Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = F. sporotrichioides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5894 KiB  
Article
Application of Pulsed Electric Field During Malting: Impact on Fusarium Species Growth and Mycotoxin Production
by Nela Prusova, Marcel Karabin, Lukas Jelinek, Jana Chrpova, Jaroslava Ovesna, Pavel Svoboda, Tereza Dolezalova, Adam Behner, Jana Hajslova and Milena Stranska
Toxins 2024, 16(12), 537; https://doi.org/10.3390/toxins16120537 - 12 Dec 2024
Cited by 3 | Viewed by 1274
Abstract
The increasing contamination of cereals by micromycetes and mycotoxins during malting still poses an unresolved food safety problem. This study characterises the potential of the novel, rapidly developing food production technology of Pulsed Electric Field (PEF) to reduce the viability of Fusarium fungi [...] Read more.
The increasing contamination of cereals by micromycetes and mycotoxins during malting still poses an unresolved food safety problem. This study characterises the potential of the novel, rapidly developing food production technology of Pulsed Electric Field (PEF) to reduce the viability of Fusarium fungi and the production of mycotoxins during malting. Barley, artificially inoculated with four Fusarium species, was treated by PEF with two different intensities and then malted using a standard Pilsner-type technology. Concentrations of fungi were quantified by RT-PCR, expression of fungal growth-related genes was assessed using mRNA sequencing, and mycotoxin levels were analysed by U-HPLC-HRMS/MS. Despite the different trends for micromycetes and mycotoxins after application of variously intense PEF conditions, significant reductions were generally observed. The greatest decrease was for F. sporotrichioides and F. poae, where up to six fold lower levels were achieved for malts produced from the PEF-treated barley when compared to the control. For F. culmorum and F. graminearum, up to a two-fold reduction in the PEF-generated malts was observed. These reductions mostly correlated with a decrease in relevant mycotoxins, specifically type A trichothecenes. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Graphical abstract

15 pages, 1660 KiB  
Article
Impact of Harvest Delay and Barley Variety on Grain Nutritional Composition and Mycotoxin Contamination
by Eimantas Venslovas, Yuliia Kochiieru, Sigita Janavičienė, Lauksmė Merkevičiūtė-Venslovė, Mohammad Almogdad, Vadims Bartkevics, Zane Bērziņa and Romans Pavlenko
J. Fungi 2024, 10(11), 738; https://doi.org/10.3390/jof10110738 - 24 Oct 2024
Cited by 1 | Viewed by 1320
Abstract
This study investigated the effects of delayed harvesting, varying meteorological conditions, and barley variety on Fusarium spp. infection rates, nutritional composition, and mycotoxin contamination in barley grains. Field experiments were conducted from 2020 to 2022 and involved two barley varieties: ‘Laureate’ for malting [...] Read more.
This study investigated the effects of delayed harvesting, varying meteorological conditions, and barley variety on Fusarium spp. infection rates, nutritional composition, and mycotoxin contamination in barley grains. Field experiments were conducted from 2020 to 2022 and involved two barley varieties: ‘Laureate’ for malting and ‘Luokė’ for feed. The results indicated that the dominant Fusarium species isolated were F. avenaceum, F. culmorum, F. poae, F. sporotrichioides, F. tricinctum, and F. equiseti. These tended to increase in number with delayed harvest times and were more prevalent during harvest periods of higher precipitation (p < 0.05). Malting barley had higher starch and lower protein content compared to feed barley (p < 0.05). Delayed harvesting generally increased dry matter, crude fat, and crude ash contents while decreasing crude protein, zinc, and iron contents (p < 0.05). Mycotoxin analysis revealed significant differences under specific weather conditions. HT-2 toxin levels were higher under slightly warmer and wetter conditions during flowering, with harvest conditions similar to the long-term average. Zearalenone levels increased with dry, warm growing seasons followed by rainy harvests. Nivalenol and enniatin levels increased with rainy growing seasons and dry, warm harvests. Deoxynivalenol concentrations did not reach the limit of quantification throughout the study. No consistent trend was observed for higher contamination in any specific barley variety (p > 0.05). The strongest correlations between mycotoxins and nutritional value indicators were observed with less-studied mycotoxins, such as nivalenol and enniatins, which exhibited negative correlations with crude protein (p < 0.01), crude fat (p < 0.05), and zinc (p < 0.01), and positive correlations with crude ash (p < 0.05) and phosphorus (p < 0.01). Full article
Show Figures

