Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = FBG accelerometer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2912 KB  
Article
Design of a Smart Foot–Ankle Brace for Tele-Rehabilitation and Foot Drop Monitoring
by Oluwaseyi Oyetunji, Austin Rain, William Feris, Austin Eckert, Abolghassem Zabihollah, Haitham Abu Ghazaleh and Joe Priest
Actuators 2025, 14(11), 531; https://doi.org/10.3390/act14110531 - 1 Nov 2025
Viewed by 269
Abstract
Foot drop, a form of paralysis affecting ankle and foot control, impairs walking and increases the risk of falls. Effective rehabilitation requires monitoring gait to guide personalized interventions. This study presents a proof-of-concept smart foot–ankle brace integrating low-cost sensors, including gyroscopes, accelerometers, and [...] Read more.
Foot drop, a form of paralysis affecting ankle and foot control, impairs walking and increases the risk of falls. Effective rehabilitation requires monitoring gait to guide personalized interventions. This study presents a proof-of-concept smart foot–ankle brace integrating low-cost sensors, including gyroscopes, accelerometers, and a Fiber Bragg Grating (FBG) array, with an Arduino-based processing platform. The system captures, in real time, the key locomotion parameters, namely, angular rotation, acceleration, and sole deformation. Experiments using a 3D-printed insole demonstrated that the device detects foot-drop-related gait deviations, with toe acceleration approximately twice that of normal walking. It also precisely detects foot deformation through FBG sensing. These results demonstrate the feasibility of the proposed system for monitoring gait abnormalities. Unlike commercial gait analysis devices, this work focuses on proof-of-concept development, providing a foundation for future improvements, including wireless integration, AI-based gait classification, and mobile application support for home-based or tele-rehabilitation applications. Full article
Show Figures

Figure 1

19 pages, 5606 KB  
Article
Static Calibration of a New Three-Axis Fiber Bragg Grating-Based Optical Accelerometer
by Abraham Perez-Alonzo, Luis Alvarez-Icaza and Gabriel E. Sandoval-Romero
Sensors 2025, 25(3), 835; https://doi.org/10.3390/s25030835 - 30 Jan 2025
Cited by 1 | Viewed by 3020
Abstract
Optical sensors are a promising technology in structural and health monitoring due to their high sensitivity and immunity to electromagnetic interference. Because of their high sensitivity, they can register the responses of buildings to a wide range of motions, including those induced by [...] Read more.
Optical sensors are a promising technology in structural and health monitoring due to their high sensitivity and immunity to electromagnetic interference. Because of their high sensitivity, they can register the responses of buildings to a wide range of motions, including those induced by ambient noise, or detect small structural changes caused by aging or environmental factors. In previous work, an FBG-based accelerometer was introduced that is suitable for use as an autonomous unit since it does not make use of any interrogator equipment. In this paper, we present the results of the characterization of this device, which yielded the best precision and accuracy. The results show the following: (i) improvements in the orthogonality of the sensor axes, which impact their cross-axis sensitivity; (ii) reductions in the electronic noise, which increase the signal-to-noise ratio. The results of our static characterization show that, in the worst case, we can obtain a correlation coefficient R2 of 0.9999 when comparing the output voltage with the input acceleration for the X- and Y-axes of the sensor. We developed an analytical, non-iterative, 12-parameter matrix calibration approach based on the least-squares method, which allows compensation for different gains in its axes, offset, and cross-axis. To improve the accuracy of our sensor, we propose a table with correction terms that can be subtracted from the estimated acceleration. The mean error of each estimated acceleration component of the sensor is zero, with a maximum standard deviation of 0.018 m/s2. The maximum RMSE for all tested positions is 6.7 × 10−3 m/s2. Full article
Show Figures

