeer Hussain, Panuwat Joyklad and Muhammad Ashraf Javid
Buildings 2022, 12(9), 1357; https://doi.org/10.3390/buildings12091357 - 1 Sep 2022
Cited by 4 | Viewed by 2316
Abstract
Intrinsically, lightweight aggregate concrete (LWAC) suffers from the low compressive strength and deformation capacity. This restricts the use of LWAC mainly to non-structural applications. Several studies have highlighted the potential of synthetic fiber-reinforced polymer (FRP) jackets for improving the substandard properties of the [...] Read more.
Intrinsically, lightweight aggregate concrete (LWAC) suffers from the low compressive strength and deformation capacity. This restricts the use of LWAC mainly to non-structural applications. Several studies have highlighted the potential of synthetic fiber-reinforced polymer (FRP) jackets for improving the substandard properties of the LWAC. However, the high costs associated with FRP jackets are generally a concern. This study identifies hemp fiber-reinforced rope polymer (FRRP) wraps as a potential alternative to the synthetic FRP jackets. The salient features of hemp FRRP include its low cost and easy availability. Therefore, the main question that needs to be answered is: can hemp FRRP strengthen LWAC as a low-cost alternative to synthetic FRP jackets? To quantitatively explain the effects of lightweight aggregates on concrete compressive strength, 24 concrete cylinders were tested in three groups. Group 1, 2, and 3 cylinders comprised 0, 50, and 100% of lightweight aggregates as natural aggregate replacements. The peak stress of the concrete was reduced by 34% and 49% in the presence of 50% and 100% lightweight aggregates, respectively. It was concluded that a single layer of hemp FRRP on Group 2 cylinders (i.e., 50% aggregate replacement) was sufficient to enhance the peak stress to the same level as that of the control cylinder in Group 1 (i.e., fabricated using natural aggregates only). At the same time, it took two layers of external FRRP on Group 3 cylinders to achieve the same strength. A positive correlation between the peak stress of the LWAC and the number of hemp FRRP layers was observed. Nonetheless, Group 1 and 3 cylinders formed the upper and lower bounds in terms of peak stress for the same level of confinement. Further to the interest, three layers of hemp FRRP shifted brittle compressive stress–strain response to a bi-linear response for all amounts of lightweight aggregates. Several existing analytical peak stress models were assessed in predicting the experimental results. From the results, it was inferred that none of these models predicted the compressive strength of all three groups of cylinders consistently. Full article
Show Figures

Figure 1

15 pages, 4841 KB  
Article
Application of Group Method of Data Handling on the Ultimate Conditions’ Prediction of FRP-Confined Concrete Cylinders
by Chubing Deng, Ruiliang Zhang and Xinhua Xue
Polymers 2022, 14(17), 3615; https://doi.org/10.3390/polym14173615 - 1 Sep 2022
Cited by 10 | Viewed by 1765
Abstract
Fiber-reinforced polymer (FRP) is widely used in the field of structural engineering, for example, as a confining material for concrete. The ultimate conditions (i.e., compressive strength and ultimate axial strain) are key factors that need to be considered in the practical applications of [...] Read more.
Fiber-reinforced polymer (FRP) is widely used in the field of structural engineering, for example, as a confining material for concrete. The ultimate conditions (i.e., compressive strength and ultimate axial strain) are key factors that need to be considered in the practical applications of FRP-confined concrete cylinders. However, the prediction accuracy of existing confinement models is low and cannot provide an effective reference for practical applications. In this paper, a database containing experimental data of 221 FRP-confined normal concrete cylinder specimens was collected from the available literature, and eleven parameters such as the confining stress, stiffness ratio and strain ratio were selected as the input parameters. Then, a promising machine learning algorithm, i.e., group method of data handling (GMDH), was applied to establish a confinement model. The GMDH model was compared with nine existing models, and the prediction results of these models were evaluated by five comprehensive indicators. The results indicated that the GMDH model had higher prediction accuracy and better stability than existing confinement models, with determination coefficients of 0.97 (compressive strength) and 0.91 (ultimate axial strain). Finally, a convenient graphical user interface (GUI) was developed, which can provide a quick and efficient reference for engineering design and is freely available. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

16 pages, 2779 KB  
Article
Pre-Load Effect on CFRP-Confinement of Concrete Columns: Experimental and Theoretical Study
by Francesco Micelli, Alessio Cascardi and Maria Antonietta Aiello
Crystals 2021, 11(2), 177; https://doi.org/10.3390/cryst11020177 - 10 Feb 2021
Cited by 19 | Viewed by 3505
Abstract
The axial compression strength of concrete columns has been proved to be significantly enhanced by external confinement. In this perspective, the use of Fiber-Reinforced Polymers (FRPs) has been extensively studied. In practical applications, the FRP-confinement is installed on loaded columns, which can already [...] Read more.
The axial compression strength of concrete columns has been proved to be significantly enhanced by external confinement. In this perspective, the use of Fiber-Reinforced Polymers (FRPs) has been extensively studied. In practical applications, the FRP-confinement is installed on loaded columns, which can already be significantly deformed, while theoretical models neglect this aspect. This paper concerns a new experimental investigation on the possibility that a pre-existing axial load affects the FRP-confinement of concrete. The research program also aimed at the development of a new analysis-oriented-model for the prediction of the compressive strength of FRP-jacketed concrete columns, depending on the level of the axial load, acting before the confinement. For this purpose, series of small-scale concrete cylinders were first loaded, then confined with Carbon FRP, and finally subjected to destructive pure axial compression tests. Four different levels of pre-existing loads were simulated, including the un-loaded condition. Full article
(This article belongs to the Special Issue Composite Systems for Structural Strengthening)
Show Figures

Figure 1

Back to TopTop