Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = FDA approved anti-inflammatory compounds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1432 KiB  
Review
Neurosteroids Progesterone and Dehydroepiandrosterone: Molecular Mechanisms of Action in Neuroprotection and Neuroinflammation
by Tatiana A. Fedotcheva and Nikolay L. Shimanovsky
Pharmaceuticals 2025, 18(7), 945; https://doi.org/10.3390/ph18070945 - 23 Jun 2025
Viewed by 917
Abstract
Neurosteroids pregnenolone, progesterone, allopregnanolone, and dehydroepiandrosterone have been actively studied in the last years as candidates for the treatment of neurodegenerative diseases and postinjury rehabilitation. The neuroprotective mechanisms of these neurosteroids have been shown in clinical studies of depression, epilepsy, status epilepticus, traumatic [...] Read more.
Neurosteroids pregnenolone, progesterone, allopregnanolone, and dehydroepiandrosterone have been actively studied in the last years as candidates for the treatment of neurodegenerative diseases and postinjury rehabilitation. The neuroprotective mechanisms of these neurosteroids have been shown in clinical studies of depression, epilepsy, status epilepticus, traumatic brain injury, fragile X syndrome, and chemical neurotoxicity. However, only the allopregnanolone analogs brexanolone and zuranolone have been recently approved by the FDA for the treatment of depression. The aim of this review was to evaluate whether the endogenous neurosteroids can be used in clinical practice as neuroprotectors. Neurosteroids are multitarget compounds with strong anti-inflammatory, immunomodulatory, and cytoprotective action; they stimulate the synthesis and release of BDNF and increase remyelination and regeneration. In addition to nuclear and membrane steroid hormone receptors, such as PR, mPR, PGRMC1,2, ER, AR, CAR, and PXR, they can bind to GABAA receptors, NMDA receptors, Sigma-1 and -2 receptors (σ1-R/σ2-R). Among these, mPRs, PGRMC1,2, sigma receptors, and mitochondrial proteins attract comprehensive attention because of strong binding with the P4 and DHEA, but subsequent signaling is poorly studied. Other plasma membrane and mitochondrial proteins are involved in the rapid nongenomic neuroprotective action of neurosteroids. P-glycoprotein, BCL-2 proteins, and the components of the mitochondrial permeability transition pore (mPTP) play a significant role in the defense against the injuries of the brain and the peripheral nervous system. The role of these proteins in the molecular mechanisms of action in neuroprotection and neuroinflammation has not yet been clearly established. The aspects of their participation in these pathological processes are discussed. New formulations, such as lipophilic emulsions, nanogels, and microneedle array patches, are attractive strategies to overcome the low bioavailability of these neurosteroids for the amelioration and treatment of various nervous disorders. Full article
Show Figures

Figure 1

25 pages, 3529 KiB  
Article
Neuroprotective, Antioxidant and Anti-Inflammatory Effect of Greek Pomegranate Seed Oil on N2a Neuroblastoma Cells and Mild Cognitive Impairment Patients
by Eleni E. Tzekaki, Georgios Katsipis, Athanasios Chatzikostopoulos, Anna Koutoupa, Sophia N. Lavrentiadou, Magda Tsolaki and Anastasia A. Pantazaki
Biology 2025, 14(5), 548; https://doi.org/10.3390/biology14050548 - 15 May 2025
Viewed by 2709
Abstract
Alzheimer’s disease (AD) remains a significant global health challenge with limited FDA-approved treatments, necessitating the search for novel preventive strategies. Antioxidants that are present in fruits and vegetables have garnered attention due to their potential neuroprotective effects. Among these, pomegranate (Punica granatum [...] Read more.
Alzheimer’s disease (AD) remains a significant global health challenge with limited FDA-approved treatments, necessitating the search for novel preventive strategies. Antioxidants that are present in fruits and vegetables have garnered attention due to their potential neuroprotective effects. Among these, pomegranate (Punica granatum L.) has emerged as a promising source of neuroprotective antioxidants as it is rich in polyphenols, flavonoids, and hydrolysable tannins. Pomegranate seed oil (PSO) is a source of bioactive compounds that may modulate key pathological processes of AD. This study investigated the therapeutic potential of PSO in murine neuroblastoma N2a cells treated with lipopolysaccharide (LPS) to simulate AD-like inflammation. The effects of PSO on inflammation and oxidative stress markers, including TNF-α, iNOS, SOD1, and IL1β, were evaluated, along with changes in AD-related biomarkers Aβ42, Aβ40, and p-tau181. Additionally, the study extended its findings to clinical settings by assessing the impact of supervised PSO consumption for 12 months on similar biomarkers in patients with mild cognitive impairment. Results from this integrative approach demonstrated the anti-inflammatory and antioxidant potential of PSO, supporting its role in modulating AD-associated pathophysiology. These findings suggest that PSO may serve as an early-stage intervention to delay or mitigate AD progression, highlighting its therapeutic potential in preclinical and clinical contexts. Full article
(This article belongs to the Section Neuroscience)
Show Figures