Figure 1

20 pages, 1252 KiB  
Article
Distinguishing between Wheat Grains Infested by Four Fusarium Species by Measuring with a Low-Cost Electronic Nose
by Piotr Borowik, Miłosz Tkaczyk, Przemysław Pluta, Adam Okorski, Marcin Stocki, Rafał Tarakowski and Tomasz Oszako
Sensors 2024, 24(13), 4312; https://doi.org/10.3390/s24134312 - 2 Jul 2024
Cited by 3 | Viewed by 2094
Abstract
An electronic device based on the detection of volatile substances was developed in response to the need to distinguish between fungal infestations in food and was applied to wheat grains. The most common pathogens belong to the fungi of the genus Fusarium: [...] Read more.
An electronic device based on the detection of volatile substances was developed in response to the need to distinguish between fungal infestations in food and was applied to wheat grains. The most common pathogens belong to the fungi of the genus Fusarium: F. avenaceum, F. langsethiae, F. poae, and F. sporotrichioides. The electronic nose prototype is a low-cost device based on commercially available TGS series sensors from Figaro Corp. Two types of gas sensors that respond to the perturbation are used to collect signals useful for discriminating between the samples under study. First, an electronic nose detects the transient response of the sensors to a change in operating conditions from clean air to the presence of the gas being measured. A simple gas chamber was used to create a sudden change in gas composition near the sensors. An inexpensive pneumatic system consisting of a pump and a carbon filter was used to supply the system with clean air. It was also used to clean the sensors between measurement cycles. The second function of the electronic nose is to detect the response of the sensor to temperature disturbances of the sensor heater in the presence of the gas to be measured. It has been shown that features extracted from the transient response of the sensor to perturbations by modulating the temperature of the sensor heater resulted in better classification performance than when the machine learning model was built from features extracted from the response of the sensor in the gas adsorption phase. By combining features from both phases of the sensor response, a further improvement in classification performance was achieved. The E-nose enabled the differentiation of F. poae from the other fungal species tested with excellent performance. The overall classification rate using the Support Vector Machine model reached 70 per cent between the four fungal categories tested. Full article
(This article belongs to the Special Issue Gas Recognition in E-Nose System)
Show Figures

Figure 1

19 pages, 685 KiB  
Article
The Differentiation of the Infestation of Wheat Grain with Fusarium poae from Three Other Fusarium Species by GC–MS and Electronic Nose Measurements
by Piotr Borowik, Marcin Stocki, Miłosz Tkaczyk, Przemysław Pluta, Tomasz Oszako, Rafał Tarakowski and Adam Okorski
Agriculture 2024, 14(7), 1028; https://doi.org/10.3390/agriculture14071028 - 28 Jun 2024
Cited by 4 | Viewed by 1438
Abstract
The massive import of uncontrolled technical grain from the East into the European Community poses a risk to public health when it ends up in the mills to be used as flour for food purposes instead of being burnt (biofuel). In fungal infections [...] Read more.
The massive import of uncontrolled technical grain from the East into the European Community poses a risk to public health when it ends up in the mills to be used as flour for food purposes instead of being burnt (biofuel). In fungal infections of wheat, the most dangerous species belong to the genus Fusarium. F. poae is a pathogen that is most commonly isolated from cereals worldwide and causes various types of diseases in animals and humans due to the numerous toxins it produces. The manuscript reports an attempt to distinguish between four species of Fusarium, F. avanceum, F. langsethiae, F. poae, and F. sporotrichioides, in wheat grains by measuring the volatiles emitted. The patterns obtained from the signals captured by the electronic nose PEN3 were used to build the Random Forests classification model. The recall and precision of the classification performance for F. poae reached 91 and 87%, respectively. The overall classification accuracy reached 70%. Gas chromatography coupled with mass spectrometry (GC–MS) was used to analyze the chemical composition of the emitted volatiles. The patterns found in the GC–MS results allowed an explanation of the main patterns observed when analyzing the electronic nose data. The mycotoxins produced by the Fusarium species analyzed were detected. The results of the reported experiment confirm the potential of the electronic nose as a technology that can be useful for screening the condition of the grain and distinguishing between different pathogenic infestations. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

