Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (111)

Search Parameters:
Keywords = FRP laminates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3942 KB  
Article
Porphyrin-Based Bio-Sourced Materials for Water Depollution Under Light Exposure
by Fanny Schnetz, Marc Presset, Jean-Pierre Malval, Yamin Leprince-Wang, Isabelle Navizet and Davy-Louis Versace
Polymers 2025, 17(21), 2882; https://doi.org/10.3390/polym17212882 - 29 Oct 2025
Viewed by 336
Abstract
The photoinitiation properties of two porphyrins were evaluated for the free-radical photopolymerization (FRP) of a bio-based acrylated monomer, i.e., soybean oil acrylate (SOA). Their combination with various co-initiators, such as a tertiary amine as electron donor (MDEA), an iodonium salt as electron acceptor [...] Read more.
The photoinitiation properties of two porphyrins were evaluated for the free-radical photopolymerization (FRP) of a bio-based acrylated monomer, i.e., soybean oil acrylate (SOA). Their combination with various co-initiators, such as a tertiary amine as electron donor (MDEA), an iodonium salt as electron acceptor (Iod), as well as two biosourced co-initiators used as H-donors (cysteamine and N-acetylcysteine), makes them highly efficient photoinitiating systems for FRP under visible light irradiation. Electron paramagnetic resonance spin trapping (EPR ST) demonstrated the formation of highly reactive radical species, and fluorescence and laser flash photolysis highlighted the chemical pathways followed by the porphyrin-based systems under light irradiation. High acrylate conversions up to 96% were obtained with these different systems at different irradiation wavelengths (LEDs@385 nm, 405 nm, 455 nm, and 530 nm), in laminate or under air. The final crosslinked and bio-based porphyrin-based materials were used for the full photo-oxidation in water of an azo-dye (acid red 14) and under UV irradiation. These materials have been involved in three successive depollution cycles without any reduction in their efficiency. Full article
(This article belongs to the Special Issue Advances in Photopolymer Materials)
Show Figures

Graphical abstract

36 pages, 1016 KB  
Review
Fiber-Reinforced Polymer Laminates in Aviation and Structural Engineering: A Synthetic Comparison of Performance Requirements, Design Principles, and Defect Assessment Procedures
by Joana Janeikaitė, Ieva Misiūnaitė and Viktor Gribniak
Materials 2025, 18(21), 4938; https://doi.org/10.3390/ma18214938 - 29 Oct 2025
Viewed by 223
Abstract
Fiber-reinforced polymer (FRP) laminates are widely used in both aviation and structural engineering, yet their implementation reflects fundamentally different paradigms. Aviation represents a fatigue-critical, certification-driven domain, while structural engineering emphasizes long-term durability and environmental resilience. These sectors were selected as conceptual extremes to [...] Read more.
Fiber-reinforced polymer (FRP) laminates are widely used in both aviation and structural engineering, yet their implementation reflects fundamentally different paradigms. Aviation represents a fatigue-critical, certification-driven domain, while structural engineering emphasizes long-term durability and environmental resilience. These sectors were selected as conceptual extremes to explore how contrasting design philosophies, degradation mechanisms, and inspection strategies shape the performance and reliability of laminated FRP composites. Their approaches offer complementary insights: aviation contributes high-fidelity modeling and embedded monitoring, while structural engineering provides scalable inspection strategies and exposure-based degradation logic. Both sectors employ classical laminate theory and finite element modeling, but diverge in modeling depth and regulatory integration. This review synthesizes these contrasts based on 168 literature references, including 141 published between 2020 and 2025, reflecting recent developments in composite design, modeling, and inspection. It contributes to materials engineering by proposing hybrid modeling and inspection frameworks that integrate progressive damage simulation with durability-based design logic. By bridging the modeling precision of aviation with the environmental realism of structural engineering, this review outlines a pathway toward unified, sustainable, and adaptive engineering practices for laminated FRP composites. Full article
Show Figures

