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Abstract: The effectiveness of concrete confinement by fiber-reinforced polymer (FRP) materials is
highly influenced by the orientation of fibers in the FRP laminates. In general, acceptable deviation
limit from the intended direction is given as 5◦ in most design guidelines, without solid bases and
reasoning. In this paper, a numerical study using finite element modeling was conducted to assess
the effects of small deviations in fiber orientation from the hoop direction on compressive behavior of
concrete cylinders confined with FRP. Different fiber angles of 0◦, 2◦, 5◦, 8◦, 10◦ and 15◦ with respect
to hoop direction, unconfined concrete compressive strengths of 20, 35 and 50 MPa, FRP thicknesses
of 0.2, 0.5 and 1.0 mm and FRP moduli of elasticity of 50 and 200 GPa were considered. The results
showed that total dissipated energy (Et), ultimate axial strain (ε′cu) and compressive strength ( f ′cu)
exhibited the most reduction with deviation angle. For 5◦ deviation in fiber orientation, the average
reduction in f ′cu, ε′cu and Et were 2.4%, 2.8% and 4.5%, respectively. Furthermore, the calculated
allowable limit of deviation in fiber orientation for a 2.5% reduction in f ′cu, ε′cu and Et were 6◦, 3◦ and
2◦, respectively, with a 95% confidence.

Keywords: confinement; fiber-reinforced polymer; fiber orientation; concrete cylinders; compressive
characteristics; finite element modeling

1. Introduction

The need for rapid, safe and efficient repair of concrete structures has grown in recent
years [1–3]. Repairing, retrofitting and strengthening of damaged concrete columns using
fiber-reinforced polymer (FRP) laminates as confinement has become widely accepted in
civil infrastructures due to the high tensile strength, light weight and corrosion resistance
of these materials [2–5]. FRP confinement of concrete columns enhances their compres-
sive strength and ductility. Several parameters influence the effectiveness of confinement;
among which are compressive strength of plain concrete, modulus of elasticity, FRP thick-
ness and fiber orientation of FRP laminates. To date, however, less attention has been
paid to the impact of fiber orientation on behavior of concrete strengthened with FRP
laminates [6]. The mechanical behavior of FRP laminates could be maximized by aligning
fibers along the optimum orientation. It is important to remember to ensure the proper
orientation of the fibers in the laminate when reinforcing each structural element and adjust
this direction depending on the stress distribution in the element. In the case of concrete
columns subjected to uniaxial compressive loading, it is well established that fibers should
be lined up along the hoop (circumferential) direction to restrict the dilation of the con-
crete core under compression [7–12]. In this case, polymer fiber mats with unidirectional

Materials 2023, 16, 261. https://doi.org/10.3390/ma16010261 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma16010261
https://doi.org/10.3390/ma16010261
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0003-2695-5115
https://orcid.org/0000-0001-5047-5862
https://doi.org/10.3390/ma16010261
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma16010261?type=check_update&version=2


Materials 2023, 16, 261 2 of 23

reinforcement are most often used for strengthening. Additionally, important mechanical
properties of FRP materials, such as strength and modulus of elasticity as shown in fib
Bulletin [13], are highly influenced by fiber orientation. Even small variations in fiber angle
will result in significant reduction in expected property enhancements [14]. In existing
design guidelines, the acceptable limit for the deviation from the intended direction of fiber
alignment is given as 5◦ [15], without any reported reasoning. Therefore, it is important to
understand and systematically investigate the influence of deviation in fiber orientation on
the behavior of FRP-confined concrete columns under axial loading.

Most studies on FRP-confined concrete columns have focused on the use of fibers in
the hoop direction due to the anticipated effect of increasing axial capacity and simplicity.
A number of studies reported their findings on FRP-confined concrete specimens with fibers
in inclined directions. These studies are mainly focused on the effect of different stacking
sequences of cross-ply FRP wraps (e.g.,±45◦ and ±90◦), or different winding angles in the
case of concrete-filled FRP tubes (CFFTs), with fiber orientations of more than 15◦ (not small
deviations) with respect to hoop direction [6–12,16–31]. No discussions can be found in these
studies on how changes in fiber orientation affect the behavior of strengthened concrete. Some
studies [6–12,16–31], including two numerical investigations [16–23], tested different FRP
stacking sequence configurations (such as ±30◦, ±45◦, ±60◦, 0◦/±45◦, etc.) [6–12,16–31],
and observed that hoop fibers and inclined cross-ply fibers result in higher strengths and
more ductility, respectively. They attributed that to a distinct re-orientation mechanism
of fibers in angular cross-ply FRP wraps to dissipate energy, but found these ply mix
sequences not mechanically efficient in strength enhancement [10]. Other studies by Micelli
et al. [7] examined the effect of various experimental parameters on the confinement
effectiveness of FRP made of carbon fibers (CFRP) and glass fibers (GFRP). Elsanadedy
et al. [32] demonstrated the insignificant effect of the size of an FRP concrete specimen on
the confinement–stress ratio, based on experimental research and non-linear finite element
analysis. This discovery will help narrow down the number of samples needed for analysis.
However, neither Elsanadedy et al. [32] nor Micelli et al. [7] took into account the effect of
small deviations in fiber orientation.

Numerous research studies experimentally investigated the axial compressive behav-
ior of fiber-reinforced polymer tube-confined concrete cylinders in the past two decades [33].
Only a handful of studies investigated the effect of fiber orientation when using unidi-
rectional FRP wraps (not cross-ply wraps). Li et al. [10] and Li [11] studied the effect of
fiber orientation on the structural behavior of FRP-confined concrete and found that fiber
orientation had a considerable effect on compressive behavior. They observed a reduction
in strength and ductility enhancement when fibers are not aligned in the hoop direction,
due to possible in-plane shear and transverse tension mechanisms controlling the failure.
Vincent and Ozbakkaloglu [6] investigated CFFT specimens with fibers aligned at 15◦,
30◦ and 45◦ with respect to hoop direction and came to the similar conclusion that the
axial compressive behavior is highly sensitive to fiber orientation. It has been proven
that the mechanical performance of specimens was optimized when fibers aligned in the
hoop direction and a significant reduction in fiber efficiency with deviation from the hoop
direction has been observed. It can be concluded from the literature that using stacking
sequences consisting of both hoop fibers and inclined cross-ply fibers enhances the ductility
of concrete confined with FRP. Moreover, using inclined fibers in the case of single, unidi-
rectional wraps (that is, deviation in fiber orientation with respect to hoop direction) results
in lower compressive strength and ductility enhancement, when comparing to straight
orientation of fibers.

As discussed before, the majority of existing studies tested a variety of cross-ply
wraps with inclined fibers in different stacking sequence configurations and types of
mixes. However, in practice, most columns are confined with unidirectional wraps in
the hoop direction, and that is where the effects of deviations in fiber orientation and
evaluating the current deviation limit of 5◦ in design codes become important. Moreover,
only a comprehensive study of all significant parameters (fiber orientation, unconfined
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and confined concrete strength, modulus of elasticity of FRP and thickness—number of
layers) results in a complete understanding of the effects of deviation in fiber orientation.
No study to date has thoroughly investigated the influence of small deviations in fiber
orientation, combined with three other significant parameters, on the axial behavior of
concrete columns confined with FRP.

Studies were also carried out on FRP strengthening reinforced concrete beams, includ-
ing those with complex T-beams [34,35]. The change in the behavior of reinforced concrete
tees with insufficient shear strength under vertical load as a result of reinforcement with
glass fiber-reinforced polymer composites (GFRP) in various configurations was studied
by Sadeq A.H. AL-Shalif et al. [34]. In the case of shear, the focus was on aligning the
fibers in the direction of the shear force due to the expected effect of increasing the load
capacity. The reinforcement of shear-deficient T-beams is not as easy as rectangular beams
due to the presence of plates, therefore, the FRP fixing was achieved by both gluing and
anchoring [33–35]. This study primarily focuses on the effect of small fiber-orientation
deviations on the compression characteristics of ordinary concrete cylinders closed with
FRP laminates, which cannot be directly related to the described example of beam rein-
forcement. It is worth noting, however, that the mentioned studies also did not include a
comparison of the results obtained for small deviations of the fiber orientation in relation
to the assumed values.