Graphical abstract

22 pages, 940 KiB  
Review
Multifunctionality and Possible Medical Application of the BPC 157 Peptide—Literature and Patent Review
by Michalina Józwiak, Marta Bauer, Wojciech Kamysz and Patrycja Kleczkowska
Pharmaceuticals 2025, 18(2), 185; https://doi.org/10.3390/ph18020185 - 30 Jan 2025
Cited by 1 | Viewed by 65728
Abstract
BPC 157, known as the “Body Protection Compound”, is a pentadecapeptide isolated from human gastric juice that demonstrated its pleiotropic beneficial effects in various preclinical models mimicking medical conditions, such as tissue injury, inflammatory bowel disease, or even CNS disorders. Unlike many other [...] Read more.
BPC 157, known as the “Body Protection Compound”, is a pentadecapeptide isolated from human gastric juice that demonstrated its pleiotropic beneficial effects in various preclinical models mimicking medical conditions, such as tissue injury, inflammatory bowel disease, or even CNS disorders. Unlike many other drugs, BPC 157 has a desirable safety profile, since only a few side effects have been reported following its administration. Nevertheless, this compound was temporarily banned by the World Anti-Doping Agency (WADA) in 2022 (it is not currently listed as banned by the WADA). However, it has not been approved for use in standard medicine by the FDA and other global regulatory authorities due to the absence of sufficient and comprehensive clinical studies confirming its health benefits in humans. In this review, we summarize information on the biological activities of BPC 157, with particular reference to its mechanism of action and probable toxicity. This generated the attention of experts, as BPC 157 has been offered for sale on many websites. We also present recent interest in BPC 157 as reflected in a number of patent applications and granted patents. Full article
Show Figures

Figure 1

24 pages, 1609 KiB  
Review
Current and Potential Use of Biologically Active Compounds Derived from Cannabis sativa L. in the Treatment of Selected Diseases
by Bożena Bukowska
Int. J. Mol. Sci. 2024, 25(23), 12738; https://doi.org/10.3390/ijms252312738 - 27 Nov 2024
Cited by 7 | Viewed by 4607
Abstract
Cannabis sativa L. contains numerous compounds with antioxidant and anti-inflammatory properties, including the flavonoids and the cannabinoids, particularly Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD). Cannabinoids have an effect on the endocannabinoid system (ECS), a cellular communication network, and are, hence, widely studied for medical [...] Read more.
Cannabis sativa L. contains numerous compounds with antioxidant and anti-inflammatory properties, including the flavonoids and the cannabinoids, particularly Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD). Cannabinoids have an effect on the endocannabinoid system (ECS), a cellular communication network, and are, hence, widely studied for medical applications. Epidiolex®, a 99% pure oral CBD extract, has been approved by the FDA for the treatment of epilepsy. Nabiximols (Sativex) is an oromucosal spray containing equal volume of THC and CBD, and it is commonly used as an add-on treatment for unresponsive spasticity in multiple sclerosis (MS) patients. Several in vitro and in vivo studies have also shown that cannabinoids can be used to treat various types of cancer, such as melanoma and brain glioblastoma; the first positive clinical trials on the anticancer effect of a THC:CBD blend with temozolomide (TMZ) in the treatment of highly invasive brain cancer are very promising. The cannabinoids exert their anticancer properties in in vitro investigations by the induction of cell death, mainly by apoptosis and cytotoxic autophagy, and the inhibition of cell proliferation. In several studies, cannabinoids have been found to induce tumor regression and inhibit angiogenic mechanisms in vitro and in vivo, as well as in two low-numbered epidemiological studies. They also exhibit antiviral effects by inhibiting ACE2 transcription, blocking viral replication and fusion, and acting as anti-inflammatory agents; indeed, prior CBD consumption (a study of 93,565 persons in Chicago) has also been associated with a much lower incidence of SARS-CoV-2 infections. It is postulated that cannabis extracts can be used in the treatment of many other diseases such as systemic lupus erythematosus, type 1 diabetes, or various types of neurological disorders, e.g., Alzheimer’s disease. The aim of this review is to outline the current state of knowledge regarding currently used medicinal preparations derived from C. sativa L. in the treatment of selected cancer and viral diseases, and to present the latest research on the potential applications of its secondary metabolites. Full article
(This article belongs to the Special Issue Molecular Insight into Plant Bioactive Compounds)
Show Figures

