Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = FET compression

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4060 KB  
Article
Electrical Conductivity, Thermo-Mechanical Properties, and Cytotoxicity of Poly(3,4-Ethylenedioxythiophene):Poly(Styrene Sulfonate) (PEDOT:PSS)/Sulfonated Polyurethane Blends
by Gagan Kaur, Gavin E. Collis, Raju Adhikari and Pathiraja Gunatillake
Materials 2024, 17(18), 4602; https://doi.org/10.3390/ma17184602 - 19 Sep 2024
Cited by 3 | Viewed by 2029
Abstract
Electrically conductive polymeric materials have recently garnered significant interest from researchers due to their potential applications in the biomedical field, including medical implants, tissue engineering, flexible electronic devices, and biosensors. Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is considered the most successful conducting polymer due to its [...] Read more.
Electrically conductive polymeric materials have recently garnered significant interest from researchers due to their potential applications in the biomedical field, including medical implants, tissue engineering, flexible electronic devices, and biosensors. Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is considered the most successful conducting polymer due to its higher electrical conductivity and chemical stability, but it suffers from limited solubility in common organic solvents, poor mechanical properties, and low biocompatibility. An area of tremendous interest is in combining PEDOT:PSS with another polymer to form a blend or composite material in order to access the beneficial properties of both materials. However, the hydrophilic nature of PEDOT:PSS makes it difficult to produce composites with non-polar polymers. In order to overcome these problems, we have specifically designed and synthesized two new sulfonated polyurethanes (PUS) with high sulfonic acid functionality. The two polyurethanes, one water-soluble (PUS1) and one water-insoluble (PUS2), were used to make blends with two commercially available PEDOT:PSS formulations (CleviosTM FET and PH1000). Solvent cast films on glass substrates were made from water-soluble PEDOT:PSS/PUS1 blends while free-standing films of PEDOT:PSS/PUS2 blends were fabricated by compression-moulding. Ethylene glycol was used as conductivity enhancer, which showed an increase in the conductivity by several orders of magnitude in most of the compositions investigated. The highest conductivity of 438 S cm−1 was achieved for the blend with 80 wt% of PEDOT:PSS (PH1000) in PUS1. Full article
Show Figures

Figure 1

14 pages, 5466 KB  
Article
Piezotronic and Piezo-Phototronic Effects-Enhanced Core–Shell Structure-Based Nanowire Field-Effect Transistors
by Xiang Liu, Fangpei Li, Wenbo Peng, Quanzhe Zhu, Yangshan Li, Guodong Zheng, Hongyang Tian and Yongning He
Micromachines 2023, 14(7), 1335; https://doi.org/10.3390/mi14071335 - 29 Jun 2023
Cited by 3 | Viewed by 1735
Abstract
Piezotronic and piezo-phototronic effects have been extensively applied to modulate the performance of advanced electronics and optoelectronics. In this study, to systematically investigate the piezotronic and piezo-phototronic effects in field-effect transistors (FETs), a core–shell structure-based Si/ZnO nanowire heterojunction FET (HJFET) model was established [...] Read more.
Piezotronic and piezo-phototronic effects have been extensively applied to modulate the performance of advanced electronics and optoelectronics. In this study, to systematically investigate the piezotronic and piezo-phototronic effects in field-effect transistors (FETs), a core–shell structure-based Si/ZnO nanowire heterojunction FET (HJFET) model was established using the finite element method. We performed a sweep analysis of several parameters of the model. The results show that the channel current increases with the channel radial thickness and channel doping concentration, while it decreases with the channel length, gate doping concentration, and gate voltage. Under a tensile strain of 0.39‰, the saturation current change rate can reach 38%. Finally, another core–shell structure-based ZnO/Si nanowire HJFET model with the same parameters was established. The simulation results show that at a compressive strain of −0.39‰, the saturation current change rate is about 18%, which is smaller than that of the Si/ZnO case. Piezoelectric potential and photogenerated electromotive force jointly regulate the carrier distribution in the channel, change the width of the channel depletion layer and the channel conductivity, and thus regulate the channel current. The research results provide a certain degree of reference for the subsequent experimental design of Zn-based HJFETs and are applicable to other kinds of FETs. Full article
(This article belongs to the Special Issue Nanowires for Novel Technological Applications)
Show Figures