As described above, it is rare to analyze the parameters of the FRP composite depend-
ing on small deviations of the fiber inclination angle, moreover, the analysis of stress–strain
models to predict the strength and strain enhancement ratio of fiber-reinforced polymer
tube-confined concrete cylinders under axial compression is also very rare [33]. Therefore,
this article is valuable from two perspectives. In their research, Khan Qasim S et al. [33]
developed strength and strain enhancement ratio models for circular fiber-reinforced poly-
mer tube-confined concrete under axial compression based on an artificial neural network
using experimental test results.

A particularly important issue can be found in the research of Seffo M. et al. [36]. Their
experimental results indicated that the strength of the confined concrete cylinder increases
in direct proportion to the number of layers of composites, and, moreover, fiber orientation
is one of the important parameters that affect strength and ductility of CFRP-confined
concrete. This was also noted by Ahmed Sulaimana et al. [37] in their published results
of an ongoing experimental investigation examining the effect of fiber orientation and
stacking sequence on the behavior of FRP-confined concrete, where it can be seen that the
specimens were confined using various CFRP stacking sequences, with fibers oriented at
0◦, 90◦ and 3:45◦. It is very important that they included a very small angle in the study.
The preliminary results show that parameters such as fiber orientation, stacking sequence
and number of confinement layers have a direct impact on the strength, ductility and
stress–strain behavior of CFRP-confined concrete [37].

Research Significance

The key parameters affecting the performance of FRP-confined concrete columns are
concrete compressive strength, modulus of elasticity, thickness and fiber orientation of FRP
laminates. To date, however, less attention has been paid to fiber orientation. Mechanical
properties of FRP materials are highly influenced by fiber orientation, and even small
variations in fiber angle will result in major reductions in expected property enhancements.
In the current ACI 440.2 design guidelines, the acceptable limit for the deviation from
the intended direction of fiber alignment is given as 5◦, without any reported reasoning.
No study to date has thoroughly investigated the influence of small deviations in fiber
orientation, combined with three other key parameters, on the axial behavior of FRP-
confined concrete columns. The current study tries to provide a better understanding by
systematically investigating the influence of deviation in fiber orientation on the behavior
of FRP-confined concrete columns under axial loading.
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This paper reports on a numerical study aimed at investigating the effects of small
deviations in fiber orientation on important compressive characteristics of concrete columns
confined with FRP using finite element analysis (FEA). Firstly, a summary of the finite
element (FE) modeling is provided. Then, a validation of the FE modeling by comparing
the results with available experimental data is presented. Following this, the results of
the parametric study are offered, in which the effects of deviation in fiber orientation
with respect to hoop direction on stress–strain behavior, compressive capacity, ultimate
deformation and energy dissipation of FRP-confined concrete are discussed. In addition,
the loss of ultimate concrete compressive stress and strain along with the reduction in the
total dissipated energy corresponding to 5◦ deviations (allowable value of deviation in most
design codes) are presented. Finally, allowable values of deviation in fiber orientation with
practical confidences (95% and 99%) for a range of declines in the mentioned properties are
suggested.

2. Finite Element Modeling

General purpose FEA software Abaqus®-Standard (implicit with 100 time steps per
numerical specimen) was employed to generate numerical models and simulate the struc-
tural response of the concrete columns strengthened with FRP. The output of the generated
models was validated against available experimental results.

2.1. Geometry, Boundary Conditions, Loading and Failure Criterion

The geometry and boundary conditions of the columns are described in this section.
Fully wrapped concrete cylinders had dimensions of 152 × 305 mm. Given the geometry
of the model, a cylindrical coordinate system was defined and assigned to the specimens.
Since the complete stress–strain behavior of the columns was determined, the loading was
applied under a displacement control regimen from the top of the samples. In order to
apply the axial displacement as loading, the columns were fixed at the top and bottom in
all directions, except for the longitudinal direction at the top. Two rigid plates were defined
and attached to both ends in order to uniformly distribute the applied displacement. To
define the friction between contacting surfaces of the concrete and rigid plates, the Coulomb
friction model was used. This model requires the coefficient of friction. For dry interfaces
of concrete and steel, the value is suggested as 0.57 [38,39]. It is assumed that there is no
relative slip and deboning between the single-ply FRP wrap and concrete, so two parts
were tied together. Since many previous researchers reported that the ultimate failure of
the confined concrete columns was determined by the rupture of FRP wrap, the failure was
controlled by the ultimate tensile strain of the FRP laminate [39–43]. The geometry of the
model is illustrated in Figure 1.
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2.2. Modeling of FRP Wrap

The unidirectional FRP laminate was defined as a deformable shell material with a
linear elastic behavior. Shell element “S4R” was selected for FRP laminates. In order to
obtain accurate results from the FE modeling, the element size of the FRP wrap and outer
surface of the concrete cylinder were assigned as equal to ensure both materials shared
the same nodes. Under a plane stress condition, which is the case in a shell element, only
the values of E1, E2, ν12 and G12 need to be defined, since unidirectional FRP laminate
is considered an “especially orthotropic material” or a “transversely isotropic material”.
It should be noted that direction 1 represents fiber direction and direction 2 represents
transverse direction. Therefore, for example, E1 stands for FRP modulus of elasticity
(Young’s modulus) in the fiber direction (direction 1), and G12 and ν12 denote FRP shear
modulus and FRP Poisson’s ratio in the plane (1,2), respectively.

2.3. Modeling of FRP-Confined Concrete

Concrete was considered as an isotropic elastic body and was defined as a deformable
material with both elastic and plastic behaviors. Solid element “C3D8R” was selected
for concrete. The elastic behavior of concrete is defined by its elastic modulus, Ec, and
Poisson’s ratio, νc. In this study, νc is set to be 0.2, and Ec can be obtained from Equation
(1) [44]:

Ec = 4730
√

f ′co(MPa) (1)

where f ′co is the unconfined concrete strength. Additionally, the axial strain at the peak
stress of unconfined concrete, εco, can be obtained from Equation (2) [45], if not available:

εco = 0.000937 4
√

f ′co(MPa) (2)

The plastic behavior of FRP-confined concrete is defined by the linear extended
Drucker–Prager (DP) plasticity model. This model has been shown to perform well in
modeling the stress–strain behavior of confined concrete [46–48]. The accuracy of the
model largely depends on the sound evaluation of its parameters that determine the yield
criterion, hardening/softening law and flow rule. In order to implement the DP plasticity
model, three following key parameters are required: friction angle (ϕ), flow stress ratio (K)
and dilation angle (β).