Figure 1

19 pages, 8173 KiB  
Article
Etravirine Prevents West Nile Virus and Chikungunya Virus Infection Both In Vitro and In Vivo by Inhibiting Viral Replication
by Xu Zheng, Yanhua He, Binghui Xia, Wanda Tang, Congcong Zhang, Dawei Wang, Hailin Tang, Ping Zhao, Haoran Peng and Yangang Liu
Pharmaceutics 2024, 16(9), 1111; https://doi.org/10.3390/pharmaceutics16091111 - 23 Aug 2024
Cited by 1 | Viewed by 1599
Abstract
Diseases transmitted by arthropod-borne viruses such as West Nile virus (WNV) and chikungunya virus (CHIKV) pose threat to global public health. Unfortunately, to date, there is no available approved drug for severe symptoms caused by both viruses. It has been reported that reverse [...] Read more.
Diseases transmitted by arthropod-borne viruses such as West Nile virus (WNV) and chikungunya virus (CHIKV) pose threat to global public health. Unfortunately, to date, there is no available approved drug for severe symptoms caused by both viruses. It has been reported that reverse transcriptase inhibitors can effectively inhibit RNA polymerase activity of RNA viruses. We screened the anti-WNV activity of the FDA-approved reverse transcriptase inhibitor library and found that 4 out of 27 compounds showed significant antiviral activity. Among the candidates, etravirine markedly inhibited WNV infection in both Huh 7 and SH-SY5Y cells. Further assays revealed that etravirine inhibited the infection of multiple arboviruses, including yellow fever virus (YFV), tick-borne encephalitis virus (TBEV), and CHIKV. A deeper study at the phase of action showed that the drug works primarily during the viral replication process. This was supported by the strong interaction potential between etravirine and the RNA-dependent RNA polymerase (RdRp) of WNV and alphaviruses, as evaluated using molecular docking. In vivo, etravirine significantly rescued mice from WNV infection-induced weight loss, severe neurological symptoms, and death, as well as reduced the viral load and inflammatory cytokines in target tissues. Etravirine showed antiviral effects in both arthrophlogosis and lethal mouse models of CHIKV infection. This study revealed that etravirine is an effective anti-WNV and CHIKV arbovirus agent both in vitro and in vivo due to the inhibition of viral replication, providing promising candidates for clinical application. Full article
Show Figures

Figure 1

29 pages, 14051 KiB  
Review
The Structure–Antiproliferative Activity Relationship of Pyridine Derivatives
by Ana-Laura Villa-Reyna, Martin Perez-Velazquez, Mayra Lizett González-Félix, Juan-Carlos Gálvez-Ruiz, Dulce María Gonzalez-Mosquera, Dora Valencia, Manuel G. Ballesteros-Monreal, Milagros Aguilar-Martínez and Mario-Alberto Leyva-Peralta
Int. J. Mol. Sci. 2024, 25(14), 7640; https://doi.org/10.3390/ijms25147640 - 11 Jul 2024
Cited by 5 | Viewed by 3460
Abstract
Pyridine, a compound with a heterocyclic structure, is a key player in medicinal chemistry and drug design. It is widely used as a framework for the design of biologically active molecules and is the second most common heterocycle in FDA-approved drugs. Pyridine is [...] Read more.
Pyridine, a compound with a heterocyclic structure, is a key player in medicinal chemistry and drug design. It is widely used as a framework for the design of biologically active molecules and is the second most common heterocycle in FDA-approved drugs. Pyridine is known for its diverse biological activity, including antituberculosis, antitumor, anticoagulant, antiviral, antimalarial, antileishmania, anti-inflammatory, anti-Alzheimer’s, antitrypanosomal, antimalarial, vasodilatory, antioxidant, antimicrobial, and antiproliferative effects. This review, spanning from 2022 to 2012, involved the meticulous identification of pyridine derivatives with antiproliferative activity, as indicated by their minimum inhibitory concentration values (IC50) against various cancerous cell lines. The aim was to determine the most favorable structural characteristics for their antiproliferative activity. Using computer programs, we constructed and calculated the molecular descriptors and analyzed the electrostatic potential maps of the selected pyridine derivatives. The study found that the presence and positions of the -OMe, -OH, -C=O, and NH2 groups in the pyridine derivatives enhanced their antiproliferative activity over the cancerous cellular lines studied. Conversely, pyridine derivatives with halogen atoms or bulky groups in their structures exhibited lower antiproliferative activity. Full article
Show Figures