Figure 1

32 pages, 16871 KB  
Article
Structural Health Monitoring for Prefabricated Building Envelope under Stress Tests
by Laura Vandi, Maria Teresa Calcagni, Francesco Belletti, Giuseppe Pandarese, Milena Martarelli, Gian Marco Revel, Vincent Docter and Alessandro Pracucci
Appl. Sci. 2024, 14(8), 3260; https://doi.org/10.3390/app14083260 - 12 Apr 2024
Cited by 2 | Viewed by 2424
Abstract
This paper details the comprehensive activities conducted in a laboratory setting to assess the structural health monitoring (SHM) of prefabricated building envelopes. Integrating sensors into building components like curtain wall facades poses challenges but offers opportunities for monitoring structural health, requiring compliance with [...] Read more.
This paper details the comprehensive activities conducted in a laboratory setting to assess the structural health monitoring (SHM) of prefabricated building envelopes. Integrating sensors into building components like curtain wall facades poses challenges but offers opportunities for monitoring structural health, requiring compliance with regulatory standards. The research investigates the possibility of defining a kit of conventional and multi-parameter sensors integrated within the building envelope to monitor its behavior during the performance test conducted. The kit of sensors also includes Fiber Optic Sensors for effectively monitoring building envelope behavior and structural integrity. In this context, the European project InComEss (H2020-GA862597) aims to define a stand-alone solution for SHM using Piezoelectric Energy Harvesting Systems (PE-EHS) for façade monitoring through FBG/FOS system. After analyzing the main façade structural stress, a series of FBGs, accelerometers, and force washers were integrated within a 1:1 scale façade prototype and tested in a laboratory following the test sequence parameters required by the curtain wall standard EN 13830. The data collected were analyzed with the aim of monitoring the façade behavior before and after the tests. The results show that the façade’s performance passed the assessing test criteria without reporting any damages. In addition, the outcomes demonstrated the effectiveness of the defined kit of multi-parameter sensors for the building envelope’s SHM. Full article
Show Figures

Figure 1

22 pages, 11689 KB  
Article
FBG-Based Accelerometer for Buried Pipeline Natural Frequency Monitoring and Corrosion Detection
by Luís Pereira, Israel Sousa, Esequiel Mesquita, Antônio Cabral, Nélia Alberto, Camilo Diaz, Humberto Varum and Paulo Antunes
Buildings 2024, 14(2), 456; https://doi.org/10.3390/buildings14020456 - 7 Feb 2024
Cited by 4 | Viewed by 2655
Abstract
Pipelines are structures with great relevance in different industrial sectors and are essential for the proper functioning of the logistics that support today’s society. Due to their characteristics, locations, and continuous operation, allied with the huge network of pipelines across the world, they [...] Read more.
Pipelines are structures with great relevance in different industrial sectors and are essential for the proper functioning of the logistics that support today’s society. Due to their characteristics, locations, and continuous operation, allied with the huge network of pipelines across the world, they require specialized labor, maintenance, and adequate sensing systems to access their proper operation and detect any damage they may suffer throughout their service life. In this work, a fiber Bragg grating (FBG)-based optical fiber accelerometer (OFA), which was designed and calibrated to operate through wavelength and optical power variations using different interrogation setups, was fixed together with a pair of FBG arrays along a 1020 carbon steel pipeline section with the objective of monitoring the pipeline natural frequency (fn_pipeline) to indirectly evaluate the detection and evolution of corrosion when this structure was buried in sand. Here, corrosion was induced in a small area of the pipeline for 164 days, and the OFA was able to detect a maximum fn_pipeline variation of 3.8 Hz in that period. On the other hand, the attached FBGs showed a limited performance once they could successfully operate when the pipeline was unburied, but presented operational limitations when the pipeline was buried in sand. This was due to the inability of the structure to vibrate long enough under these conditions and obtained data from these sensors were insufficient to obtain the fn_pipeline. Full article
Show Figures