The yield criterion in the linear DP model is defined by the angle of friction, which
is assumed to be 54◦ based on previous studies [47,48]. To ensure that the yield surface
remains convex, K should lie between 0.78 and 1.00 [49]. In this study, K was assumed to
be 1.00 for confined concrete. The plastic dilation angle is the major parameter governing
the DP flow rule. Jiang et al. [48] established the plastic dilation angle as a function of
axial plastic strain (εp

c ) and the lateral stiffness ratio (ρ). They subsequently developed two
relationships for calculating the plastic dilation angle (Equations (3) and (4)), which were
used in this study:

β =
β0 + M0ε

p
c +

(
0.17ρ2 − 4.9ρ+ 1045

)
β0ε

p
c +

(
0.025e6ρ2 − 2.52e6ρ+ 4.27e7

)(
ε

p
c

)2

1 + (0.17ρ2 − 4.9ρ+ 1045)εp
c + (−9767.8ρ+ 7.3e5)

(
ε

p
c

)2 , ρ ≤ 35 (3)

β =
β0 + M0ε

p
c +

(
0.17ρ2 − 4.9ρ+ 1045

)
β0ε

p
c + (−0.25e6ρ− 6.73e6)

(
ε

p
c

)2

1 + (0.17ρ2 − 4.9ρ+ 1045)εp
c + (6398.7ρ+ 1.84e5)

(
ε

p
c

)2 , ρ > 35 (4)

β0 = 37
◦

& M0 = 157000 & ρ =
2E f rpt f rp

D f ′co
(5)



Materials 2023, 16, 261 6 of 23

where E f rp, t f rp and D are FRP modulus of elasticity in hoop direction, FRP thickness and
diameter of concrete cylinder, respectively. β0 is the initial slope of β, and M0 is a constant.
Axial plastic strain (εp

c ) is a function of lateral stress (σl) and is calculated as follows:

ε
p
c = εc −

1
Ec

(σc − 2νcσl) (6)

σl =
2E f rp t f rp ε l

D
(7)

where ε l is the lateral strain of the FRP wrap and is manually selected from 0 to the ultimate
tensile strain. In Abaqus®, material properties can be made dependent on the so-called
“solution-dependent field variables” (SDFV) using the user-defined subroutine USDFLD.
The SDFV is a field variable that varies throughout the solution process. In this study, the
plastic dilation angle relationship was calculated using the stated equations and entered
into the model as tabular data through the SDFV option.

Finally, to define the DP hardening law in the program, the relationship between axial
plastic strain (εp

c ) and yield stress should be defined. The values of concrete axial strain
(εc) and axial stress (σc) are needed to calculate these parameters at each displacement
increment. In this study, εc and σc were obtained using the analysis-oriented stress–strain
model for FRP-confined concrete proposed by Jiang and Teng [43].

3. Validation of the FEM

Firstly, to select the optimum mesh size, a sensitivity analysis was performed. Mesh
sizes of 10, 20 and 30 mm were considered, and the numerical results were compared to
existing experimental data. All mesh sizes led to good agreement between the numerical
and experimental results, and noticeable improvements were not observed when using
a finer (10 mm) mesh size. Therefore, to reduce the computation time and have uniform
stress contours, the optimum mesh size of 20 mm was chosen. In the next step, the accuracy
of the proposed FE model was validated by numerical simulation of existing experimental
results reported in the literature [39,43,50]. Table 1 illustrates the comparison between
the experimental results and numerical simulation of eight independent specimens with
various concrete and FRP wrap properties. These different specimens, tested in three
different studies, were selected to further ensure the validity of the current FE model. It
should be noted that in Table 1, εcu and f ′cu are ultimate axial strain and ultimate axial stress
of concrete confined with FRP, respectively. As shown in Figure 2, the FEA results are in
strong agreement with the experimental data. The average errors were 2.9% and 4.6% for
ultimate axial stress and strain, respectively, as shown in Table 1. Consequently, the FE
modeling in the present study was considered valid and the parametric study could be
conducted.

Table 1. Comparison of FE modeling and experimental test results.

ID Source f’
co (MPa) Efrp (GPa) tfrp (mm) εcu (%) εcu (FE) (%) Error (%) f’

cu (MPa) f’
cu (FE) (MPa) Error (%)

X1 Xiao and Wu
[42] 34 105 0.38 1.41 1.36 3.6 49.3 52.1 5.7

X2 Xiao and Wu
[42] 34 105 0.76 2.18 2.21 1.4 71.8 73.5 2.4

X3 Xiao and Wu
[42] 34 105 1.14 3.04 2.99 1.6 94.2 91.6 2.8

J1 Jiang and Teng
[46] 38 240.7 0.68 2.53 2.69 6.3 106.9 107.3 0.4

J2 Jiang and Teng
[46] 38 240.7 1.02 3.08 3.12 1.3 135.1 139.1 2.9

J3 Jiang and Teng
[46] 38 240.7 1.36 3.42 3.51 2.6 158.4 157.8 0.4

W1 Wang and Wu
[51] 31 230.5 0.33 2.25 2.12 5.8 60.7 63.9 5.3

W2 Wang and Wu
[51] 31 230.5 0.66 3.53 3.48 1.4 80.1 83.3 4.0
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Figure 2. Comparison of FE modeling and experimental test results: (a) Specimens X1, X2 and X3,
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4. Parametric Study

In this study, the validated FE model was implemented to assess the compressive
characteristics of FRP-confined concrete columns, with deviation in fiber orientation from
the hoop direction as the primary parameter. As mentioned before, unconfined concrete
strength, FRP modulus of elasticity in hoop (0◦) direction and thickness of FRP wrap were
also considered as variables. The combined effects of these variables with deviation in
fiber orientation were investigated. The geometry and boundary conditions of the models
were kept constant during the study. Important compressive characteristics investigated
in this study were stress–strain behavior, ultimate axial stress and strain and total dissi-
pated energy. Details of parametric study models are presented in the following sections.
Comprehensive numerical results were shown in Appendix A.

4.1. Investigated Parameters

As previously mentioned, following parameters were considered: deviation in fiber
orientation with respect to hoop direction (θ), unconfined concrete compressive strength
( f ′co), FRP modulus of elasticity in hoop direction (E f rp) and FRP wrap thickness (t f rp). In
order to systematically investigate the effects of deviation in fiber orientation, the θ values
selected were 0◦, 2◦, 5◦, 8◦, 10◦ and 15◦ with respect to hoop direction. The values of the
other three parameters are shown in Table 2, along with their assigned notations. The
selected practical values covered a widespread range of material properties were used in
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the field. All significant combinations of these parameters have been considered and 108
specimens were modeled and analyzed.

Table 2. Considered values and notations for unconfined concrete compressive strength f ′co, FRP
modulus of elasticity E f rp and FRP wrap thickness t f rp.

f’
co (MPa) Notation Efrp(GPa) Notation tfrp (mm) Notation

20 C1 50 E1 0.2 T1
35 C2 200 E2 0.5 T2
50 C3 1.0 T3

Based on Table 2, specimen C1E1T1 means a concrete column with f ′co = 20 MPa
which was confined with the FRP wrap having E f rp = 50 GPa and t f rp = 0.2 mm, for
example. The mechanical properties of the FRP composites used in parametric studies are
given in Table 3. It should be noted that these properties were based on two commercially
available GFRP (E f rp = 50 GPa) and CFRP (E f rp = 200 GPa) wraps. The ultimate tensile
hoop strain of the FRP wrap ε∗ f rp was obtained from tensile tests of samples.

Table 3. Mechanical properties of FRP laminates used in parametric studies.

E1(GPa) E2(GPa) ν12 G12(GPa) G13(GPa) G23(GPa) ε*
frp

50 16.67 0.25 8.33 8.33 3.21 0.025
200 13.00 0.30 10.30 10.30 9.00 0.01

4.2. Modeling Procedure of Concrete Confined using FRP with Inclined Fibers

The mechanical properties of FRP composites in principal directions (1 and 2) are given
in Table 3. As shown in Figure 3, when fibers had an angle θ with respect to hoop direction,
the projected value of the FRP modulus of elasticity in hoop direction (Ex) decreased.
Therefore, the DP parameters for confined concrete and tensile properties of FRP wrap
should have been modified and recalculated accordingly [43,52] by using Equation (8):

1
Ex

=
1

E1
cos4 θ +

1
E2

sin4 θ + (
1

G12
− 2

ν12

E1
) sin2 θ cos2 θ (8)
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It should be noted that θ represents the fiber orientation with respect to hoop direction
hereafter.