Figure 1

14 pages, 3840 KB  
Article
Building Polyacryronitrile Fiber/Epoxy Resin (PANER) Interleaving Film to Strengthen Flexural and Compressive Performances of Laminated CFRP Composites
by Sidra Ashfaq, Jiaxin He, Yanan Lyu, Fei Cheng, Xiang Yuan, Xueling Liang, Shuying Shi, Evgeny Lomakin, Daria Bondarchuk, Rasuljon Tojiyev, Hao Liu, Xiaozhi Hu and Xi Chen
Nanomaterials 2025, 15(20), 1576; https://doi.org/10.3390/nano15201576 - 16 Oct 2025
Viewed by 327
Abstract
Carbon fiber-reinforced polymer (CFRP) composites have excellent mechanical properties, but their performance is hampered by delamination caused by weak interfacial bonding and resin-rich region (RRR). This research has proposed an interleaving film to improve interlaminar structure and mechanical properties by adding polyacrylonitrile (PAN) [...] Read more.
Carbon fiber-reinforced polymer (CFRP) composites have excellent mechanical properties, but their performance is hampered by delamination caused by weak interfacial bonding and resin-rich region (RRR). This research has proposed an interleaving film to improve interlaminar structure and mechanical properties by adding polyacrylonitrile (PAN) fiber into the epoxy interlayer of the CFRP laminates. The PAN fiber/epoxy resin (PANER) interleaving film could be prepared, which was beneficial to hinder crack initiation paths and improve the load transfer. Flexural and compression performance testing results showed optimum performance was obtained when 2 wt.% PAN fiber was added, and an increment of 28.6% was obtained in the flexural strength and 11.7% increment in compressive strength. The damaged energy absorption was improved up to 21.4% and 11.3% for the flexural and compressive properties, respectively. The overall thickness increments in the interlayer with PANER interleaving film were approximately 4–9 μm. X-Ray micro-computed tomography and scanning electron microscopy observations exhibited the potential of PAN fiber in the reduction of RRR, resulting in modes replacement from delamination-dominant failure to crossing-multi-layer failure. In all, PANER interleaving film at the interlayer has been confirmed to be an effective approach to produce a simple reinforcement technology for FRP laminates. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

23 pages, 4352 KB  
Article
Quantifying Inter-Ply Friction and Clamping Effects via an Experimental–Numerical Framework: Advancing Non-Coherent Deformation Control of Uncured Metal–Fiber-Reinforced Polymer Laminates
by Yunlong Chen and Shichen Liu
Polymers 2025, 17(17), 2330; https://doi.org/10.3390/polym17172330 - 28 Aug 2025
Viewed by 3777
Abstract
Pre-stacked uncured metal–fiber-reinforced polymer (FRP) laminates, which are critical for aerospace components like double-curved fuselage panels, wing ribs, and engine nacelles, exhibit better deformation behavior than their fully cured counterparts. However, accurate process simulation requires precise material characterization and process optimization to achieve [...] Read more.
Pre-stacked uncured metal–fiber-reinforced polymer (FRP) laminates, which are critical for aerospace components like double-curved fuselage panels, wing ribs, and engine nacelles, exhibit better deformation behavior than their fully cured counterparts. However, accurate process simulation requires precise material characterization and process optimization to achieve a defect-free structural design. This study focuses on two core material behaviors of uncured laminates—inter-ply friction at metal–prepreg interfaces and out-of-plane bending—and optimizes process parameters for their non-coherent deformation. Experimental tests included double-lap sliding tests (to quantify inter-ply friction) and clamped-beam bending tests (to characterize out-of-plane bending); a double-curved dome part was designed to assess the effects of the material constituent, fiber orientation, inter-ply friction, and clamping force, with validation via finite element modeling (FEM) in Abaqus software. The results indicate that the static–kinetic friction model effectively predicts inter-ply friction behavior, with numerical friction coefficient–displacement trends closely matching experimental data. Additionally, the flexural bending model showed that greater plastic deformation in metal layers increased bending force while reducing post-unloading spring-back depth. Furthermore, for non-coherent deformation, higher clamping forces improve FRP prepreg deformation and mitigate buckling, but excessive plastic deformation raises metal cracking risk. This work helps establish a combined experimental–numerical framework for the defect prediction and process optimization of complex lightweight components, which address the core needs of modern aerospace manufacturing. Full article
Show Figures