Figure 1

34 pages, 16092 KB  
Article
Multi-Disciplinary Monitoring Networks for Mesoscale Underground Experiments: Advances in the Bedretto Reservoir Project
by Katrin Plenkers, Andreas Reinicke, Anne Obermann, Nima Gholizadeh Doonechaly, Hannes Krietsch, Thomas Fechner, Marian Hertrich, Karam Kontar, Hansruedi Maurer, Joachim Philipp, Beat Rinderknecht, Manuel Volksdorf, Domenico Giardini and Stefan Wiemer
Sensors 2023, 23(6), 3315; https://doi.org/10.3390/s23063315 - 21 Mar 2023
Cited by 20 | Viewed by 3243
Abstract
The Bedretto Underground Laboratory for Geosciences and Geoenergies (BULGG) allows the implementation of hectometer (>100 m) scale in situ experiments to study ambitious research questions. The first experiment on hectometer scale is the Bedretto Reservoir Project (BRP), which studies geothermal exploration. Compared with [...] Read more.
The Bedretto Underground Laboratory for Geosciences and Geoenergies (BULGG) allows the implementation of hectometer (>100 m) scale in situ experiments to study ambitious research questions. The first experiment on hectometer scale is the Bedretto Reservoir Project (BRP), which studies geothermal exploration. Compared with decameter scale experiments, the financial and organizational costs are significantly increased in hectometer scale experiments and the implementation of high-resolution monitoring comes with considerable risks. We discuss in detail risks for monitoring equipment in hectometer scale experiments and introduce the BRP monitoring network, a multi-component monitoring system combining sensors from seismology, applied geophysics, hydrology, and geomechanics. The multi-sensor network is installed inside long boreholes (up to 300 m length), drilled from the Bedretto tunnel. Boreholes are sealed with a purpose-made cementing system to reach (as far as possible) rock integrity within the experiment volume. The approach incorporates different sensor types, namely, piezoelectric accelerometers, in situ acoustic emission (AE) sensors, fiber-optic cables for distributed acoustic sensing (DAS), distributed strain sensing (DSS) and distributed temperature sensing (DTS), fiber Bragg grating (FBG) sensors, geophones, ultrasonic transmitters, and pore pressure sensors. The network was realized after intense technical development, including the development of the following key elements: rotatable centralizer with integrated cable clamp, multi-sensor in situ AE sensor chain, and cementable tube pore pressure sensor. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

14 pages, 4155 KB  
Article
Serially Connected Cantilever Beam-Based FBG Accelerometers: Design, Optimization and Testing
by Aarathy Ezhuthupally Reghuprasad, Chiara Colombero and Alberto Godio
Sensors 2023, 23(6), 3188; https://doi.org/10.3390/s23063188 - 16 Mar 2023
Cited by 15 | Viewed by 3556
Abstract
We focus on the design, optimization, fabrication, and testing of fiber Bragg grating (FBG) cantilever beam-based accelerometers to measure vibrations from active seismic sources in the external environment. These FBG accelerometers possess several advantages, such as multiplexing, immunity to electromagnetic interference, and high [...] Read more.
We focus on the design, optimization, fabrication, and testing of fiber Bragg grating (FBG) cantilever beam-based accelerometers to measure vibrations from active seismic sources in the external environment. These FBG accelerometers possess several advantages, such as multiplexing, immunity to electromagnetic interference, and high sensitivity. Finite Element Method (FEM) simulations, calibration, fabrication, and packaging of the simple cantilever beam-based accelerometer based on polylactic acid (PLA) are presented. The influence of the cantilever beam parameters on the natural frequency and sensitivity are discussed through FEM simulation and laboratory calibration with vibration exciter. The test results show that the optimized system has a resonance frequency of 75 Hz within a measuring range of 5–55 Hz and high sensitivity of ±433.7 pm/g. Finally, a preliminary field test is conducted to compare the packaged FBG accelerometer and standard electro-mechanical 4.5-Hz vertical geophones. Active-source (seismic sledgehammer) shots are acquired along the tested line, and both systems’ experimental results are analyzed and compared. The designed FBG accelerometers demonstrate suitability to record the seismic traces and to pick up the first arrival times. The system optimization and further implementation offer promising potential for seismic acquisitions. Full article
(This article belongs to the Special Issue Recent Advances in Optical Fiber Sensors)
Show Figures