4.3. Confined Concrete with Fibers in Hoop Direction

In order to understand the behavior of FRP-confined concrete when using fibers in
hoop direction, a total of 18 configurations were modeled and the results are tabulated in
Table 4. The parameter Kl is the lateral stiffness of FRP wrap, and could be defined using
Equation (9):

Kl =
2Efrptfrp

D
(9)

Table 4. Parametric study results of concrete confined with fibers in hoop direction.

Efrp
(GPa)

tfrp
(mm)

Kl
(MPa)

f’
co=20 MPa f’

co=35 MPa f’
co=50 MPa

f’
cu/f’

co ε’
cu/ε’

co Et(mj) f’
cu/f’

co ε’
cu/ε’

co Et(mj) f’
cu/f’

co ε’
cu/ε’

co Et(mj)

50 0.2 132 1.3 4.2 1.0 1.2 2.9 1.2 1.1 2.3 1.4
50 0.5 329 1.8 7.6 2.3 1.5 4.6 2.4 1.3 3.6 2.6
50 1.0 658 2.7 15.3 6.6 1.9 7.6 4.9 1.7 5.5 4.8
200 0.2 526 1.5 4.0 1.0 1.3 2.7 1.2 1.2 2.2 1.4
200 0.5 1316 2.3 7.2 2.6 1.8 5.0 2.9 1.5 3.5 2.7
200 1.0 2632 3.9 11.9 6.6 2.5 7.2 5.6 2.1 5.5 5.5

In Table 4, relations f ′cu/ f ′co and ε′cu/ε′co show the strength and strain improvement
ratios of FRP-confined concrete, respectively. These two non-dimensional parameters were
defined to facilitate the comparison between the results. Et was the total dissipated energy
of specimens, and was defined as the product of the area underneath the axial stress–strain
diagram and the volume of specimens. These three parameters defined the confinement
effectiveness of FRP wraps in this study.

As observed in Table 4, the higher the E f rp and t f rp, the more effective the confinement
of the column. However, the rate of the improvement in f ′cu/ f ′co, ε′cu/ε′co and Et were more
sensitive to t f rp than to E f rp, especially for the strain improvement ratio. The increase in
the aforementioned parameters was greater in specimens confined with lower E f rp, due to
the larger ultimate hoop tensile strain, as shown by previous studies [40]. Table 4 shows
that an increase in the f ′co resulted in the decrease in the above parameters and, thus, the
confinement effectiveness. When concrete had a lower compressive capacity, the concrete
core underwent larger dilations and, thus, would be subjected to greater radial stresses
from the FRP wrap, meaning more effective confinement and higher values of f ′cu/ f ′co,
ε′cu/ε′co and Et.

4.4. Effect of Fiber Orientation on FRP Modulus of Elasticity in Hoop Direction (Ex)

As explained previously, Ex is a function of θ and the DP parameters for confined
concrete should have been modified for the new Ex values. Therefore, it was important to
explore the effect of deviation in θ on Ex for the two FRP wraps used in this study (E1 and
E2). Figure 4 shows the changes in Ex, obtained from Equation (8), for θ varying between
0◦ and 15◦.

Figure 4 displays that the reduction in Ex for different values of θ was more significant
for the E2 wrap. It could be shown that this higher reduction was more associated with
the values of in-plane shear modulus (G12) than to the transverse modulus of elasticity (E2)
of the wrap. Additionally, for 5◦ deviation in θ from the hoop direction, the reduction in
Ex was 2.6% and 11.3% in E1 and E2 wraps, respectively. This observation confirmed the
previous concerns regarding deviation in θ, as the confinement effectiveness of the FRP
wrap was highly influenced by Ex.
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Figure 4. Effect of fiber orientation on FRP hoop modulus of elasticity (Ex).

4.5. Effect of Fiber Orientation on Axial Stress–Axial and Lateral Strain Responses

Figure 5 shows the variation of axial stress–axial and lateral strain of specimen C1E1T1
with θ. It could be shown that the lateral strain of concrete was equal to hoop tensile strain
in the FRP wrap. Therefore, the lateral strain values in Figure 5 were equal to the data that
could be obtained from a strain gauge installed on the wrap along the hoop direction.

Materials 2022, 15, x FOR PEER REVIEW 11 of 25 
 

 

4.5. Effect of Fiber Orientation on Axial Stress–Axial and Lateral Strain Responses 
Figure 5 shows the variation of axial stress–axial and lateral strain of specimen 

C1E1T1 with 𝜃. It could be shown that the lateral strain of concrete was equal to hoop 
tensile strain in the FRP wrap. Therefore, the lateral strain values in Figure 5 were equal 
to the data that could be obtained from a strain gauge installed on the wrap along the 
hoop direction. 

 
Figure 5. Variation of axial stress–axial and lateral strain of specimen C2E2T1 for different fiber 
orientations. 

In Figure 5, we can observe that the initial segments of the stress–strain curves were 
fairly linear and similar for all fiber orientations. The linear behavior lasted until axial 
stress got close to the unconfined concrete strength, 𝑓௖௢ᇱ  (35 MPa for this specimen). 
From this point on, the effect of the FRP confinement appeared and the variation of the 
response with different fiber orientations could be distinguished. The stress–strain re-
sponse featured a monotonically ascending bi-linear curve with ascending second 
branches (up to 15° in this study). This indicated an effective confinement, as both the 
compressive strength and the ultimate axial strain were significantly increased, and the 
column exhibited a promising ductile behavior. The descent of the second branches was 
caused by reduction in confinement effectiveness, since the axial stiffness of the FRP 
wrap was a function of 𝐸௫, and it decreased when 𝜃 increased. It could be concluded 
that with deviation in 𝜃, the compressive behavior of FRP-confined concrete columns 
transforms from a ductile behavior to an undesired brittle behavior. 

4.6. Variation of Concrete Axial Stress versus FRP Strain in Fiber Direction 
The lateral strain of concrete in Figure 5 was obtained assuming it was equal to the 

tensile strain of FRP wrap in hoop direction (direction x in Figure 3). As explained pre-
viously, the strain of FRP wrap obtained from FEA were in an x-y coordinate system, 
and could be easily transformed into a 1-2 coordinate system for inclined fibers. The 

Figure 5. Variation of axial stress–axial and lateral strain of specimen C2E2T1 for different fiber
orientations.



Materials 2023, 16, 261 11 of 23

In Figure 5, we can observe that the initial segments of the stress–strain curves were
fairly linear and similar for all fiber orientations. The linear behavior lasted until axial
stress got close to the unconfined concrete strength, f ′co (35 MPa for this specimen). From
this point on, the effect of the FRP confinement appeared and the variation of the response
with different fiber orientations could be distinguished. The stress–strain response featured
a monotonically ascending bi-linear curve with ascending second branches (up to 15◦ in
this study). This indicated an effective confinement, as both the compressive strength
and the ultimate axial strain were significantly increased, and the column exhibited a
promising ductile behavior. The descent of the second branches was caused by reduction
in confinement effectiveness, since the axial stiffness of the FRP wrap was a function of
Ex, and it decreased when θ increased. It could be concluded that with deviation in θ,
the compressive behavior of FRP-confined concrete columns transforms from a ductile
behavior to an undesired brittle behavior.