Figure 1

27 pages, 4573 KB  
Article
Basalt vs. Glass Fiber-Reinforced Polymers: A Statistical Comparison of Tribological Performance Under Dry Sliding Conditions
by Corina Birleanu, Razvan Udroiu, Mircea Cioaza, Paul Bere and Marius Pustan
J. Compos. Sci. 2025, 9(8), 444; https://doi.org/10.3390/jcs9080444 - 18 Aug 2025
Viewed by 1157
Abstract
The variety of fiber types embedded in fiber-reinforced polymer (FRP) composites determines different tribology performance properties. In this work, the tribological properties under dry sliding conditions of glass fiber-reinforced polymer (GFRP) and basalt fiber-reinforced polymer (BFRP) were investigated and compared. Laminated composite specimens [...] Read more.
The variety of fiber types embedded in fiber-reinforced polymer (FRP) composites determines different tribology performance properties. In this work, the tribological properties under dry sliding conditions of glass fiber-reinforced polymer (GFRP) and basalt fiber-reinforced polymer (BFRP) were investigated and compared. Laminated composite specimens with different fiber content were manufactured by vacuum bagging and autoclave curing. Tensile and flexural mechanical properties, as well as pin-on-disk tribological properties of the composite specimens, were analyzed. A design of experiments was performed considering the influence of fiber weight fraction, fiber type, and sliding speed on the coefficient of friction (COF), specific wear rate (K), and contact temperature. A multifactorial ANOVA was performed to identify the significance and contribution percentage of each factor. Deep investigations to understand the wear mechanisms were performed using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The results of the statistical analysis showed that the interaction between fiber type and sliding speed had the most significant influence on the COF (31.36%), while the fiber weight fraction had the predominant effect on the specific wear rate (22.04%), and the sliding speed was the most influential factor affecting temperature (82.88%). BFRP composites consistently performed better than GFRP in all tribological metrics, such as coefficient of friction, specific wear rate, and contact temperature. Full article
(This article belongs to the Special Issue Polymer Composites and Fibers, 3rd Edition)
Show Figures

Figure 1

18 pages, 3197 KB  
Article
The Progressive Damage Modeling of Composite–Steel Lapped Joints
by Alaa El-Sisi, Ahmed Elbelbisi, Ahmed Elkilani and Hani Salim
J. Compos. Sci. 2025, 9(7), 350; https://doi.org/10.3390/jcs9070350 - 7 Jul 2025
Viewed by 1129
Abstract
In advanced structural applications—aerospace and automotive—fiber-laminated composite (FRP) materials are increasingly used for their superior strength-to-weight ratios, making the reliability of their mechanical joints a critical concern. Mechanically fastened joints play a major role in ensuring the structural stability of FRP Composite structures; [...] Read more.
In advanced structural applications—aerospace and automotive—fiber-laminated composite (FRP) materials are increasingly used for their superior strength-to-weight ratios, making the reliability of their mechanical joints a critical concern. Mechanically fastened joints play a major role in ensuring the structural stability of FRP Composite structures; however, accurately predicting their failure behavior remains a major challenge due to the anisotropic and heterogeneous nature of composite materials. This paper presents a progressive damage modeling approach to investigate the failure modes and joint strength of mechanically fastened carbon fiber-laminated (CFRP) composite joints. A 3D constitutive model based on continuum damage mechanics was developed and implemented within a three-dimensional finite element framework. The joint model comprises a composite plate, a steel plate, a steel washer, and steel bolts, capturing realistic assembly behavior. Both single- and double-lap joint configurations, featuring single and double bolts, were analyzed under tensile loading. The influence of clamping force on joint strength was also investigated. Model predictions were validated against existing experimental results, showing a good correlation. It was observed that double-lap joints exhibit nearly twice the strength of single-lap joints and can retain up to 85% of the strength of a plate with a hole. Furthermore, double-lap configurations support higher clamping forces, enhancing frictional resistance at the interface and load transfer efficiency. However, the clamping force must be optimized, as excessive values can induce premature damage in the composite before external loading. The stiffness of double-bolt double-lap (3DD) joints was found to be approximately three times that of single-bolt single-lap (3DS) joints, primarily due to reduced rotational flexibility. These findings provide useful insights into the design and optimization of composite bolted joints under tensile loading. Full article
(This article belongs to the Special Issue Characterization and Modelling of Composites, Volume III)
Show Figures