Graphical abstract

20 pages, 4060 KiB  
Article
Telmisartan Reduces LPS-Mediated Inflammation and Induces Autophagy of Microglia
by Kwame O. Affram, Zachary C. Janatpour, Nagesh Shanbhag, Sonia Villapol and Aviva J. Symes
Neuroglia 2024, 5(2), 182-201; https://doi.org/10.3390/neuroglia5020014 - 20 Jun 2024
Cited by 1 | Viewed by 2777
Abstract
Background: Chronic neuroinflammation mediated by persistent microglial activation is strongly linked to neurodegeneration. Therefore, targeting microglial activation could be beneficial in treating neurodegenerative disorders. Angiotensin receptor blockers (ARBs), commonly prescribed for high blood pressure, exhibit prominent anti-inflammatory effects in the brain and are [...] Read more.
Background: Chronic neuroinflammation mediated by persistent microglial activation is strongly linked to neurodegeneration. Therefore, targeting microglial activation could be beneficial in treating neurodegenerative disorders. Angiotensin receptor blockers (ARBs), commonly prescribed for high blood pressure, exhibit prominent anti-inflammatory effects in the brain and are considered potential therapies for neurodegenerative diseases and neurotrauma. Although all ARBs are angiotensin II receptor type I antagonists, some ARBs act through other signaling pathways, allowing for multiple mechanisms of action. The anti-inflammatory mechanisms of ARBs are not well understood. Methods: In this study, we compared eight different FDA-approved ARBs for their ability to reduce the LPS stimulation of primary microglia or BV2 cells through analyses of nitric oxide production, reactive oxygen species generation, and the mRNA of proinflammatory cytokines. Finding specific and unique effects of telmisartan, we interrogated signaling pathways and other downstream effectors of telmisartan activity on microglia. Results: Our findings indicate that telmisartan showed the greatest efficacy in reducing the LPS induction of reactive oxygen species (ROS) and nitric oxide production in microglia. Uniquely amongst ARBs, telmisartan activated AMPK phosphorylation and inhibited mTOR phosphorylation. Telmisartan’s anti-inflammatory activity was partially inhibited by the AMPK inhibitor compound C. Furthermore, telmisartan uniquely induced markers of autophagy in microglia through an AMPK–mTOR–autophagy pathway. Telmisartan also reduced microglial viability. Telmisartan’s cytotoxicity was partially ameliorated by an autophagy inhibitor and a pan-caspase inhibitor, indicating a link between microglial autophagy and apoptosis. Conclusions: We conclude that telmisartan has unique properties relative to other ARBs, including potent anti-inflammatory actions and an induction of microglial autophagy, which may enable specific therapeutic uses. Full article
Show Figures

Figure 1

62 pages, 2061 KiB  
Review
Neuroactive Steroids, Toll-like Receptors, and Neuroimmune Regulation: Insights into Their Impact on Neuropsychiatric Disorders
by Irina Balan, Giorgia Boero, Samantha Lucenell Chéry, Minna H. McFarland, Alejandro G. Lopez and A. Leslie Morrow
Life 2024, 14(5), 582; https://doi.org/10.3390/life14050582 - 30 Apr 2024
Cited by 13 | Viewed by 6093
Abstract
Pregnane neuroactive steroids, notably allopregnanolone and pregnenolone, exhibit efficacy in mitigating inflammatory signals triggered by toll-like receptor (TLR) activation, thus attenuating the production of inflammatory factors. Clinical studies highlight their therapeutic potential, particularly in conditions like postpartum depression (PPD), where the FDA-approved compound [...] Read more.
Pregnane neuroactive steroids, notably allopregnanolone and pregnenolone, exhibit efficacy in mitigating inflammatory signals triggered by toll-like receptor (TLR) activation, thus attenuating the production of inflammatory factors. Clinical studies highlight their therapeutic potential, particularly in conditions like postpartum depression (PPD), where the FDA-approved compound brexanolone, an intravenous formulation of allopregnanolone, effectively suppresses TLR-mediated inflammatory pathways, predicting symptom improvement. Additionally, pregnane neurosteroids exhibit trophic and anti-inflammatory properties, stimulating the production of vital trophic proteins and anti-inflammatory factors. Androstane neuroactive steroids, including estrogens and androgens, along with dehydroepiandrosterone (DHEA), display diverse effects on TLR expression and activation. Notably, androstenediol (ADIOL), an androstane neurosteroid, emerges as a potent anti-inflammatory agent, promising for therapeutic interventions. The dysregulation of immune responses via TLR signaling alongside reduced levels of endogenous neurosteroids significantly contributes to symptom severity across various neuropsychiatric disorders. Neuroactive steroids, such as allopregnanolone, demonstrate efficacy in alleviating symptoms of various neuropsychiatric disorders and modulating neuroimmune responses, offering potential intervention avenues. This review emphasizes the significant therapeutic potential of neuroactive steroids in modulating TLR signaling pathways, particularly in addressing inflammatory processes associated with neuropsychiatric disorders. It advances our understanding of the complex interplay between neuroactive steroids and immune responses, paving the way for personalized treatment strategies tailored to individual needs and providing insights for future research aimed at unraveling the intricacies of neuropsychiatric disorders. Full article
Show Figures