4.6. Variation of Concrete Axial Stress versus FRP Strain in Fiber Direction

The lateral strain of concrete in Figure 5 was obtained assuming it was equal to
the tensile strain of FRP wrap in hoop direction (direction x in Figure 3). As explained
previously, the strain of FRP wrap obtained from FEA were in an x-y coordinate system, and
could be easily transformed into a 1-2 coordinate system for inclined fibers. The strain of
FRP wrap along axis 1 (i.e., along fiber direction) was called fiber orientation strain. Hence,
fiber orientation strain was the value that a strain gauge installed along the orientation
of fiber could measure. The relationship between axial stress and fiber orientation strain
of specimens could be developed for different fiber angles. The response for specimen
C2E1T1 is presented in Figure 6. Similar behavior was observed in all specimens.
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As the fiber angle increased, the fiber orientation strain decreased remarkably and
differed noticeably from the ultimate hoop tensile strain of the FRP wrap. A closer look at
the trend of change in the response from 5◦ to 15◦ reveals that for higher θ values, the fiber
orientation strain would become negative at the initial stages of loading (first branch of
the response). This would be due to fibers aligning partially in the axial direction at higher
θ values becoming subjected to compressive stresses. These observations indicated that
the effectiveness of FRP confinement was at its highest when fibers were aligned in a hoop
direction.
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4.7. Effect of Fiber Orientation on Strength Improvement Ratio

In this section, the effect of deviation in θ on compressive strength of FRP-wrapped
specimens was investigated. The non-dimensional parameter f ′cu/ f ′co, introduced previ-
ously, was used to compare these results with that of fibers in the hoop direction. Figure 7
presents graphical comparisons of variations of f ′cu/ f ′co with fiber orientation, along with
the effect of f ′co, E f rp and t f rp.
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Figure 7. Variations of f ′cu/ f ′co versus fiber orientation for selected specimens: (a) for t f rp from 0.2 to
1.0 mm, (b) for f ′co from 20 to 50 MPa and (c) for E f rp of 50 and 200 GPa.

It is clear from Figure 7 that f ′cu/ f ′co decreased substantially as θ increased. It could
be observed that this reduction was positively associated with the E f rp and t f rp, and was
negatively associated with the f ′co. In other words, specimens which exhibited higher
enhancement in f ′cu/ f ′co with hoop fibers (i.e., specimens with higher E f rp and t f rp, and
lower f ′co), showed higher reduction in f ′cu/ f ′co with deviation in θ. A careful comparison
between Figures 4 and 7 reveals that in specimens wrapped with a specific E f rp, the trend
of reduction in f ′cu/ f ′co with θ was similar to the trend of reduction in Ex of that wrap.

Since the primary objective of rehabilitation projects was enhancing the strength and
load-carrying capacity, it was beneficial to study the variations of f ′cu/ f ′co with deviation
in θ in more detail. In Table 5, the minimum (Min), maximum (Max), average (Avg) and
standard deviation (SD) of reductions in f ′cu/ f ′co as a function of E f rp, t f rp and f ′co for fiber
orientations ranging from 0◦ to 15◦ are tabulated. It should be noted that Min, Max, Avg
and SD were defined by making the corresponding parameter constant and the other
two parameters variable. For example, the statistical values given for the parameter T1
(t f rp = 0.2 mm) consist of all the specimens having a wrap thickness of 0.2 mm, regardless
of E f rp and f ′co.

Based on Table 5, the average reduction in f ′cu/ f ′co increased 2.5, 3.3 and 1.6 times when
t f rp increased from 0.2 to 1.0 mm, E f rp increased from 50 to 200 GPa and f ′co decreased from
50 to 20 MPa, respectively. It could also be concluded that the variations of f ′cu/ f ′co due to
deviation in θ were more sensitive to E f rp than to t f rp and f ′co, based on the data points
generated in the parametric studies.

The overall reduction in f ′cu/ f ′co for each θ (regardless of E f rp, t f rp and f ′co) are shown
in Table 6. Hence, this reduction for 5◦ deviation in θ (allowable limit of deviation in
θ in design codes) could now be observed. It should be noted that 95% CI and 99% CI
stand for the upper limits of one-sided confidence intervals with 95% and 99% confidences,
respectively.
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Table 5. Reduction in f ′cu/ f ′co due to deviation in fiber orientation for different values of E f rp, t f rp
and f ′co.

Parameter
Reduction in f’

cu/f’
co (%) for θ from 0◦ to 15◦

Min Max Avg SD

t f rp = 0.2 mm (T1) 0.1 17.5 4.4 4.1
t f rp = 0.5 mm (T2) 0.2 30.9 7.5 7.5
t f rp = 1.0 mm (T3) 0.4 44.1 11.1 11.0
E f rp = 50 GPa (E1) 0.1 15.4 3.5 3.4

E f rp = 200 GPa (E2) 0.7 44.1 11.8 10.0
f ′co = 20 MPa (C1) 0.3 50.2 13.5 13.6
f ′co = 35 MPa (C2) 0.3 38.5 10.1 10.2
f ′co = 50 MPa (C3) 0.1 32.4 8.4 8.5

Table 6. Overall reduction in f ′cu/ f ′co for different deviations in fiber orientation.

Deviation in Fiber
Orientation

(Degrees)

Reduction in f’
cu/f’

co (%)

Min Max Avg SD 95% CI 99% CI

2 0.1 3.5 1.0 0.8 1.2 1.2
5 0.6 10.4 2.4 2.9 2.9 3.1
8 1.4 21.8 7.3 5.8 8.4 8.8
10 2.1 29.2 10.0 7.6 11.4 11.9
15 4.2 44.1 16.4 11.0 18.4 19.2

As shown in Table 6, for 5◦ deviation in θ relative to hoop direction, the reduction in
f ′cu/ f ′co ranged from 0.6% to 10.4% with an average of 2.4%. This reduction was less than
2.9% and 3.1% for 95% and 99% confidences, respectively. It was quite noticeable that for
10◦ and 15◦ deviation in θ, the average reduction in f ′cu/ f ′co escalated from 2.4% to 10.0%
and 16.4%, respectively. This observation further emphasizes the importance of limiting
the deviations in fiber orientation.

Table 6 presents an investigation of the reduction in f ′cu/ f ′co for different deviations in
fiber orientation (design codes point of view, 5◦ deviation in θ). This could be looked at
from the other point of view; calculating the allowable deviation in fiber orientation for
selected acceptable reductions in f ′cu/ f ′co, as tabulated in Table 7.

Table 7. Fiber orientations for different reductions in f ′cu/ f ′co.

Reduction in f’
cu/f’

co (%)
Deviation in Fiber Orientation (Degrees)

Min Max Avg SD 95% CI (θa,95) 99% CI (θa,99)

2.5 2 11 5 3 6 6
5 3 17 8 4 9 9

10 5 26 13 6 14 14
15 6 29 16 7 17 18
20 8 30 18 7 20 20

Based on Table 7, it could be stated that, for example, the fiber angle which results in a
2.5% reduction in f ′cu/ f ′co, should be less than 6◦ with a 95% confidence. In other words, the
allowable limit of deviation in θ with 95% confidence, θa,95, for a 2.5% reduction in f ′cu/ f ′co
is 6◦. Variation of θa,95 with respect to reduction in f ′cu/ f ′co is illustrated in Figure 8.

As shown in Figure 8, the best regression that fitted the two parameters was a second-
order polynomial with R2 = 0.988. The equation obtained from regression analysis gives
the value of θa,95 for any given reduction in f ′cu/ f ′co up to 20%.
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Figure 8. Variations of θa,95 with respect to reductions in f ′cu/ f ′co.

Table 7 displays the values of θa, regardless of other parameters (E f rp, t f rp and f ′co). In
order to provide more detailed comparisons, Tables 8–10 were developed to investigate the
effect of each parameter separately.

Table 8. Fiber orientations corresponding to different reductions in f ′cu/ f ′co for each value of E f rp.

Reduction in f’
cu/f’

co (%)

Fiber Orientation (Degrees)

Efrp=50 GPa (E1) Efrp=200 GPa (E2)

Min Max Avg θa,95 θa,99 Min Max Avg θa,95 θa,99

2.5 5 11 8 8 9 2 5 3 4 4
5 8 17 12 13 13 3 8 5 6 6

10 11 26 18 20 20 5 14 8 9 10
15 15 29 23 25 26 6 24 12 14 15
20 19 27 24 26 27 8 29 15 17 19

Table 9. Fiber orientations corresponding to different reductions in f ′cu/ f ′co for each value of t f rp.