Figure 1

22 pages, 7210 KB  
Article
Polyethylene Storage Tanks Strengthened Externally with Fiber-Reinforced Polymer Laminates
by Ghassan Hachem, Wassim Raphael and Rafic Faddoul
Polymers 2025, 17(13), 1858; https://doi.org/10.3390/polym17131858 - 3 Jul 2025
Viewed by 786
Abstract
Polyethylene storage tanks are widely used for storing water and chemicals due to their lightweight and corrosion-resistant properties. Despite these advantages, their structural performance under seismic conditions remains a concern, mainly because of their low mechanical strength and weak bonding characteristics. In this [...] Read more.
Polyethylene storage tanks are widely used for storing water and chemicals due to their lightweight and corrosion-resistant properties. Despite these advantages, their structural performance under seismic conditions remains a concern, mainly because of their low mechanical strength and weak bonding characteristics. In this study, a method of external strengthening using fiber-reinforced polymer (FRP) laminates is proposed and explored. The research involves a combination of laboratory testing on carbon fiber-reinforced polymer (CFRP)-strengthened polyethylene strips and finite element simulations aimed at assessing bond strength, anchorage length, and structural behavior. Results from tensile tests indicate that slippage tends to occur unless the anchorage length exceeds approximately 450 mm. To evaluate surface preparation, grayscale image analysis was used, showing that mechanical sanding increased intensity variation by over 127%, pointing to better bonding potential. Simulation results show that unreinforced tanks under seismic loads display stress levels beyond their elastic limit, along with signs of elephant foot buckling—common in thin-walled cylindrical structures. Applying CFRPs in a full-wrap setup notably reduced these effects. This approach offers a viable alternative to full tank replacement, especially in regions where cost, access, or operational constraints make replacement impractical. The applicability is particularly valuable in seismically active and densely populated areas, where rapid, non-invasive retrofitting is essential. Based on the experimental findings, a simple formula is proposed to estimate the anchorage length required for effective crack repair. Overall, the study demonstrates that CFRP retrofitting, paired with proper surface treatment, can significantly enhance the seismic performance of polyethylene tanks while avoiding costly and disruptive replacement strategies. Full article
(This article belongs to the Special Issue Fiber-Reinforced Polymer Composites: Progress and Prospects)
Show Figures