Figure 1

14 pages, 4279 KB  
Article
Three-Dimensional MoS2 Nanosheet Structures: CVD Synthesis, Characterization, and Electrical Properties
by Sobin Mathew, Johannes Reiprich, Shilpashree Narasimha, Saadman Abedin, Vladislav Kurtash, Sebastian Thiele, Bernd Hähnlein, Theresa Scheler, Dominik Flock, Heiko O. Jacobs and Jörg Pezoldt
Crystals 2023, 13(3), 448; https://doi.org/10.3390/cryst13030448 - 4 Mar 2023
Cited by 5 | Viewed by 3070
Abstract
The proposed study demonstrates a single-step CVD method for synthesizing three-dimensional vertical MoS2 nanosheets. The postulated synthesizing approach employs a temperature ramp with a continuous N2 gas flow during the deposition process. The distinctive signals of MoS2 were revealed via [...] Read more.
The proposed study demonstrates a single-step CVD method for synthesizing three-dimensional vertical MoS2 nanosheets. The postulated synthesizing approach employs a temperature ramp with a continuous N2 gas flow during the deposition process. The distinctive signals of MoS2 were revealed via Raman spectroscopy study, and the substantial frequency difference in the characteristic signals supported the bulk nature of the synthesized material. Additionally, XRD measurements sustained the material’s crystallinity and its 2H-MoS2 nature. The FIB cross-sectional analysis provided information on the origin and evolution of the vertical MoS2 structures and their growth mechanisms. The strain energy produced by the compression between MoS2 islands is assumed to primarily drive the formation of vertical MoS2 nanosheets. In addition, vertical MoS2 structures that emerge from micro fissures (cracks) on individual MoS2 islands were observed and examined. For the evaluation of electrical properties, field-effect transistor structures were fabricated on the synthesized material employing standard semiconductor technology. The lateral back-gated field-effect transistors fabricated on the synthesized material showed an n-type behavior with field-effect mobility of 1.46 cm2 V−1 s−1 and an estimated carrier concentration of 4.5 × 1012 cm−2. Furthermore, the effects of a back-gate voltage bias and channel dimensions on the hysteresis effect of FET devices were investigated and quantified. Full article
(This article belongs to the Special Issue Recent Developments of Inorganic Crystalline Materials)
Show Figures

Figure 1

14 pages, 5047 KB  
Article
A 24 GHz CMOS Direct-Conversion RF Receiver with I/Q Mismatch Calibration for Radar Sensor Applications
by Yongho Lee, Soyeon Kim and Hyunchol Shin
Sensors 2022, 22(21), 8246; https://doi.org/10.3390/s22218246 - 27 Oct 2022
Cited by 5 | Viewed by 3325
Abstract
A 24 GHz millimeter-wave direct-conversion radio-frequency (RF) receiver with wide-range and precise I/Q mismatch calibration is designed in 65 nm CMOS technology for radar sensor applications. The CMOS RF receiver is based on a quadrature direct-conversion architecture. Analytic relations are derived to clearly [...] Read more.
A 24 GHz millimeter-wave direct-conversion radio-frequency (RF) receiver with wide-range and precise I/Q mismatch calibration is designed in 65 nm CMOS technology for radar sensor applications. The CMOS RF receiver is based on a quadrature direct-conversion architecture. Analytic relations are derived to clearly exhibit the individual contributions of the I/Q amplitude and phase mismatches to the image-rejection ratio (IRR) degradation, which provides a useful design guide for determining the range and resolution of the I/Q mismatch calibration circuit. The designed CMOS RF receiver comprises a low-noise amplifier, quadrature down-conversion mixer, baseband amplifier, and quadrature LO generator. Controlling the individual gate bias voltages of the switching FETs in the down-conversion mixer having a resistive load is found to induce significant changes at the amplitude and phase of the output signal. In the calibration process, the mixer gate bias tuning is first performed for the amplitude mismatch calibration, and the remaining phase mismatch is then calibrated out by the varactor capacitance tuning at the LO buffer’s LC load. Implemented in 65 nm CMOS process, the RF receiver achieves 31.5 dB power gain, −35.2 dBm input-referred 1 dB compression power, and 4.8–7.1 dB noise figure across 22.5–26.1 GHz band, while dissipating 106.2 mA from a 1.2 V supply. The effectiveness of the proposed I/Q mismatch calibration is successfully verified by observing that the amplitude and phase mismatches are improved from 1.0–1.5 dB to 0.02–0.19 dB, and from 10.8–23.8 to 1.1–3.2 degrees, respectively. Full article
(This article belongs to the Special Issue Advanced CMOS Integrated Circuit Design and Application II)
Show Figures