Figure 1

9 pages, 3098 KB  
Communication
High-Temperature-Resistant Fiber Laser Vector Accelerometer Based on a Self-Compensated Multicore Fiber Bragg Grating
by Xunzhou Xiao, Jun He, Xizhen Xu, Runxiao Chen, Bin Du, Yanping Chen, Shen Liu, Cailing Fu and Yiping Wang
Sensors 2022, 22(17), 6459; https://doi.org/10.3390/s22176459 - 27 Aug 2022
Cited by 5 | Viewed by 2329
Abstract
We propose and demonstrate a novel high-temperature-resistant vector accelerometer, consisting of a ring cavity laser and sensing probe (i.e., fiber Bragg gratings (FBGs)) inscribed in a seven-core fiber (SCF) by using the femtosecond laser direct writing technique. A ring cavity laser serves as [...] Read more.
We propose and demonstrate a novel high-temperature-resistant vector accelerometer, consisting of a ring cavity laser and sensing probe (i.e., fiber Bragg gratings (FBGs)) inscribed in a seven-core fiber (SCF) by using the femtosecond laser direct writing technique. A ring cavity laser serves as a light source. Three FBGs in the outer cores of SCF, which are not aligned in a straight line, are employed to test the vibration. These three FBGs have 120° angular separation in the SCF, and hence, vibration orientation and acceleration can be measured simultaneously. Moreover, the FBG in the central core was used as a reflector in the ring cavity laser, benefiting to resist external interference factors, such as temperature and strain fluctuation. Such a proposed accelerometer exhibits a working frequency bandwidth ranging from 4 to 68 Hz, a maximum sensitivity of 54.2 mV/g, and the best azimuthal angle accuracy of 0.21° over a range of 0–360°. Furthermore, we investigated the effect of strain and temperature on the performance of this sensor. The signal-to-noise ratio (SNR) only exhibits a fluctuation of ~1 dB in the range (0, 2289 με) and (50 °C, 1050 °C). Hence, such a vector accelerometer can operate in harsh environments, such as in aerospace and a nuclear reactor. Full article
(This article belongs to the Special Issue Novel Optical Fiber Sensors)
Show Figures

Figure 1

20 pages, 5803 KB  
Article
Strain Modal Testing with Fiber Bragg Gratings for Automotive Applications
by Francesco Falcetelli, Alberto Martini, Raffaella Di Sante and Marco Troncossi
Sensors 2022, 22(3), 946; https://doi.org/10.3390/s22030946 - 26 Jan 2022
Cited by 28 | Viewed by 5463
Abstract
Strain Modal Testing (SMT), based on strain sensors signal processing, is an unconventional approach to perform Experimental Modal Analysis which is typically based on data measured by accelerometers. SMT is still mainly restricted to academia and requires additional investigation for a successful transition [...] Read more.
Strain Modal Testing (SMT), based on strain sensors signal processing, is an unconventional approach to perform Experimental Modal Analysis which is typically based on data measured by accelerometers. SMT is still mainly restricted to academia and requires additional investigation for a successful transition towards industry. This paper critically reviews why the automotive sector can benefit from this relatively new approach for a variety of reasons. Moreover, a case study representative of the automotive field is analyzed and discussed. Specifically, an SMT methodology is applied to evaluate the modal properties of a reinforced composite roof belonging to a racing solar powered vehicle. In the experimental activity, signals from Fiber Bragg Grating (FBG) sensors, strain gauges, and accelerometers were simultaneously acquired and further processed. The advantages of using optical fibers were discussed, together with their weaknesses and ongoing challenges. The FBG results were compared with the conventional analysis performed with the accelerometers, emphasizing the main similarities and discrepancies. Full article
Show Figures