Figure 1

19 pages, 3735 KB  
Article
Easy Prestressing of FRP for Strengthening RC Beams: Experimental Study with an Analytical Approach
by Gokhan Sakar and Huseyin Kursat Celik
Polymers 2025, 17(12), 1628; https://doi.org/10.3390/polym17121628 - 12 Jun 2025
Viewed by 1257
Abstract
This study investigates strengthening reinforced concrete (RC) beams using fiber-reinforced polymers (FRPs). Nine samples were cast and strengthened with varying parameters, including the width, number of laminates, use of anchors, and application of prestressing. A novel device—the easy prestressing machine (EPM)—was developed to [...] Read more.
This study investigates strengthening reinforced concrete (RC) beams using fiber-reinforced polymers (FRPs). Nine samples were cast and strengthened with varying parameters, including the width, number of laminates, use of anchors, and application of prestressing. A novel device—the easy prestressing machine (EPM)—was developed to apply prestress. The EPM is lightweight and operable manually, enabling up to 10% prestressing. All specimens were tested under three-point bending until failure, and load-displacement curves were recorded. An analytical method based on curvature increment and incorporating material nonlinearities is also proposed to estimate the load-displacement response of RC beams with and without FRP strengthening. Both experimental and analytical results are presented and compared. The analytical model strongly agreed with the experimental results, showing Pearson correlation coefficients exceeding 90% for most specimens. According to the experimental findings, applying FRP, particularly when combined with anchorage and prestressing, increased the load-bearing capacity by up to 45%. Anchorage and prestressing effectively mitigate premature debonding, with prestressing showing a more pronounced impact on enhancing bond performance and load capacity. Based on the results, conclusions regarding the analytical model, structural behavior, and optimal strengthening strategies are discussed. Full article
Show Figures

Figure 1

18 pages, 6813 KB  
Article
Effects of Matrix Properties on the Interfacial Shear Strength Between Carbon Fiber and Various Thermoplastic Polymers, and Their Influence on the Mechanical Properties of Composites
by Kazuto Tanaka and Ryota Sakakibara
J. Compos. Sci. 2025, 9(4), 174; https://doi.org/10.3390/jcs9040174 - 2 Apr 2025
Viewed by 1095
Abstract
Although fiber–matrix interfacial strengths, which affect the mechanical properties of fiber-reinforced plastics (FRPs), are considered to be determined by complex factors, few studies have systematically evaluated the relationship between the matrix properties and the fiber–matrix interfacial shear strength. In this study, the properties [...] Read more.
Although fiber–matrix interfacial strengths, which affect the mechanical properties of fiber-reinforced plastics (FRPs), are considered to be determined by complex factors, few studies have systematically evaluated the relationship between the matrix properties and the fiber–matrix interfacial shear strength. In this study, the properties of various thermoplastics were measured, and the matrix tightening stress that constricts the fiber was simulated using finite element method (FEM) analysis. The relationships between the fiber–matrix interfacial shear strength and the matrix properties were clarified. The mechanical properties of carbon fiber reinforced thermoplastic (CFRTP) laminates were also evaluated, and the relationships between the fiber–matrix interfacial shear strength and the mechanical properties of CFRTP laminates were examined. The fiber–matrix interfacial shear strength showed a positive correlation with the matrix tightening stress tightening the fiber in the radial direction, as well as with matrix density, tensile strength, modulus, and melting temperature, while a negative correlation was found with the coefficient of linear expansion of the matrix. A higher fiber–matrix interfacial shear strength can be achieved by using a matrix with higher density, even without direct evaluation of the fiber–matrix interfacial strength, as the fiber–matrix interfacial shear strength showed a strong positive correlation with matrix density. Furthermore, the mechanical properties of CFRTP laminates were enhanced when matrices with higher fiber–matrix interfacial shear strength were used. Full article
(This article belongs to the Special Issue Carbon Fiber Composites, 4th Edition)
Show Figures