Figure 1

16 pages, 3023 KiB  
Article
Ebselen and Diphenyl Diselenide Inhibit SARS-CoV-2 Replication at Non-Toxic Concentrations to Human Cell Lines
by Guilherme Wildner, Amanda Resende Tucci, Alessandro de Souza Prestes, Talise Muller, Alice dos Santos Rosa, Nathalia Roberto R. Borba, Vivian Neuza Ferreira, João Batista Teixeira Rocha, Milene Dias Miranda and Nilda Vargas Barbosa
Vaccines 2023, 11(7), 1222; https://doi.org/10.3390/vaccines11071222 - 10 Jul 2023
Cited by 6 | Viewed by 2437
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was the causative agent of the COVID-19 pandemic, a global public health problem. Despite the numerous studies for drug repurposing, there are only two FDA-approved antiviral agents (Remdesivir and Nirmatrelvir) for non-hospitalized patients with [...] Read more.
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was the causative agent of the COVID-19 pandemic, a global public health problem. Despite the numerous studies for drug repurposing, there are only two FDA-approved antiviral agents (Remdesivir and Nirmatrelvir) for non-hospitalized patients with mild-to-moderate COVID-19 symptoms. Consequently, it is pivotal to search for new molecules with anti-SARS-CoV-2 activity and to study their effects in the human immune system. Ebselen (Eb) is an organoselenium compound that is safe for humans and has antioxidant, anti-inflammatory, and antimicrobial properties. Diphenyl diselenide ((PhSe)2) shares several pharmacological properties with Eb and is of low toxicity to mammals. Herein, we investigated Eb and (PhSe)2 anti-SARS-CoV-2 activity in a human pneumocytes cell model (Calu-3) and analyzed their toxic effects on human peripheral blood mononuclear cells (PBMCs). Both compounds significantly inhibited the SARS-CoV-2 replication in Calu-3 cells. The EC50 values for Eb and (PhSe)2 after 24 h post-infection (hpi) were 3.8 µM and 3.9 µM, respectively, and after 48 hpi were 2.6 µM and 3.4 µM. These concentrations are safe for non-infected cells, since the CC50 values found for Eb and (PhSe)2 on Calu-3 were greater than 200 µM. Importantly, the concentration rates tested on viral replication were not toxic to human PBMCs. Therefore, our findings reinforce the efficacy of Eb and demonstrate (PhSe)2 as a new candidate to be tested in future trials against SARS-CoV-2 infection/inflammation conditions. Full article
(This article belongs to the Special Issue Progress on Antiviral Drugs Research in Epidemics)
Show Figures

Figure 1

25 pages, 11885 KiB  
Review
NRF2 Activation by Nitrogen Heterocycles: A Review
by Melford C. Egbujor, Paolo Tucci, Ugomma C. Onyeije, Chigbundu N. Emeruwa and Luciano Saso
Molecules 2023, 28(6), 2751; https://doi.org/10.3390/molecules28062751 - 18 Mar 2023
Cited by 28 | Viewed by 4398
Abstract
Several nitrogen heterocyclic analogues have been applied to clinical practice, and about 75% of drugs approved by the FDA contain at least a heterocyclic moiety. Thus, nitrogen heterocycles are beneficial scaffolds that occupy a central position in the development of new drugs. The [...] Read more.
Several nitrogen heterocyclic analogues have been applied to clinical practice, and about 75% of drugs approved by the FDA contain at least a heterocyclic moiety. Thus, nitrogen heterocycles are beneficial scaffolds that occupy a central position in the development of new drugs. The fact that certain nitrogen heterocyclic compounds significantly activate the NRF2/ARE signaling pathway and upregulate the expression of NRF2-dependent genes, especially HO-1 and NQO1, underscores the need to study the roles and pharmacological effects of N-based heterocyclic moieties in NRF2 activation. Furthermore, nitrogen heterocycles exhibit significant antioxidant and anti-inflammatory activities. NRF2-activating molecules have been of tremendous research interest in recent times due to their therapeutic roles in neuroinflammation and oxidative stress-mediated diseases. A comprehensive review of the NRF2-inducing activities of N-based heterocycles and their derivatives will broaden their therapeutic prospects in a wide range of diseases. Thus, the present review, as the first of its kind, provides an overview of the roles and effects of nitrogen heterocyclic moieties in the activation of the NRF2 signaling pathway underpinning their antioxidant and anti-inflammatory actions in several diseases, their pharmacological properties and structural–activity relationship are also discussed with the aim of making new discoveries that will stimulate innovative research in this area. Full article
(This article belongs to the Special Issue Heterocycles: Design, Synthesis and Biological Evaluation)
Show Figures