Figure 1

13 pages, 3369 KB  
Article
A Medium-Frequency Fiber Bragg Grating Accelerometer Based on Flexible Hinges
by Zichuang Li, Lei Liang, Hui Wang, Shu Dai, Ke Jiang and Zhiyuan Song
Sensors 2021, 21(21), 6968; https://doi.org/10.3390/s21216968 - 20 Oct 2021
Cited by 13 | Viewed by 3443
Abstract
Mediumfrequency fiber Bragg grating (FBG) acceleration sensors are used in important applications in mechanical, aerospace and weapon equipment, and have strict requirements in terms of resonance frequency and sensitivity. A novel medium-frequency accelerometer, based on fiber Bragg grating and flexible hinges, is proposed [...] Read more.
Mediumfrequency fiber Bragg grating (FBG) acceleration sensors are used in important applications in mechanical, aerospace and weapon equipment, and have strict requirements in terms of resonance frequency and sensitivity. A novel medium-frequency accelerometer, based on fiber Bragg grating and flexible hinges, is proposed in this paper. The differential structure doubles the sensitivity of the sensor while avoiding temperature effects. The structure model and principle for the sensor are introduced, the sensor’s sensing characteristics are theoretically analyzed, and the structure parameters for the sensor are determined through numerical analysis. The sensing experiments show that the resonance frequency of the sensor is approximately 2800 Hz, the sensitivity is 21.8 pm/g in the flat frequency range of 50–1000 Hz, and the proposed sensor has a good temperature self-compensation function and lateral anti-interference capability. Full article
(This article belongs to the Special Issue Fiber Bragg Grating Sensors: Recent Advances and Future Perspectives)
Show Figures

Figure 1

8 pages, 3147 KB  
Article
Sensitivity-Tunable Oscillator-Accelerometer Based on Optical Fiber Bragg Grating
by Xiangpeng Xiao, Jinpeng Tao, Qingguo Song, Yuezhen Sun, Jiang Yang and Zhijun Yan
Photonics 2021, 8(6), 223; https://doi.org/10.3390/photonics8060223 - 15 Jun 2021
Cited by 4 | Viewed by 2979
Abstract
We demonstrate a fiber Bragg grating (FBG)-based oscillator-accelerometer in which the acceleration sensitivity can be tuned by controlling the location of the mass oscillator. We theoretically and experimentally investigated the performance of the proposed accelerometer. Theoretical analysis showed that both the mass and [...] Read more.
We demonstrate a fiber Bragg grating (FBG)-based oscillator-accelerometer in which the acceleration sensitivity can be tuned by controlling the location of the mass oscillator. We theoretically and experimentally investigated the performance of the proposed accelerometer. Theoretical analysis showed that both the mass and location of the oscillator affect the sensitivity and resonant frequency of the accelerometer. To simplify the analysis, a nondimensional parameter, P, was introduced to tune the sensitivity of the FBG-based oscillator-accelerometer, which is related to the location of the mass oscillator. Numerical analysis showed that the accelerometer sensitivity is linearly proportional to the P parameter. In the experiment, six FBG-based oscillator-accelerometers with different P parameters (0.125, 0.25, 0.375, 0.5, 0.625, 0.75) were fabricated and tested. The experimental results agree very well with the numerical analysis, in which the sensitivity of the proposed accelerometer linearly increased with the increase in parameter P (7.6 pm/g, 15.8 pm/g, 19.3 pm/g, 25.4 pm/g, 30.6 pm/g, 35.7 pm/g). The resonance frequency is quadratically proportional to parameter P, and the resonance frequency reaches the minimum of 440 Hz when P is equal to 0.5. The proposed oscillator-accelerometer showed very good orthogonal vibration isolation. Full article
(This article belongs to the Special Issue Advancements in Fiber Bragg Grating Research)
Show Figures