Figure 1

11 pages, 2912 KB  
Article
Bacterial-Retted Hemp Fiber/PLA Composites
by Lee M. Smith, Yu Fu, Raj Kumar Pittala, Xun Wang, Chloe Jabel, Kelvin Masignag, Josue Arellanes, Mahan Ghosh, Sheldon Q. Shi, Melanie Ecker and Cuicui Wang
Processes 2025, 13(4), 1000; https://doi.org/10.3390/pr13041000 - 27 Mar 2025
Cited by 1 | Viewed by 1085
Abstract
The push for sustainability in all facets of manufacturing has led to an increased interest in biomass as an alternative to non-renewable materials. Hemp bast fiber mats were produced from a bacterial retting process, named BFM, as the fiber reinforcement. The objective of [...] Read more.
The push for sustainability in all facets of manufacturing has led to an increased interest in biomass as an alternative to non-renewable materials. Hemp bast fiber mats were produced from a bacterial retting process, named BFM, as the fiber reinforcement. The objective of this study was to evaluate the feasibility of laminating BFM with polylactic acid (PLA) for a composite panel product. Since both BFM and PLA are biodegradable, the resulting BFM-PLA composites will be 100% biodegradable. PLA pallets were processed into thin polymer sheets which served as the matrix. The BFM and PLA plates were laminated in five layers and compression-molded into composite panels. Experiments were conducted on the three BFM-to-PLA ratios (35/65, 45/55, and 50/50). Mechanical properties (tensile and bending properties) and physical properties (thickness swell and water absorption) were tested and compared to the currently commercial sheet molding compound (SMC) from fiber glass. The thermal behavior of the BFM/PLA composites was characterized using dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC). The developed BFM/PLA composite product is a sustainable alternative to existing synthetical fiber-reinforced polymer (FRP) that is biodegradable in landfill at the end of life. Full article
(This article belongs to the Special Issue Bioprocess Engineering: Sustainable Manufacturing for a Green Society)
Show Figures

Graphical abstract

20 pages, 10387 KB  
Article
Micro-Level Hybridization of Steel, Glass, and Polypropylene Filaments via Air Texturing: Mechanical and Morphological Analysis
by Jan Rehra, Matthias Overberg, Sebastian Schmeer, Anwar Abdkader and Chokri Cherif
J. Compos. Sci. 2025, 9(1), 12; https://doi.org/10.3390/jcs9010012 - 2 Jan 2025
Viewed by 789
Abstract
The increasing application of fiber-reinforced polymer (FRP) composites necessitates the development of composite structures that exhibit high stiffness, high strength, and favorable failure behavior to endure complex loading scenarios and improve damage tolerance. Achieving these properties can be facilitated by integrating conventional FRPCs [...] Read more.
The increasing application of fiber-reinforced polymer (FRP) composites necessitates the development of composite structures that exhibit high stiffness, high strength, and favorable failure behavior to endure complex loading scenarios and improve damage tolerance. Achieving these properties can be facilitated by integrating conventional FRPCs with metallic materials, which offer high ductility and superior energy absorption capabilities. However, there is a lack of effective solutions for the micro-level hybridization of high-performance filament yarns, metal filament yarns, and thermoplastic filament yarns. This study aims to investigate the hybridization of multi-material components at the micro-level using the air-texturing process. The focus is on investigating the morphological and the mechanical properties as well as the damage behavior in relation to the process parameters of the air-texturing process. The process-induced property changes were evaluated throughout the entire process, starting from the individual components, through the hybridization process, and up to the tape production. Tensile tests on multifilament yarns and tape revealed that the strength of the hybrid materials is significantly reduced due to the hybridization process inducing fiber damage. Morphological analyses using 3D scans and micrographs demonstrated that the degree of hybridization is enhanced due to the application of air pressure during the hybridization process. However, this phenomenon is also influenced by the flow movement of the PP matrix during the consolidation stage. The hybrid laminates exhibited a damage behavior that differs from the established behavior of layer-separated metal fiber hybrids, thereby supporting other failure and energy absorption mechanisms, such as fiber pull-out. Full article
(This article belongs to the Special Issue Recent Progress in Hybrid Composites)
Show Figures