Reduction in f’
cu/f’

co (%)

Fiber Orientation (Degrees)

tfrp=0.2 mm (T1) tfrp=0.5 mm (T2) tfrp=1 mm (T3)

Min Max Avg θa,95 θa,99 Min Max Avg θa,95 θa,99 Min Max Avg θa,95 θa,99

2.5 4 11 7 8 9 2 9 5 7 7 2 7 4 5 5
5 6 17 11 13 14 4 13 8 10 11 3 10 6 8 8
10 6 23 13 16 17 5 21 10 12 13 3 16 8 9 10
15 9 24 14 17 18 6 29 14 17 18 4 21 10 13 13
20 13 29 20 25 27 8 25 14 18 19 5 27 13 16 17

Table 10. Fiber orientations corresponding to different reductions in f ′cu/ f ′co for each value of f ′co.

Reduction in f’
cu/f’

co (%)

Fiber Orientation (Degrees)

f’
co=20 MPa (C1) f’

co=35 MPa (C2) f’
co=50 MPa (C3)

Min Max Avg θa,95 θa,99 Min Max Avg θa,95 θa,99 Min Max Avg θa,95 θa,99

2.5 1 8 4 5 6 2 10 5 6 7 2 11 5 7 7
5 2 13 6 8 9 3 15 7 9 10 3 17 8 11 12
10 3 21 9 13 14 4 26 12 16 17 5 27 13 17 18
15 4 29 12 15 16 6 29 14 17 18 6 29 16 19 20
20 5 25 13 16 17 8 25 14 18 19 8 27 16 20 22

Based on Table 8, the θa values for the E2 wrap were lower than E1. It should be
noted that the E1 and E2 wraps were commercially available GFRP and CFRP composites,
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respectively. The CFRP wraps were more sensitive to deviation in θ than GFRP wraps
because of having lower θa values. In other words, a lower deviation in fiber orientation
caused the same reduction in f ′cu/ f ′co in specimens wrapped with CFRP. This could be
regarded as more reduction in hoop modulus of elasticity (Ex) in the E2 wrap compared to
E1 (Figure 4).

It is shown in Table 9 that as the thickness of the FRP wrap increases, the θa values
decrease. In other words, the reduction in f ′cu/ f ′co with deviation in θ was higher as the
wraps’ thickness increased (Figure 7 and Table 5), and the θa reduced consequently.

Based on Table 10, the lowest value of θa corresponded to f ′co = 20 MPa. This was
because the reduction in f ′cu/ f ′co with deviation in θ was greater for lower values of f ′co
(Figure 7 and Table 5). As a result, θa would be lower for smaller values of f ′co.

4.8. Effect of Fiber Orientation on Strain Improvement Ratio and Total Dissipated Energy

The effect of deviation in θ on the strain enhancement ratio, ε′cu/ε′co, and total dis-
sipated energy, Et, of FRP-wrapped concrete specimens was investigated in this section.
Both parameters were previously introduced. It was necessary to state that the variations
of these parameters with θ and the reduction trends were very similar to that of f ′cu/ f ′co,
with differences in values only. Therefore, in order to avoid duplication, only the tabulated
results and corresponding diagrams are reported in this section, and for discussion, readers
could refer to the previous section.

The variations of the strain enhancement ratio, ε′cu/ε′co, and total dissipated energy, Et,
with respect to θ are shown in Figures 9 and 10, respectively. Table 11 presents the average
reductions in ε′cu/ε′co and Et for θ ranging from 0◦ to 15◦ corresponding to different values
of E f rp, t f rp and f ′co.

As tabulated in Table 11, the average reduction in both parameters increased as E f rp
and t f rp increased and f ′co decreased. Additionally, the variation of the parameters was
more affected by E f rp than by t f rp and f ′co, similar to what was previously observed with
f ′cu/ f ′co.

Table 12 shows the overall reduction in ε′cu/ε′co and Et for different fiber orientations.
The reduction in ε′cu/ε′co and Et for 5◦ of deviation in θ was less than 3.4% and 5.5% with
95% confidence, respectively. It was rather noteworthy that for 10◦ of deviation in θ,
the average reduction in ε′cu/ε′co and Et increased significantly about six- and fivefold,
respectively. Based on this observation and considering the crucial role of ductility and
energy dissipation capacity in structural concrete elements, especially in earthquake-prone
regions, it was important to take into account the adverse effects of deviation in fiber
orientation.
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Figure 9. Variations of ε′cu/ε′co versus fiber orientation for selected specimens: (a) for t f rp from 0.2 to
1.0 mm, (b) for f ′co from 20 to 50 MPa and (c) for E f rp of 50 and 200 GPa.
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Figure 10. Variations of Et versus fiber orientation for selected specimens: (a) for t f rp from 0.2 to
1.0 mm, (b) for f ′co from 20 to 50 MPa and (c) for E f rp of 50 and 200 GPa.

Table 11. Reduction in ε′cu/ε′co and Et due to deviation in fiber orientation for different values of E f rp,
t f rp and f ′co.

Parameter

Deviation in Fiber Orientation from 0◦ to 15◦

Reduction in ε’
cu/ε’

co (%) Reduction in Et (%)

Avg SD Avg SD

t f rp = 0.2 mm (T1) 10.7 9.0 14.1 11.7
t f rp = 0.5 mm (T2) 13.9 12.3 18.9 16.3
t f rp = 1.0 mm (T3) 15.4 13.0 22.3 18.3
E f rp = 50 GPa (E1) 7.9 6.7 10.6 8.9

E f rp = 200 GPa (E2) 18.7 13.1 26.2 17.7
f ′co = 20 MPa (C1) 20.4 16.7 27.9 21.9
f ′co = 35 MPa (C2) 18.1 16.1 24.1 20.3
f ′co = 50 MPa (C3) 15.3 14.4 20.6 18.5

Table 12. Overall reduction in ε′cu/ε′co and Et for different fiber orientations.

Fiber Orientation
(Degrees)

Reduction in ε’
cu/ε’

co (%) Reduction in Et (%)

Avg SD 95% CI 99% CI Avg SD 95% CI 99% CI

2 2.3 1.9 2.7 2.8 3.2 2.5 3.7 3.9
5 2.8 3.3 3.4 3.7 4.5 5.3 5.5 5.9
8 12.6 6.3 13.7 14.2 17.9 9.8 19.7 20.5

10 16.9 8.3 18.4 19.1 23.7 12.5 26.0 27.0
15 28.4 12.2 30.7 31.6 37.9 16.6 41.0 42.2

Finally, Table 13 provides the calculated values of θa,95 and θa,99 for different acceptable
reductions in ε′cu/ε′co and Et. As tabulated in Table 13, the allowable limits of deviation
in θ with 95% confidence, θa,95, for a 2.5% reduction in ε′cu/ε′co and Et were 3◦ and 2◦,
respectively. Figure 11a,b shows the variation of θa,95 with respect to reduction in ε′cu/ε′co
and Et, respectively. The best regression fitting the two parameters was similarly a second-
order polynomial with R2 = 0.99.

4.9. Comparison between Variations of Strength Improvement Ratio, Strain Improvement Ratio and
Total Dissipated Energy with Deviation in Fiber Orientation

In this part, the results presented in previous sections will be compared. The crucial
issue was to find out which compressive characteristic among strength improvement ratio,
strain improvement ratio or total dissipated energy were the most sensitive to deviations
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in θ. In Figure 12, the obtained values of θa,95 (from Tables 7 and 13) for each of the three
characteristics are presented and compared graphically.

Table 13. Fiber orientations for different reductions in ε′cu/ε′co and Et.