Figure 1

9 pages, 1488 KB  
Article
Ferroelectric Memory Based on Topological Domain Structures: A Phase Field Simulation
by Jing Huang, Pengfei Tan, Fang Wang and Bo Li
Crystals 2022, 12(6), 786; https://doi.org/10.3390/cryst12060786 - 29 May 2022
Cited by 4 | Viewed by 3260
Abstract
The low storage density of ferroelectric thin film memory currently limits the further application of ferroelectric memory. Topologies based on controllable ferroelectric domain structures offer opportunities to develop microelectronic devices such as high-density memories. This study uses ferroelectric topology domains in a ferroelectric [...] Read more.
The low storage density of ferroelectric thin film memory currently limits the further application of ferroelectric memory. Topologies based on controllable ferroelectric domain structures offer opportunities to develop microelectronic devices such as high-density memories. This study uses ferroelectric topology domains in a ferroelectric field-effect transistor (FeFET) structure for memory. The electrical behavior of FeFET and its flip properties under strain and electric fields are investigated using a phase-field model combined with the device equations of field-effect transistors. When the dimensionless electric field changes from −0.10 to 0.10, the memory window drops from 2.49 V to 0.6 V and the on-state current drops from 2.511 mA to 1.951 mA; the off-state current grows from 1.532 mA to 1.877 mA. External tensile stress increases the memory window and off-state current, while compressive stress decreases it. This study shows that a ferroelectric topology can be used as memory and could significantly increase the storage density of ferroelectric memory. Full article
(This article belongs to the Special Issue Research and Development of Ferroelectric Material)
Show Figures

Figure 1

17 pages, 4224 KB  
Article
Investigation of the Integration of Strained Ge Channel with Si-Based FinFETs
by Buqing Xu, Guilei Wang, Yong Du, Yuanhao Miao, Yuanyuan Wu, Zhenzhen Kong, Jiale Su, Ben Li, Jiahan Yu and Henry H. Radamson
Nanomaterials 2022, 12(9), 1403; https://doi.org/10.3390/nano12091403 - 19 Apr 2022
Cited by 2 | Viewed by 3343
Abstract
In this manuscript, the integration of a strained Ge channel with Si-based FinFETs was investigated. The main focus was the preparation of high-aspect-ratio (AR) fin structures, appropriate etching topography and the growth of germanium (Ge) as a channel material with a highly compressive [...] Read more.
In this manuscript, the integration of a strained Ge channel with Si-based FinFETs was investigated. The main focus was the preparation of high-aspect-ratio (AR) fin structures, appropriate etching topography and the growth of germanium (Ge) as a channel material with a highly compressive strain. Two etching methods, the wet etching and in situ HCl dry etching methods, were studied to achieve a better etching topography. In addition, the selective epitaxial growth of Ge material was performed on a patterned substrate using reduced pressure chemical vapor deposition. The results show that a V-shaped structure formed at the bottom of the dummy Si-fins using the wet etching method, which is beneficial to the suppression of dislocations. In addition, compressive strain was introduced to the Ge channel after the Ge selective epitaxial growth, which benefits the pMOS transport characteristics. The pattern dependency of the Ge growth over the patterned wafer was measured, and the solutions for uniform epitaxy are discussed. Full article
(This article belongs to the Special Issue Silicon-Based Nanostructures: Fabrication and Characterization)
Show Figures

Figure 1

14 pages, 4495 KB  
Article
28-GHz CMOS Direct-Conversion RF Transmitter with Precise and Wide-Range Mismatch Calibration Techniques
by Yongho Lee, Byeonghyeon Kim and Hyunchol Shin
Electronics 2022, 11(6), 840; https://doi.org/10.3390/electronics11060840 - 8 Mar 2022
Cited by 5 | Viewed by 4486
Abstract
A millimeter-wave direct-conversion radio-frequency (RF) transmitter requires precise in-/quadrature-phase (I/Q) mismatch calibration and dc offset cancellation to minimize image rejection ratio (IRR) and LO feedthrough (LOFT) for ensuring satisfactory output spectral purity. We present a 28-GHz CMOS RF transmitter with an improved calibration [...] Read more.
A millimeter-wave direct-conversion radio-frequency (RF) transmitter requires precise in-/quadrature-phase (I/Q) mismatch calibration and dc offset cancellation to minimize image rejection ratio (IRR) and LO feedthrough (LOFT) for ensuring satisfactory output spectral purity. We present a 28-GHz CMOS RF transmitter with an improved calibration technique for fifth generation (5G) wireless communication applications. The RF transmitter comprises a baseband amplifier, quadrature up-conversion mixer, power amplifier driver, and quadrature LO generator. The I/Q amplitude mismatch is calibrated by tuning the gate biases of the switching stage FETs of the mixer, the I/Q phase mismatch is calibrated by tuning the varactor capacitances at the LC load of LO buffer, and the dc offset is cancelled by tuning the body voltages of the differential-pair FETs at the baseband amplifier. The proposed technique provides precise calibration accuracy by employing mV-resolution tuning voltage generation via 6-bit voltage digital-to-analog converters. It also covers wide calibration range while minimizing the impact on the circuit’s bias point and dissipated current during calibration. Implemented in a 65 nm CMOS process, the RF transmitter integrated circuit shows output-referred 1 dB compression power of +6.5 dBm, saturated output power of +12.6 dBm, and an operating band of 27.5–29.3 GHz while demonstrating satisfactory performances of −55.9 dBc of IRR and −36.8 dBc of LOFT. Full article
(This article belongs to the Special Issue Feature Papers in Circuit and Signal Processing)
Show Figures