Figure 1

12 pages, 1612 KiB  
Article
HS 3D-SeboSkin Model Enables the Preclinical Exploration of Therapeutic Candidates for Hidradenitis Suppurativa/Acne Inversa
by Christos C. Zouboulis, Xiaoxiao Hou, Henriette von Waldthausen, Konstantin C. Zouboulis and Amir M. Hossini
Pharmaceutics 2023, 15(2), 619; https://doi.org/10.3390/pharmaceutics15020619 - 12 Feb 2023
Cited by 9 | Viewed by 3531
Abstract
Despite the rapid development in hidradenitis suppurativa (HS) research, the immediate introduction of potent therapeutic compounds in clinical trials and the lack of definitive outcome measures have led to the discontinuation of potential therapeutic compound studies. HS is a solely human disease, and [...] Read more.
Despite the rapid development in hidradenitis suppurativa (HS) research, the immediate introduction of potent therapeutic compounds in clinical trials and the lack of definitive outcome measures have led to the discontinuation of potential therapeutic compound studies. HS is a solely human disease, and therefore, the search for preclinical human models has been given priority. The 3D-SeboSkin model, a co-culture of human skin explants with human SZ95 sebocytes as a feeder layer, has been shown to prevent the rapid degeneration of human skin in culture and has been validated for HS preclinical studies. In this work, the HS 3D-SeboSkin model has been employed to characterize cellular and molecular effects of the EMA- and FDA-approved biologic adalimumab. Adalimumab, a tumor necrosis factor-α inhibitor, was shown to target inflammatory cells present in HS lesions, inducing a prominent anti-inflammatory response and contributing to tissue regeneration through a wound healing mechanism. Adalimumab inhibited the lesional tissue expression of TNF-α, IL-3, IL-15, and MCP-3 and downregulated the secretion of IL-1α, IL-5, RANTES, MCP-2, TNF-α, TNF-β, TGF-β, and IFN-γ. In contrast, IL-6 was stimulated. The compound failed to modify abnormal epithelial cell differentiation present in the HS lesions. Patients with Hurley stage II lesions exhibited stronger expression of autophagy proteins in perilesional than in lesional skin. Adalimumab modified the levels of the pro-apoptotic proteins LC3A, LC3B, and p62 in an individual, patient-dependent manner. Finally, adalimumab did not modify the NFκB signal proteins in SZ95 sebocytes and NHK-19 keratinocytes, used to study this specific pathway. The administration of the validated HS 3D-SeboSkin model in ex vivo studies prior to clinical trials could elucidate the individual pathogenetic targets of therapeutic candidates and, therefore, increase the success rates of clinical studies, minimizing HS drug development costs. Full article
(This article belongs to the Special Issue Advanced Pharmaceutical Science and Technology in Germany)
Show Figures

Figure 1

24 pages, 7883 KiB  
Article
Development of L-Lysine-Loaded PLGA Microparticles as a Controlled Release System for Angiogenesis Enhancement
by Nunzia Gallo, Stefano Quarta, Marika Massaro, Maria Annunziata Carluccio, Amilcare Barca, Donato Cannoletta, Luisa Siculella, Luca Salvatore and Alessandro Sannino
Pharmaceutics 2023, 15(2), 479; https://doi.org/10.3390/pharmaceutics15020479 - 1 Feb 2023
Cited by 11 | Viewed by 2599
Abstract
Vascularization is a highly conserved and considerably complex and precise process that is finely driven by endogenous regulatory processes at the tissue and systemic levels. However, it can reveal itself to be slow and inadequate for tissue repair and regeneration consequent to severe [...] Read more.
Vascularization is a highly conserved and considerably complex and precise process that is finely driven by endogenous regulatory processes at the tissue and systemic levels. However, it can reveal itself to be slow and inadequate for tissue repair and regeneration consequent to severe lesions/damages. Several biomaterial-based strategies were developed to support and enhance vasculogenesis by supplying pro-angiogenic agents. Several approaches were adopted to develop effective drug delivery systems for the controlled release of a huge variety of compounds. In this work, a microparticulate system was chosen to be loaded with the essential amino acid L-lysine, a molecule that has recently gained interest due to its involvement in pro-angiogenic, pro-regenerative, and anti-inflammatory mechanisms. Poly (lactic-co-glycolic acid), the most widely used FDA-approved biodegradable synthetic polymer for the development of drug delivery systems, was chosen due to its versatility and ability to promote neovascularization and wound healing. This study dealt with the development and the effectiveness evaluation of a PLGA-based microparticulate system for the controlled release of L-lysine. Therefore, in order to maximize L-lysine encapsulation efficiency and tune its release kinetics, the microparticle synthesis protocol was optimized by varying some processing parameters. All developed formulations were characterized from a morphological and physicochemical point of view. The optimized formulation was further characterized via the evaluation of its preliminary biological efficacy in vitro. The cellular and molecular studies revealed that the L-lysine-loaded PLGA microparticles were non-toxic, biocompatible, and supported cell proliferation and angiogenesis well by stimulating the expression of pro-angiogenic genes such as metalloproteinase-9, focal adhesion kinases, and different growth factors. Thus, this work showed the potential of delivering L-lysine encapsulated in PLGA microparticles as a cost-effective promoter system for angiogenesis enhancement and rapid healing. Full article
(This article belongs to the Special Issue Innovative Drug Delivery Systems for Regenerative Medicine)
Show Figures