Figure 1

17 pages, 27885 KB  
Article
Interaction Between Concrete and FRP Laminate in Structural Members Composed of Reused Wind Turbine Blades Filled with Concrete
by Anna Halicka, Lidia Buda-Ożóg, Mirosław Broniewicz, Łukasz Jabłoński, Joanna Zięba and Filip Broniewicz
Materials 2024, 17(24), 6186; https://doi.org/10.3390/ma17246186 - 18 Dec 2024
Viewed by 1027
Abstract
The lifecycle of wind turbine blades is around 20–25 years. This makes studies on the reuse of dismantled blades an urgent need for our generation; however, their recycling is very difficult due to the specific makeup of their composite material. In this study, [...] Read more.
The lifecycle of wind turbine blades is around 20–25 years. This makes studies on the reuse of dismantled blades an urgent need for our generation; however, their recycling is very difficult due to the specific makeup of their composite material. In this study, the authors determined a concept for the reuse of turbine blade sections filled with concrete for geotechnical structures, retaining the walls, piles, or parts of their foundations. Working out detailed structural solutions to the above problem should be preceded by the identification of material parameters. In particular, getting to know the interface stress-strain characteristics is crucial. Therefore, this research focuses on the cooperation between recycled FRP composites and concrete in load-carrying, including experiments and numerical analyses. Regarding the two types of destructive stress, which may occur at the interface under both compression and bending, two types of tests were executed: the ‘push-out test’, modelling the interface’s answer to shear stress, and the ‘pull-off test’, demonstrating the interface’s reaction to normal stress. Additionally, the strength parameters of the materials used were tested. The numerical model for the push-out process was calibrated on the basis of the tests, and this way the shear bond strength and the coefficient of friction between the concrete and the recycled FRP laminate were assessed. Full article
Show Figures

Figure 1

22 pages, 6337 KB  
Article
Experimental Investigation on the Effectiveness of EB-CFRP Confinement of Elliptical Concrete Columns
by Zine El Abidine Benzeguir, Omar Chaallal, Ahmed Godat and Rami A. Hawileh
Symmetry 2024, 16(12), 1595; https://doi.org/10.3390/sym16121595 - 29 Nov 2024
Cited by 1 | Viewed by 958
Abstract
This paper presents the results of an experimental study involving 20 tests performed on elliptical concrete columns confined with externally bonded carbon fiber-reinforced polymer (EB-CFRP) laminates. The study aimed to evaluate the effects of elliptical aspect ratio (A/B) as well as confinement rigidity [...] Read more.
This paper presents the results of an experimental study involving 20 tests performed on elliptical concrete columns confined with externally bonded carbon fiber-reinforced polymer (EB-CFRP) laminates. The study aimed to evaluate the effects of elliptical aspect ratio (A/B) as well as confinement rigidity (number of EB-FRP layers) on confinement effectiveness. The experimental program consisted of one series of control concrete columns (unstrengthened) and three additional series, each one strengthened with one, two and three layers of EB-CFRP sheets, respectively. Furthermore, each series considered five elliptical aspect ratios (A/B) ranging from 1.0 to 1.6. Following compressive concentric tests until failure, the results were analyzed to characterize the confinement level with an increasing number of EB-CFRP layers as a function of the elliptical aspect ratio. The results show considerable enhancements in compressive strength and in the ductility of the confined columns. Furthermore, this improvement is amplified as the number of EB-CFRP layers increases, indicating a proportional relationship between the compressive strength and the number of CFRP layers. It is found that the ultimate strength of EB-CFRP-confined columns with three layers reached up to 130% compared to the control specimens. However, increasing the elliptical aspect ratio reduced the compressive strength and ductility of confined columns. This study investigated the relation between the CFRP hoop and axial strains and the elliptical aspect ratios. Moreover, through comparison, the results reveal that the prediction models proposed by the Canadian standards S806-12 and S6-19 do not capture the negative effect of the elliptical aspect ratio in confined concrete columns. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Structural Engineering and Structural Mechanics)
Show Figures