13 pages, 1283 KiB  
Article
Identification of Fusarium spp. Associated with Chickpea Root Rot in Montana
by Swarnalatha Moparthi, Oscar Perez-Hernandez, Mary Eileen Burrows, Michael J. Bradshaw, Collins Bugingo, Monica Brelsford and Kevin McPhee
Agriculture 2024, 14(7), 974; https://doi.org/10.3390/agriculture14070974 - 21 Jun 2024
Cited by 4 | Viewed by 2637
Abstract
Root rot caused by Fusarium spp. is a significant issue in the chickpea-growing regions of Montana. The specific Fusarium species responsible for the disease and their prevalence remain uncertain. A survey was conducted in 2020 and 2021 to identify Montana’s Fusarium species associated [...] Read more.
Root rot caused by Fusarium spp. is a significant issue in the chickpea-growing regions of Montana. The specific Fusarium species responsible for the disease and their prevalence remain uncertain. A survey was conducted in 2020 and 2021 to identify Montana’s Fusarium species associated with chickpea. Four hundred and twenty-six Fusarium isolates were recovered from symptomatic chickpea roots across ten counties in the state. Isolates were identified by comparing translation elongation factor 1-α (TEF1-α) sequences in the FUSARIUM-ID database. Among the recovered isolates, Fusarium oxysporum was the most prevalent species (33%), followed by F. acuminatum (21%), F. avenaceum (15%), F. redolens (14%), F. culmorum (6%), F. sporotrichioides (6%), Neocosmospora solani (6%), F. equiseti (2%), F. torulosum (0.9%), F. gamsii (0.8%), F. proliferatum (0.2%), F. pseudograminearum (0.2%), and F. brachygibbosum (0.1%). The aggressiveness of a subset of 51 isolates representing various Fusarium spp. was tested on chickpea cv. ‘CDC Frontier’. A non-parametric variance analysis conducted on disease severity ranks indicated that F. avenaceum isolates were highly aggressive. This study reports for the first time that F. gamsii, F. proliferatum and F. brachygibbosum are causal agents of root rot in chickpea in the United States. This knowledge is invaluable for making informed decisions regarding crop rotation, disease management, and developing resistant chickpea varieties against economically significant Fusarium pathogens. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