Figure 1

26 pages, 8022 KiB  
Article
Computational Investigation of 1, 3, 4 Oxadiazole Derivatives as Lead Inhibitors of VEGFR 2 in Comparison with EGFR: Density Functional Theory, Molecular Docking and Molecular Dynamics Simulation Studies
by Muhammad Sajjad Bilal, Syeda Abida Ejaz, Seema Zargar, Naveed Akhtar, Tanveer A. Wani, Naheed Riaz, Adullahi Tunde Aborode, Farhan Siddique, Nojood Altwaijry, Hamad M. Alkahtani and Haruna Isiyaku Umar
Biomolecules 2022, 12(11), 1612; https://doi.org/10.3390/biom12111612 - 1 Nov 2022
Cited by 28 | Viewed by 4101
Abstract
Vascular endothelial growth factor (VEGF) is an angiogenic factor involved in tumor growth and metastasis. Gremlin has been proposed as a novel therapeutic pathway for the treatment of renal inflammatory diseases, acting via VEGFR 2 receptor. To date, most FDA-approved tyrosine kinase (TK) [...] Read more.
Vascular endothelial growth factor (VEGF) is an angiogenic factor involved in tumor growth and metastasis. Gremlin has been proposed as a novel therapeutic pathway for the treatment of renal inflammatory diseases, acting via VEGFR 2 receptor. To date, most FDA-approved tyrosine kinase (TK) inhibitors have been reported as dual inhibitors of EGFR and VEGFR 2. The aim of the present study was to find the potent and selective inhibitor of VEGFR 2 specifically for the treatment of renal cancer. Fourteen previously identified anti-inflammatory compounds i.e., 1, 3, 4 oxadiazoles derivatives by our own group were selected for their anti-cancer potential, targeting the tyrosine kinase (TK) domain of VEGFR2 and EGFR. A detailed virtual screening-based study was designed viz density functional theory (DFT) study to find the compounds’ stability and reactivity, molecular docking for estimating binding affinity, SeeSAR analysis and molecular dynamic simulations to confirm protein ligand complex stability and ADMET properties to find the pharmacokinetic profile of all compounds. The DFT results suggested that among all the derivatives, the 7g, 7j, and 7l were chemically reactive and stable derivatives. The optimized structures obtained from the DFTs were further selected for molecular docking, and the results suggested that 7g, 7j and 7l derivatives as the best inhibitors of VEGFR 2 with binding energy values −46.32, −48.89 and −45.01 kJ/mol. The Estimated inhibition constant (IC50) of hit compound 7j (0.009 µM) and simulation studies of its complexes confirms its high potency and best inhibitor of VEGFR2. All the derivatives were also docked with EGFR, where they showed weak binding energies and poor interactions, important compound 7g, 7j and 7i exhibited binding energy of −31.01, −33.23 and −34.19 kJ/mol respectively. Furthermore, the anticancer potential of the derivatives was confirmed by cell viability (MTT) assay using breast cancer and cervical cancer cell lines. At the end, the results of ADMET studies confirmed these derivatives as drug like candidates. Conclusively, the current study suggested substituted oxadiazoles as the potential anticancer compounds which exhibited more selectivity towards VEGFR2 in comparison to EGFR. Therefore, the identified lead molecules can be used for the synthesis of more potent derivatives of VEGFR2, along with extensive in vitro and in vivo experiments, that can be used to treat various cancers, especially renal cancers, and to prevent angiogenesis due to aberrant expression of VEGFR2. Full article
Show Figures