Reduction (%)

Deviation in Fiber Orientation (Degrees)

ε’
cu/ε’

co Et

Avg SD θa,95 θa,99 Avg SD θa,95 θa,99

2.5 3 2 3 3 2 1 2 2
5 5 2 5 5 4 2 4 4

10 8 3 9 9 6 3 7 7
15 11 4 11 12 9 4 9 9
20 13 5 14 14 10 4 11 12
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Figure 12. Comparison between allowable limits of deviation in fiber orientations (θa,95) for each
compressive characteristic.

It could be observed from that the θa,95 values corresponding to reduction in the
strength improvement ratio were greater than that of the strain improvement ratio and total
dissipated energy. This indicates that the strength improvement ratio was less sensitive to
deviations in θ than the strain improvement ratio and the total dissipated energy. It also
signifies that the total dissipated energy decreased the most due to deviations in θ.
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4.10. Potential Application of the Results

The findings confirmed the acceptable deviation from the intended direction of fiber
alignment (5◦) given by the current ACI 440.2 design guidelines. Based on the results,
simple stiffness or deformation models that take into account the fiber orientation as a
variable could be developed, so designers could quickly generate stiffness or deformation
values based on the prescribed material system.

5. Conclusions

This paper reported the results of a numerical investigation into the effects of small
deviations in fiber orientation from the hoop direction (θ) as the primary variable on
the compressive characteristics of FRP-confined concrete columns using the FEA. Three
significant parameters affecting the confinement effectiveness, namely unconfined concrete
strength ( f ′co), FRP modulus of elasticity in hoop direction (E f rp) and FRP wrap thickness
(t f rp) were considered as well. θ values considered were 0◦, 2◦, 5◦, 8◦, 10◦ and 15◦ with
respect to hoop direction. The f ′co values were 20, 35 and 50 MPa, the E f rp values were
50 and 200 GPa and the t f rp values were 0.2, 0.5 and 1.0 mm. The combination of all
these parameters resulted in a total of 108 numerical specimens. The current allowable
limit on the deviation in fiber orientation of 5◦, as specified by the ACI 440.2R Design
Guidelines, was evaluated in an attempt to provide a basis for the limit. The adverse
effects of deviation in fiber orientation were investigated for the strength improvement
ratio, strain improvement ratio and total dissipated energy of the specimens. The strength
improvement ratio and strain improvement ratio were non-dimensional parameters defined
as the ultimate axial stress and strain of FRP-confined concrete divided by the unconfined
concrete compressive strength and peak strain, respectively. The total dissipated energy
was defined as the product of the area underneath the axial stress–strain diagram and
the volume of the specimens. The allowable limits of deviation in fiber orientation were
calculated with practical confidences (95% and 99%) for a range of reductions in strength
improvement ratio, strain improvement ratio and total dissipated energy. Based on the
results and discussions presented in this paper, the following conclusions can be drawn:

• For 5◦ deviation in fiber orientation, the average reduction in strength improvement
ratio, strain improvement ratio and total dissipated energy was 2.4%, 2.8% and 4.5%,
respectively. These numbers confirm the acceptable deviation from the intended
direction of fiber alignment (5◦) given by the current ACI 440.2 Design Guidelines.

• The calculated allowable limit of deviation in fiber orientation for a 2.5% reduction in
strength improvement ratio, strain improvement ratio, and total dissipated energy was
6◦, 3◦ and 2◦, respectively, with a 95% confidence. In other words, with 6◦ deviations
in fiber orientation, the strength improvement ratio would reduce by 2.5%, with a 95%
confidence. Or, to limit the reduction in total dissipated energy to 2.5%, the deviation
in fiber orientation should be less than 2◦, with a 95% confidence.

• The total dissipated energy reduced the most with deviation in fiber orientation,
followed by the strain improvement ratio and strength improvement ratio.

• The adverse effects of deviation in fiber orientation were positively associated with
E f rp and t f rp, and negatively associated with f ′co. In other words, the effectiveness of
FRP confinement reduced the most in specimens with higher FRP modulus of elasticity
and wrap thickness, and lower concrete compressive strength.

• For the numerical specimens analyzed, the CFRP wrap was more sensitive than GFRP
to deviation in fiber orientation, considering the strength improvement ratio.

• The reduction in the strength improvement ratio, strain improvement ratio, and total
dissipated energy followed a similar trend to that of the FRP hoop modulus of elasticity
(Ex) with deviation in fiber orientation.

• The reduction in the strength improvement ratio, strain improvement ratio and total
dissipated energy with deviation in fiber orientation was more sensitive to the FRP
modulus of elasticity than the FRP wrap thickness or concrete compressive strength.
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Notation
The following symbols are used in this paper:

θ Deviation in fiber orientation from the hoop direction
f ′cu Ultimate compressive strength of the FRP-confined concrete
ε′cu Ultimate axial strain of the FRP-confined concrete
Et Total dissipated energy of the FRP-confined concrete
E1 FRP modulus of elasticity in the fiber direction
E2 FRP modulus of elasticity in the transverse direction
ν12 FRP Poisson’s ratio in the plane
G12 FRP shear modulus in the plane
Ec Concrete modulus of elasticity
νc Concrete Poisson’s ratio
f ′co Unconfined concrete compressive strength
f ′cu/ f ′co Strength improvement ratio
εco Axial strain at the peak stress of unconfined concrete
ε′cu/εco Strain improvement ratio
ϕ Angle of friction in the DP plasticity model
K Flow stress ratio in the DP plasticity model
β Dilation angle in the DP plasticity model
ε

p
c Axial plastic strain

ρ Lateral stiffness ratio
Ex FRP modulus of elasticity in hoop direction
E f rp FRP modulus of elasticity
t f rp FRP wrap thickness
D Diameter of concrete cylinder
β0 Initial slope of β

M0 A constant equal to 157,000
σl Lateral stress
ε l Lateral strain of the FRP wrap

εc Concrete axial strain
σc Concrete axial stress
ε∗ f rp Ultimate tensile hoop strain of the FRP wrap
Kl Lateral stiffness of FRP wrap
θa Allowable limit of deviation in θ

θa,95 Allowable limit of deviation in θ with 95% confidence
θa,99 Allowable limit of deviation in θ with 99% confidence
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Appendix A. Comprehensive Numerical Results

The numerical results obtained from finite element modeling (FEM) are presented in
this section. Tables A1–A5 show the strength improvement ratio ( f ′cu/ f ′co), strain improve-
ment ratio (ε′cu/ε′co), and total dissipated energy (Et) of the simulated specimens and their
reductions with 2◦, 5◦, 8◦, 10◦ and 15◦ deviation in fiber orientation, respectively.

Table A1. FEM results for θ = 2◦.

Efrp
(GPa)

tfrp
(mm)

f’
cu

f’
co

Reduction in
f’
cu

f’
co

(%)
ε’

cu
ε’

co

Reduction in
ε’

cu
ε’

co
(%)

Et
(mj)

Reduction in Et
(%)

f ′co = 20 MPa

50 0.2 1.34 0.31 4.16 1.96 0.98 2.09
50 0.5 1.84 0.66 7.50 1.68 2.29 2.21
50 1 2.69 0.98 14.93 2.19 6.35 3.04

200 0.2 1.53 0.84 3.94 2.25 1.00 3.02
200 0.5 2.28 1.40 7.10 1.88 2.52 3.01
200 1 3.88 2.16 11.64 2.15 6.33 3.90

f ′co = 35 MPa

50 0.2 1.16 0.33 2.87 2.37 1.20 2.81
50 0.5 1.48 0.25 4.57 0.81 2.32 1.00
50 1 1.96 0.75 7.45 1.70 4.76 2.34

200 0.2 1.32 1.22 2.61 4.03 1.13 5.34
200 0.5 1.72 3.45 4.61 8.71 2.58 11.82
200 1 2.50 1.82 7.06 2.45 5.35 3.95

f ′co = 50 MPa

50 0.2 1.07 0.08 2.34 0.02 1.41 0.05
50 0.5 1.33 0.24 3.52 0.94 2.52 1.16
50 1 1.68 0.35 5.44 0.91 4.74 1.20

200 0.2 1.23 1.29 2.14 4.36 1.33 5.91
200 0.5 1.52 0.66 3.43 1.51 2.63 2.13
200 1 2.03 1.23 5.37 1.71 5.31 2.74

Table A2. FEM results for θ = 5◦.