21 pages, 2427 KiB  
Article
Diversity and Pathogenicity of Fusarium Root Rot Fungi from Canola (Brassica napus) in Alberta, Canada
by Haitian Yu, Kan-Fa Chang, Rudolph Fredua-Agyeman, Sheau-Fang Hwang and Stephen E. Strelkov
Int. J. Mol. Sci. 2024, 25(11), 6244; https://doi.org/10.3390/ijms25116244 - 5 Jun 2024
Cited by 1 | Viewed by 1905
Abstract
Root rot disease poses a significant threat to canola (Brassica napus), underscoring the need for a comprehensive understanding of its causal agents for more effective disease mitigation. The composition and diversity of fungal pathogens associated with root rot of canola in [...] Read more.
Root rot disease poses a significant threat to canola (Brassica napus), underscoring the need for a comprehensive understanding of its causal agents for more effective disease mitigation. The composition and diversity of fungal pathogens associated with root rot of canola in Alberta, Canada, were evaluated from plant tissue samples collected in 2021 and 2022. The study revealed Fusarium spp. as the predominant pathogens found in almost all surveyed fields. Fusarium avenaceum, F. redolens, and F. solani were among the most frequently recovered species. Greenhouse trials confirmed their pathogenicity, with F. avenaceum and F. sporotrichioides found to be particularly aggressive. Additionally, F. sporotrichioides and F. commune were identified for the first time as canola root rot pathogens. Inoculation with isolates of most species resulted in significant reductions in seedling emergence, plant height, and shoot and root dry weights. Analysis of translation elongation factor 1-α (TEF-1α) and internal transcribed spacer (ITS) sequences confirmed the identity of the Fusarium spp., while concatenating the ITS and TEF-1α sequences enabled improved species differentiation. Geographic and year effects did not influence fungal diversity or aggressiveness, as determined by principal component analysis. This study emphasized the high diversity and impact of Fusarium spp. in causing canola root rot. Full article
(This article belongs to the Special Issue Advances in Plant–Pathogen Interactions: 3rd Edition)
Show Figures

Figure 1

17 pages, 3403 KiB  
Article
Attempts to Use Hemp (Cannabis sativa L. var. sativa) Inflorescence Extract to Limit the Growth of Fungi Occurring in Agricultural Crops
by Weronika Kursa, Agnieszka Jamiołkowska, Jakub Wyrostek and Radosław Kowalski
Appl. Sci. 2024, 14(4), 1680; https://doi.org/10.3390/app14041680 - 19 Feb 2024
Cited by 2 | Viewed by 2467
Abstract
The primary objective of this investigation was to assess the potential applicability of hemp (Cannabis sativa L. var. sativa) lateral inflorescence extract in mitigating the growth of fungi, including phytopathogens, on agricultural plants. The extract, comprising a blend of biologically active [...] Read more.
The primary objective of this investigation was to assess the potential applicability of hemp (Cannabis sativa L. var. sativa) lateral inflorescence extract in mitigating the growth of fungi, including phytopathogens, on agricultural plants. The extract, comprising a blend of biologically active compounds, holds promise for integration into contemporary plant protection methodologies. The research involved a comprehensive analysis of the extract’s chemical composition, encompassing the determination of total polyphenol and flavonoid content (utilizing spectrophotometric methods), antioxidant activity (evaluated through the DPPH method employing synthetic 2,2-diphenyl-1-picrylhydrazyl radical), and cannabinoid content (analyzed using HPLC techniques). Additionally, this study employed the poisoned substrate method to gauge the impact of 5, 10, and 20% extract concentrations on the growth of various microfungi, including Alternaria alternata, Botrytis cinerea, Colletotrichum coccodes, Fusarium avenaceum, F. culmorum, F. graminearum, F. oxysporum, F. sporotrichioides, and Trichoderma koningii. The hemp extract demonstrated a substantial presence of total polyphenolic compounds, with polyphenol and flavonoid concentrations measuring 149.65 mg/mL and 1.55 mg/mL, respectively. Furthermore, the extract contained cannabinoids at a concentration of 0.12%. The most pronounced antifungal activity was observed with the 20% extract, particularly against T. koningii (62.22–84.79%), C. coccodes (61.65–81.82%), and B. cinerea (45.00–75.42%). However, the efficacy of hemp extracts exhibited large differences against Fusarium spp. (3.10–72.95%), dependent on the specific extract and fungus strain. Introduction of hemp extracts to the substrate induced a reduction in substrate pigment and a discernible color alteration in the mycelium to a lighter shade compared to the control. These findings mark the initial phase in the exploration of practical applications for plant extracts, setting the groundwork for subsequent field trials to ascertain the extract’s impact on phytotoxicity and the health status of agricultural plants. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