Figure 1

14 pages, 8930 KB  
Article
Smart Sensing of PSC Girders Using a PC Strand with a Built-in Optical Fiber Sensor
by Sung Tae Kim, Hyejin Yoon, Young-Hwan Park, Seung-Seop Jin, Soobong Shin and Suk-Min Yoon
Appl. Sci. 2021, 11(1), 359; https://doi.org/10.3390/app11010359 - 1 Jan 2021
Cited by 11 | Viewed by 3220
Abstract
This paper presents a multi-functional strand capable of introducing prestressing force in prestressed concrete (PSC) girders and sensing their static and dynamic behavior as well. This innovative strand is developed by replacing the core steel wire of the strand used in PSC structures [...] Read more.
This paper presents a multi-functional strand capable of introducing prestressing force in prestressed concrete (PSC) girders and sensing their static and dynamic behavior as well. This innovative strand is developed by replacing the core steel wire of the strand used in PSC structures with a carbon fiber-reinforced polymer (CFRP) wire with a built-in optical Fiber Bragg Grating (FBG) sensor. A full-scale girder specimen was fabricated by applying this multi-function strand to check the possibility of tracking the change of prestressing force at each construction stage. Moreover, dynamic data could be secured during dynamic loading tests without installing accelerometers and made it possible to obtain the natural frequencies of the structure. The results verified the capability to effectively manage the prestressing force in the PSC bridge structure by applying the PC strand with a built-in optical sensor known for its outstanding practicability and durability. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

24 pages, 8100 KB  
Article
Comparative Study of Damage Detection Methods Based on Long-Gauge FBG for Highway Bridges
by Shi-Zhi Chen, De-Cheng Feng and Wan-Shui Han
Sensors 2020, 20(13), 3623; https://doi.org/10.3390/s20133623 - 28 Jun 2020
Cited by 20 | Viewed by 3865
Abstract
Damage detection of highway bridges is a significant part of structural heath monitoring. Conventional accelerometers or strain gauges utilized for damage detection have many shortcomings, especially their monitoring gauge length being too short, which would result in poor damage detection results. Under this [...] Read more.
Damage detection of highway bridges is a significant part of structural heath monitoring. Conventional accelerometers or strain gauges utilized for damage detection have many shortcomings, especially their monitoring gauge length being too short, which would result in poor damage detection results. Under this circumstance, long-gauge FBG sensors as a novel optical sensor were developed to measure the macro-strain response of the structure. Based on this sensor, many derived damage detection methods were proposed. These methods exhibit various characteristics and have not been systematically compared. As a result, it is difficult to evaluate the state of the art and also leads to confusion for users to select. Therefore, a strict comparative study on three representative methods using long-gauge FBG was carried out. First, these methods’ theoretical backgrounds and formats were reformulated and unified for better comparison. Then, based on validated vehicle–bridge coupling simulation, these methods’ performances were tested through a series of parametric studies including various damage scenarios, vehicle types, speeds, road roughness and noise levels. The precision and reliability of three methods have been thoroughly studied and compared. Full article
(This article belongs to the Special Issue Fiber Bragg Grating Based Sensors and Systems)
Show Figures

Figure 1

7 pages, 2275 KB  
Letter
Ultra-Small Fiber Bragg Grating Accelerometer
by Kuo Li, Guoyong Liu, Yuqing Li, Jun Yang and Wenlong Ma
Appl. Sci. 2019, 9(13), 2707; https://doi.org/10.3390/app9132707 - 3 Jul 2019
Cited by 12 | Viewed by 3058
Abstract
Reducing the size of an accelerometer overcomes the tradeoff between its sensitivity and resonant frequency, and the theoretical relationships are analyzed. A fiber Bragg grating (FBG) accelerometer with the shortest vibration arm, 7 mm, among FBG accelerometers using the optical fiber to hold [...] Read more.
Reducing the size of an accelerometer overcomes the tradeoff between its sensitivity and resonant frequency, and the theoretical relationships are analyzed. A fiber Bragg grating (FBG) accelerometer with the shortest vibration arm, 7 mm, among FBG accelerometers using the optical fiber to hold its inertial object is demonstrated here. The inertial object was 4.41 g. The experimental crest-to-trough sensitivity and resonant frequency, 244 pm/g and 90 Hz, disagree with the theoretical values, 633 pm/g and 67 Hz, perhaps due to the friction between the inertial object and shell. In order to find the theoretical values, a method to find the pre-stretch of the FBG is also presented here, based on the stretch of the FBG at equilibrium and the mass of the inertial object. The FFT program, experimental data and theoretical calculations are presented in detail in the Supplementary Material. Full article
(This article belongs to the Special Issue Recent Progress in Fiber Optic Sensors: Bringing Light to Measurement)
Show Figures