Efrp
(GPa)

tfrp
(mm)

f’
cu

f’
co

Reduction in
f’
cu

f’
co

(%)
ε’

cu
ε’

co

Reduction in
ε’

cu
ε’

co
(%)

Et
(mj)

Reduction in Et
(%)

f ′co = 20 MPa

50 0.2 1.33 1.06 4.10 3.55 0.96 4.32
50 0.5 1.81 1.90 7.32 4.03 2.21 5.55
50 1 2.64 2.83 14.28 6.41 5.96 8.90

200 0.2 1.48 3.91 3.66 9.19 0.91 12.48
200 0.5 2.14 7.39 6.55 9.40 2.22 14.90
200 1 3.55 10.40 10.76 9.53 5.45 17.27

f ′co = 35 MPa

50 0.2 1.15 1.03 2.80 4.82 1.16 5.91
50 0.5 1.47 1.02 4.49 2.51 2.27 3.30
50 1 1.94 1.81 7.32 3.48 4.63 4.96

200 0.2 1.29 2.97 2.50 7.85 1.07 10.61
200 0.5 1.67 6.38 4.33 14.24 2.36 19.54
200 1 2.33 8.38 6.50 10.20 4.66 16.50

f ′co = 50 MPa

50 0.2 1.06 0.61 2.31 1.25 1.39 1.73
50 0.5 1.32 1.04 3.45 2.89 2.45 3.81
50 1 1.67 1.36 5.33 2.83 4.60 3.94

200 0.2 1.21 2.70 2.08 7.15 1.28 9.85
200 0.5 1.48 3.15 3.26 6.23 2.44 8.98
200 1 1.92 6.53 5.00 8.50 4.72 13.52

Table A3. FEM results for θ = 8◦.

Efrp
(GPa)

tfrp
(mm)

f’
cu

f’
co

Reduction in
f’
cu

f’
co

(%)
ε’

cu
ε’

co

Reduction in
ε’

cu
ε’

co
(%)

Et
(mj)

Reduction in Et
(%)

f ′co = 20 MPa

50 0.2 1.31 2.36 3.93 7.41 0.91 9.12
50 0.5 1.78 3.66 7.05 7.52 2.10 10.25
50 1 2.57 5.36 13.42 12.03 5.46 16.56

200 0.2 1.42 8.09 3.29 18.51 0.78 24.71
200 0.5 1.97 14.85 5.88 18.69 1.86 28.60
200 1 3.10 21.83 9.36 21.29 4.24 35.57
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Table A3. Cont.

Efrp
(GPa)

tfrp
(mm)

f’
cu

f’
co

Reduction in
f’
cu

f’
co

(%)
ε’

cu
ε’

co

Reduction in
ε’

cu
ε’

co
(%)

Et
(mj)

Reduction in Et
(%)

f ′co = 35 MPa

50 0.2 1.14 1.90 2.74 6.77 1.13 8.46
50 0.5 1.45 2.49 4.34 5.88 2.16 7.86
50 1 1.89 4.12 6.98 7.97 4.33 11.17

200 0.2 1.26 5.85 2.32 14.51 0.96 19.50
200 0.5 1.58 11.44 3.83 24.23 1.97 32.69
200 1 2.13 16.45 5.82 19.66 3.86 30.71

f ′co = 50 MPa

50 0.2 1.05 1.42 2.28 2.89 1.36 3.93
50 0.5 1.31 2.03 3.37 4.96 2.38 6.64
50 1 1.63 3.29 5.11 6.93 4.34 9.55

200 0.2 1.18 5.05 1.97 12.37 1.18 16.97
200 0.5 1.41 7.80 2.91 16.45 2.07 22.77
200 1 1.78 13.62 4.48 18.05 3.96 27.49

Table A4. FEM results for θ = 10◦.

Efrp
(GPa)

tfrp
(mm)

f’
cu

f’
co

Reduction in
f’
cu

f’
co

(%)
ε’

cu
ε’

co

Reduction in
ε’

cu
ε’

co
(%)

Et
(mj)

Reduction in Et
(%)

f ′co = 20 MPa

50 0.2 1.30 3.38 3.84 9.54 0.88 12.02
50 0.5 1.75 5.30 6.83 10.50 2.00 14.43
50 1 2.49 8.08 12.60 17.40 4.99 23.76

200 0.2 1.38 10.54 3.09 23.32 0.71 30.89
200 0.5 1.85 20.05 5.39 25.48 1.62 37.83
200 1 2.80 29.24 8.40 29.41 3.51 46.69

f ′co = 35 MPa

50 0.2 1.13 2.68 2.70 8.24 1.10 10.45
50 0.5 1.43 3.62 4.23 8.23 2.09 11.02
50 1 1.86 5.85 6.75 10.99 4.12 15.39

200 0.2 1.23 7.73 2.22 18.34 0.90 24.56
200 0.5 1.51 15.02 3.49 30.94 1.73 41.05
200 1 1.98 22.09 5.31 26.69 3.33 40.32

f ′co = 50 MPa

50 0.2 1.04 2.12 2.25 4.01 1.33 5.48
50 0.5 1.29 3.22 3.27 7.87 2.28 10.51
50 1 1.61 4.89 4.93 10.10 4.13 13.88

200 0.2 1.16 6.64 1.90 15.47 1.12 21.16
200 0.5 1.36 11.10 2.66 23.55 1.83 31.91
200 1 1.69 17.66 4.15 24.14 3.52 35.60

Table A5. FEM results for θ = 15◦.

Efrp
(GPa)

tfrp
(mm)

f’
cu

f’
co

Reduction in
f’
cu

f’
co

(%)
ε’

cu
ε’

co

Reduction in
ε’

cu
ε’

co
(%)

Et
(mj)

Reduction in Et
(%)

f ′co = 20 MPa

50 0.2 1.26 6.48 3.53 16.84 0.79 21.34
50 0.5 1.65 10.61 6.02 21.02 1.68 28.04
50 1 2.30 15.37 10.61 30.46 3.90 40.43

200 0.2 1.27 17.45 2.50 38.10 0.53 48.40
200 0.5 1.60 30.88 4.08 43.62 1.08 58.66
200 1 2.22 44.07 6.27 47.29 2.16 67.16

f ′co = 35 MPa

50 0.2 1.11 5.09 2.54 13.76 1.02 17.56
50 0.5 1.38 7.48 3.83 16.99 1.82 22.40
50 1 1.75 11.52 5.95 21.52 3.45 29.25

200 0.2 1.16 12.70 1.93 28.98 0.74 37.92
200 0.5 1.37 22.97 2.77 45.23 1.24 57.52
200 1 1.68 34.12 4.14 42.82 2.25 59.55

f ′co = 50 MPa

50 0.2 1.02 4.23 2.13 9.19 1.24 12.18
50 0.5 1.25 6.30 3.03 14.76 2.05 19.56
50 1 1.53 9.45 4.43 19.31 3.55 25.94

200 0.2 1.11 11.01 1.69 24.73 0.95 33.11
200 0.5 1.27 17.25 2.25 35.44 1.44 46.50
200 1 1.49 27.51 3.13 42.73 2.34 57.20
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