13 pages, 2255 KiB  
Article
In Vitro Sensitivity Test of Fusarium Species from Weeds and Non-Gramineous Plants to Triazole Fungicides
by Neringa Matelionienė, Renata Žvirdauskienė, Gražina Kadžienė, Evelina Zavtrikovienė and Skaidrė Supronienė
Pathogens 2024, 13(2), 160; https://doi.org/10.3390/pathogens13020160 - 10 Feb 2024
Cited by 6 | Viewed by 3019
Abstract
Fusarium species are common plant pathogens that cause serious crop losses worldwide. Fusarium spp. colonize not only the main host plants, crops, but also alternative hosts. The effectiveness of fungicide use in disease management ranges from very successful to possibly promoting the growth [...] Read more.
Fusarium species are common plant pathogens that cause serious crop losses worldwide. Fusarium spp. colonize not only the main host plants, crops, but also alternative hosts. The effectiveness of fungicide use in disease management ranges from very successful to possibly promoting the growth of the pathogen. Triazole fungicides are widely used to control these pathogens due to their broad-spectrum activity and systemic nature. This paper reviews the sensitivity of 40 Fusarium strains isolated from weeds, non-gramineous plants, and spring wheat to metconazole, prothioconazole, and tebuconazole. The effect of fungicides was determined by the percentage inhibition of F. graminearum, F. culmorum, F. sporotrichioides, and F. avenaceum fungal mycelial growth. The 50% effective concentration (EC50) values of all isolates on metconazole were lower than 2.9 mg L−1, prothioconazole EC50 ranged from 0.12 to 23.6 mg L−1, and tebuconazole ranged from 0.09 to 15.6 mg L−1. At 0.00025–0.025 mg L−1, the fungicides were ineffective, except for the growth of the F. avenaceum species. It was observed that isolates from weeds were more sensitive to low concentrations of fungicide than isolates from crop plants. In general, information is scarce regarding the comparison of fungicide resistance in Fusarium isolates from weed and crop plants, making this study an additional contribution to the existing knowledge base. Full article
(This article belongs to the Special Issue Current Research on Fusarium: 2nd Edition)
Show Figures

Figure 1

18 pages, 3947 KiB  
Article
Fusarium Species Causing Pepper Wilt in Russia: Molecular Identification and Pathogenicity
by Irina Engalycheva, Elena Kozar, Svetlana Frolova, Svetlana Vetrova, Tatyana Tikhonova, Elena Dzhos, Myazar Engalychev, Vera Chizhik, Viktor Martynov, Andrey Shingaliev, Ksenia Dudnikova, Maksim Dudnikov and Yulia Kostanchuk
Microorganisms 2024, 12(2), 343; https://doi.org/10.3390/microorganisms12020343 - 6 Feb 2024
Cited by 8 | Viewed by 3481
Abstract
Fusarium wilt pathogens represent an ongoing threat to pepper production worldwide. This is the first report providing data on the molecular identification of Fusarium fungi that cause wilt in pepper in the southern regions of Russia. Monitoring of the Fusarium infection on pepper [...] Read more.
Fusarium wilt pathogens represent an ongoing threat to pepper production worldwide. This is the first report providing data on the molecular identification of Fusarium fungi that cause wilt in pepper in the southern regions of Russia. Monitoring of the Fusarium infection on pepper was carried out in 2019–2022 in two economically important regions of this culture production: the Krasnodar Krai and Crimea. Based on a phylogenetic analysis of the translation elongation factor (EF1a) and the internal transcribed spacer (ITS), as well as the macro- and micromorphological characteristics of the fungi, the causative agents of Fusarium wilt have been identified. The causative agents identified as representatives of the Fusarium species composition included: F. clavus, F. solani, F. oxysporum, F. verticillioides, F. commune, F. torulosum, and F. sporotrichioides. Depending on the region, the specifics of biodiversity and the ratio of these species in pathocomplexes were noted. In Crimea, wilting could be attributed to all of the identified species; in the Krasnodar Krai, F. verticillioides and F. clavus were found to contribute to wilting. The pathogenicity test showed that the pathogens of pepper wilting in Russia, in addition to the already known F. oxysporum and F. solani, are the species F. clavus and F. verticillioides. This is the first report on the ability of these species to cause Fusarium wilt in pepper cultures. The obtained data will be of practical value for the development of biological control measures for fungi of the genus Fusarium, which cause pepper wilt in areas of industrial production and seed production. In addition, data on species composition and aggressive isolates will be used in a pepper breeding program for resistance to Fusarium wilt. Full article
(This article belongs to the Special Issue Molecular Identification and Phylogeny of Crops Pathogenic Fungi)
Show Figures