Figure 1

17 pages, 3010 KB  
Article
Dynamic Range Compression and the Semantic Descriptor Aggressive
by Austin Moore
Appl. Sci. 2020, 10(7), 2350; https://doi.org/10.3390/app10072350 - 30 Mar 2020
Cited by 3 | Viewed by 3913
Abstract
In popular music productions, the lead vocal is often the main focus of the mix and engineers will work to impart creative colouration onto this source. This paper conducts listening experiments to test if there is a correlation between perceived distortion and the [...] Read more.
In popular music productions, the lead vocal is often the main focus of the mix and engineers will work to impart creative colouration onto this source. This paper conducts listening experiments to test if there is a correlation between perceived distortion and the descriptor “aggressive”, which is often used to describe the sonic signature of Universal Audio 1176, a much-used dynamic range compressor in professional music production. The results from this study show compression settings that impart audible distortion are perceived as aggressive by the listener, and there is a strong correlation between the subjective listener scores for distorted and aggressive. Additionally, it was shown there is a strong correlation between compression settings rated with high aggressive scores and the audio feature roughness. Full article
(This article belongs to the Special Issue Musical Instruments: Acoustics and Vibration)
Show Figures

Figure 1

16 pages, 764 KB  
Article
An Ingenious Design of a High Performance-Low Complexity Image Compressor for Wireless Capsule Endoscopy
by Ioannis Intzes, Hongying Meng and John Cosmas
Sensors 2020, 20(6), 1617; https://doi.org/10.3390/s20061617 - 14 Mar 2020
Cited by 4 | Viewed by 3725
Abstract
Wireless Capsule Endoscopy is a state-of-the-art technology for medical diagnoses of gastrointestinal diseases. The amount of data produced by an endoscopic capsule camera is huge. These vast amounts of data are not practical to be saved internally due to power consumption and the [...] Read more.
Wireless Capsule Endoscopy is a state-of-the-art technology for medical diagnoses of gastrointestinal diseases. The amount of data produced by an endoscopic capsule camera is huge. These vast amounts of data are not practical to be saved internally due to power consumption and the available size. So, this data must be transmitted wirelessly outside the human body for further processing. The data should be compressed and transmitted efficiently in the domain of power consumption. In this paper, a new approach in the design and implementation of a low complexity, multiplier-less compression algorithm is proposed. Statistical analysis of capsule endoscopy images improved the performance of traditional lossless techniques, like Huffman coding and DPCM coding. Furthermore the Huffman implementation based on simple logic gates and without the use of memory tables increases more the speed and reduce the power consumption of the proposed system. Further analysis and comparison with existing state-of-the-art methods proved that the proposed method has better performance. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

14 pages, 671 KB  
Article
Orientation Effects in Ballistic High-Strained P-type Si Nanowire FETs
by Jia-Hong Zhang, Qing-An Huang, Hong Yu and Shuang-Ying Lei
Sensors 2009, 9(4), 2746-2759; https://doi.org/10.3390/s90402746 - 17 Apr 2009
Cited by 10 | Viewed by 15348
Abstract
In order to design and optimize high-sensitivity silicon nanowire-field-effect transistor (SiNW FET) pressure sensors, this paper investigates the effects of channel orientations and the uniaxial stress on the ballistic hole transport properties of a strongly quantized SiNW FET placed near the high stress [...] Read more.
In order to design and optimize high-sensitivity silicon nanowire-field-effect transistor (SiNW FET) pressure sensors, this paper investigates the effects of channel orientations and the uniaxial stress on the ballistic hole transport properties of a strongly quantized SiNW FET placed near the high stress regions of the pressure sensors. A discrete stress-dependent six-band k.p method is used for subband structure calculation, coupled to a two-dimensional Poisson solver for electrostatics. A semi-classical ballistic FET model is then used to evaluate the ballistic current-voltage characteristics of SiNW FETs with and without strain. Our results presented here indicate that [110] is the optimum orientation for the p-type SiNW FETs and sensors. For the ultra-scaled 2.2 nm square SiNW, due to the limit of strong quantum confinement, the effect of the uniaxial stress on the magnitude of ballistic drive current is too small to be considered, except for the [100] orientation. However, for larger 5 nm square SiNW transistors with various transport orientations, the uniaxial tensile stress obviously alters the ballistic performance, while the uniaxial compressive stress slightly changes the ballistic hole current. Furthermore, the competition of injection velocity and carrier density related to the effective hole masses is found to play a critical role in determining the performance of the nanotransistors. Full article
Show Figures

Back to TopTop