Figure 1

27 pages, 5729 KiB  
Article
Mollusc-Derived Brominated Indoles for the Selective Inhibition of Cyclooxygenase: A Computational Expedition
by Md. Mominur Rahman, Md. Junaid, S. M. Zahid Hosen, Mohammad Mostafa, Lei Liu and Kirsten Benkendorff
Molecules 2021, 26(21), 6538; https://doi.org/10.3390/molecules26216538 - 29 Oct 2021
Cited by 5 | Viewed by 3381
Abstract
Inflammation plays an important role in different chronic diseases. Brominated indoles derived from the Australian marine mollusk Dicathais orbita (D. orbita) are of interest for their anti-inflammatory properties. This study evaluates the binding mechanism and potentiality of several brominated indoles (tyrindoxyl [...] Read more.
Inflammation plays an important role in different chronic diseases. Brominated indoles derived from the Australian marine mollusk Dicathais orbita (D. orbita) are of interest for their anti-inflammatory properties. This study evaluates the binding mechanism and potentiality of several brominated indoles (tyrindoxyl sulfate, tyrindoleninone, 6-bromoisatin, and 6,6′-dibromoindirubin) against inflammatory mediators cyclooxygenases-1/2 (COX-1/2) using molecular docking, followed by molecular dynamics simulation, along with physicochemical, drug-likeness, pharmacokinetic (pk), and toxicokinetic (tk) properties. Molecular docking identified that these indole compounds are anchored, with the main amino acid residues, positioned in the binding pocket of the COX-1/2, required for selective inhibition. Moreover, the molecular dynamics simulation based on root mean square deviation (RMSD), radius of gyration (Rg), solvent accessible surface area (SASA), and root mean square fluctuation (RMSF) analyses showed that these natural brominated molecules transit rapidly to a progressive constant configuration during binding with COX-1/2 and seem to accomplish a consistent dynamic behavior by maintaining conformational stability and compactness. The results were comparable to the Food and Drug Administration (FDA)-approved selective COX inhibitor, aspirin. Furthermore, the free energy of binding for the compounds assessed by molecular mechanics–Poisson–Boltzmann surface area (MM–PBSA) confirmed the binding capacity of indoles towards COX-1/2, with suitable binding energy values except for the polar precursor tyrindoxyl sulfate (with COX-1). The physicochemical and drug-likeness analysis showed zero violations of Lipinski’s rule, and the compounds are predicted to have excellent pharmacokinetic profiles. These indoles are projected to be non-mutagenic and free from hepatotoxicity, with no inhibition of human ether-a-go–go gene (hERG) I inhibitors, and the oral acute toxicity LD50 in rats is predicted to be similar or lower than aspirin. Overall, this work has identified a plausible mechanism for selective COX inhibition by natural marine indoles as potential therapeutic candidates for the mitigation of inflammation. Full article
(This article belongs to the Special Issue Innovative Marine Molecules: Chemistry, Biology and Analysis)
Show Figures

Figure 1

18 pages, 5772 KiB  
Article
The Effects of Two Nrf2 Activators, Bardoxolone Methyl and Omaveloxolone, on Retinal Ganglion Cell Survival during Ischemic Optic Neuropathy
by Jia-Ying Chien, Yu-Yau Chou, Jhih-Wei Ciou, Fang-Yun Liu and Shun-Ping Huang
Antioxidants 2021, 10(9), 1466; https://doi.org/10.3390/antiox10091466 - 15 Sep 2021
Cited by 20 | Viewed by 4891
Abstract
Nonarteritic anterior ischemic optic neuropathy (NAION) is one of the most common acute optic neuropathies that affect the over 55-year-old population. NAION causes the loss of visual function, and it has no safe and effective therapy. Bardoxolone methyl (methyl 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate; CDDO-Me; RTA 402) [...] Read more.
Nonarteritic anterior ischemic optic neuropathy (NAION) is one of the most common acute optic neuropathies that affect the over 55-year-old population. NAION causes the loss of visual function, and it has no safe and effective therapy. Bardoxolone methyl (methyl 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate; CDDO-Me; RTA 402) is a semisynthetic triterpenoid with effects against antioxidative stress and inflammation in neurodegeneration and kidney disease that activates the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. Moreover, RTA 402 is an FDA-approved compound for the treatment of solid tumors, lymphoid malignancies, melanoma, and chronic kidney disease. Omaveloxolone (RTA 408) is an activator of Nrf2 and an inhibitor of NFκB, possessing antioxidative and anti-inflammatory activities in mitochondrial bioenergetics. RTA 408 is also under clinical investigation for Friedreich ataxia (FA). In this study, a rodent anterior ischemic optic neuropathy (rAION) model induced by photothrombosis was used to examine the therapeutic effects of RTA 402 and RTA 408. Treatment with RTA402 results in antiapoptotic, antioxidative stress, anti-inflammatory, and myelin-preserving effects on retinal ganglion cell (RGC) survival and visual function via regulation of NQO1 and HO-1, reduced IL-6 and Iba1 expression in macrophages, and promoted microglial expression of TGF-β and Ym1 + 2 in the retina and optic nerve. However, these effects were not observed after RTA 408 treatment. Our results provide explicit evidence that RTA 402 modulates the Nrf2 and NFκB signaling pathways to protect RGCs from apoptosis and maintain the visual function in an rAION model. These findings indicate that RTA 402 may a potential therapeutic agent for ischemic optic neuropathy. Full article
(This article belongs to the Special Issue Advances in Oxidative Stress and Eye Diseases)
Show Figures

Figure 1

Back to TopTop