Figure 1

16 pages, 8643 KB  
Article
Evaluation of Bonding Properties Between CFRP Laminate and Concrete Using Externally Bonded Reinforcement on Transverse Grooves (EBROTG) Method
by Ahmed H. Al-Abdwais and Adil K. Al-Tamimi
J. Compos. Sci. 2024, 8(12), 488; https://doi.org/10.3390/jcs8120488 - 22 Nov 2024
Cited by 2 | Viewed by 1143
Abstract
The external bonding system using CFRP composite has been extensively utilized for strengthening different structures worldwide. However, premature debonding in this strengthening technique is a critical failure that leads to the fiber not reaching its ultimate capacity. In order to enhance the capacity [...] Read more.
The external bonding system using CFRP composite has been extensively utilized for strengthening different structures worldwide. However, premature debonding in this strengthening technique is a critical failure that leads to the fiber not reaching its ultimate capacity. In order to enhance the capacity of the externally bonded (EB) FRP and to slow the premature debonding failure mechanism, numerous anchoring techniques have been applied to improve the bonding capacity. The externally bonded reinforcement on grooves (EBROG) technology is one of the strategies that have been recently developed to delay the debonding issue. Although extensive studies have been conducted in the literature on the EBROG method, most of these studies have been focused on the bonding characteristics of grooves in the longitudinal direction, and few studies on the effect of different designs and configurations (e.g., width, height, and spacing) in the transverse groove direction have been conducted using only CFRP fabric. In the present study, an experimental investigation was carried out to study the bond behavior of the externally bonded reinforcement on transverse grooves (EBROTG) technique on CFRP-to-concrete joints involving different parameters, including groove width, depth, spaces between grooves, and strain evolution with the corresponding bond stress–slip relationships using CFRP laminate. Twenty-four concrete prisms, divided into eight groups of three specimens, were tested using a single-lap shear test set-up. The results of testing proved that the EBROTG method furnished a proper anchor system and highly enhanced the bonding force of the tests. The increasing range of bonding strength in the specimens reinforced with the transverse grooving method ranged from 11 to 86% compared to the externally bonded reinforcement (EBR), reflecting the effect of different widths, depths, and distances between grooves. Full article
(This article belongs to the Section Fiber Composites)
Show Figures

Figure 1

35 pages, 20307 KB  
Article
An Enhanced Progressive Damage Model for Laminated Fiber-Reinforced Composites Using the 3D Hashin Failure Criterion: A Multi-Level Analysis and Validation
by Yichen Zhang, Wim Van Paepegem and Wouter De Corte
Materials 2024, 17(21), 5176; https://doi.org/10.3390/ma17215176 - 24 Oct 2024
Cited by 14 | Viewed by 3790
Abstract
This paper presents a progressive damage model (PDM) based on the 3D Hashin failure criterion within the ABAQUS/ExplicitTM 2021 framework via a VUMAT subroutine, enhancing the characterization of the mechanical performance and damage evolution in the elastic and softening stages of composite [...] Read more.
This paper presents a progressive damage model (PDM) based on the 3D Hashin failure criterion within the ABAQUS/ExplicitTM 2021 framework via a VUMAT subroutine, enhancing the characterization of the mechanical performance and damage evolution in the elastic and softening stages of composite materials via the accurate calculation of damage variables and accommodation of non-monotonic loading conditions. In the subsequent multi-level verification, it is found that the model accurately simulates the primary failure modes at the element level and diminishes the influence of element size, ensuring a reliable behavior representation under non-monotonic loading. At the laminate level, it also accurately forecasts the elastic behavior and damage evolution in open-hole lamina and laminates, demonstrating the final crack band at ultimate failure. This paper also emphasizes the importance of correct characteristic length selection and how to minimize mesh size impact by selecting appropriate values. Compared to ABAQUS’s built-in 2D model, the 3D VUMAT subroutine shows superior accuracy and effectiveness, proving its value in characterizing the mechanical behavior and damage mechanisms of fiber-reinforced polymer (FRP) materials. The enhanced 3D PDM accurately characterizes the softening processes in composite materials under simple or complex stress states during monotonic or non-monotonic loading, effectively minimizes the mesh dependency, and reasonably captures failure crack bands, making it suitable for future simulations and resolutions of numerical issues in composite material models under complex, three-dimensional stress states. Full article
(This article belongs to the Special Issue Numerical Modeling and Dynamic Analysis of Composite Materials)
Show Figures

Graphical abstract

Back to TopTop