Figure 1

14 pages, 5115 KB  
Article
Detection of Broken Strands of Transmission Line Conductors Using Fiber Bragg Grating Sensors
by Long Zhao, Xinbo Huang, Jianyuan Jia, Yongcan Zhu and Wen Cao
Sensors 2018, 18(7), 2397; https://doi.org/10.3390/s18072397 - 23 Jul 2018
Cited by 27 | Viewed by 7363
Abstract
Transmission lines are affected by Aeolian vibration, which causes strands to break and eventually causes an entire line to break. In this paper, a method for monitoring strand breaking based on modal identification is proposed. First, the natural frequency variation of a conductor [...] Read more.
Transmission lines are affected by Aeolian vibration, which causes strands to break and eventually causes an entire line to break. In this paper, a method for monitoring strand breaking based on modal identification is proposed. First, the natural frequency variation of a conductor caused by strand breakage is analyzed, and a modal experiment of the LGJ-95/15 conductor is conducted. The measurement results show that the natural frequencies of the conductor decrease with an increasing number of broken strands. Next, a monitoring system incorporating a fiber Bragg grating (FBG)-based accelerometer is designed in detail. The FBG sensor is mounted on the conductor to measure the vibration signal. A wind speed sensor is used to measure the wind speed signal and is installed on the tower. An analyzer is also installed on the tower to calculate the natural frequencies, and the data are sent to the monitoring center via 3G. Finally, a monitoring system is tested on a 110 kV experimental transmission line, and the short-time Fourier transform (STFT) method and stochastic subspace identification (SSI) method are used to identify the natural frequencies of the conductor vibration. The experimental results show that SSI analysis provides a higher precision than does STFT and can extract the natural frequency under various wind speeds as an effective basis for discriminating between broken strands. Full article
(This article belongs to the Special Issue Optical Waveguide Based Sensors)
Show Figures

Figure 1

10 pages, 2650 KB  
Article
Low-Cost Interrogation Technique for Dynamic Measurements with FBG-Based Devices
by Camilo A. R. Díaz, Cátia Leitão, Carlos A. Marques, M. Fátima Domingues, Nélia Alberto, Maria José Pontes, Anselmo Frizera, Moisés R. N. Ribeiro, Paulo S. B. André and Paulo F. C. Antunes
Sensors 2017, 17(10), 2414; https://doi.org/10.3390/s17102414 - 23 Oct 2017
Cited by 68 | Viewed by 8357
Abstract
Fiber Bragg gratings are widely used optical fiber sensors for measuring temperature and/or mechanical strain. Nevertheless, the high cost of the interrogation systems is the most important drawback for their large commercial application. In this work, an in-line Fabry–Perot interferometer based edge filter [...] Read more.
Fiber Bragg gratings are widely used optical fiber sensors for measuring temperature and/or mechanical strain. Nevertheless, the high cost of the interrogation systems is the most important drawback for their large commercial application. In this work, an in-line Fabry–Perot interferometer based edge filter is explored in the interrogation of fiber Bragg grating dynamic measurements up to 5 kHz. Two devices an accelerometer and an arterial pulse wave probe were interrogated with the developed approach and the results were compared with a commercial interrogation monitor. The data obtained with the edge filter are in agreement with the commercial device, with a maximum RMSE of 0.05 being able to meet the requirements of the measurements. Resolutions of 3.6 pm and 2.4 pm were obtained, using the optical accelerometer and the arterial pulse wave probe, respectively. Full article
(This article belongs to the Special Issue Fiber Bragg Grating Based Sensors)
Show Figures

Figure 1

Back to TopTop