Figure 1

13 pages, 3121 KiB  
Article
Goldenseal (Hydrastis canadensis L.) Extracts Inhibit the Growth of Fungal Isolates Associated with American Ginseng (Panax quinquefolius L.)
by Ying Gao, Ethan Swiggart, Kaela Wolkiewicz, Prabha Liyanapathiranage, Fulya Baysal-Gurel, Farhat A. Avin, Eleanor F. P. Lopez, Rebecca T. Jordan, Joshua Kellogg and Eric P. Burkhart
Molecules 2024, 29(3), 556; https://doi.org/10.3390/molecules29030556 - 23 Jan 2024
Cited by 2 | Viewed by 3324
Abstract
American ginseng, a highly valuable crop in North America, is susceptible to various diseases caused by fungal pathogens, including Alternaria spp., Fusarium spp., and Pestalotiopsis spp. The development of alternative control strategies that use botanicals to control fungal pathogens in American ginseng is [...] Read more.
American ginseng, a highly valuable crop in North America, is susceptible to various diseases caused by fungal pathogens, including Alternaria spp., Fusarium spp., and Pestalotiopsis spp. The development of alternative control strategies that use botanicals to control fungal pathogens in American ginseng is desired as it provides multiple benefits. In this study, we isolated and identified three fungal isolates, Alternaria panax, Fusarium sporotrichioides, and Pestalotiopsis nanjingensis, from diseased American ginseng plants. Ethanolic and aqueous extracts from the roots and leaves of goldenseal were prepared, and the major alkaloid constituents were assessed via liquid chromatography–mass spectrometry (LC–MS). Next, the antifungal effects of goldenseal extracts were tested against these three fungal pathogens. Goldenseal root ethanolic extracts exhibited the most potent inhibition against fungal growth, while goldenseal root aqueous extracts and leaf ethanolic extracts showed only moderate inhibition. At 2% (m/v) concentration, goldenseal root ethanolic extracts showed an inhibition rate of 86.0%, 94.9%, and 39.1% against A. panax, F. sporotrichioides, and P. nanjingensis, respectively. The effect of goldenseal root ethanolic extracts on the mycelial morphology of fungal isolates was studied via scanning electron microscopy (SEM). The mycelia of the pathogens treated with the goldenseal root ethanolic extract displayed considerable morphological alterations. This study suggests that goldenseal extracts have the potential to be used as a botanical fungicide to control plant fungal diseases caused by A. panax, F. sporotrichioides, or P. nanjingensis. Full article
(This article belongs to the Special Issue Phytochemicals: Extraction, Bioactivities and Applications)
Show Figures

Figure 1

13 pages, 2533 KiB  
Article
DNA Damage Induced by T-2 Mycotoxin in Human Skin Fibroblast Cell Line—Hs68
by Edyta Janik-Karpinska, Michal Ceremuga, Marcin Niemcewicz, Ewelina Synowiec, Tomasz Sliwinski, Maksymilian Stela and Michal Bijak
Int. J. Mol. Sci. 2023, 24(19), 14458; https://doi.org/10.3390/ijms241914458 - 22 Sep 2023
Cited by 1 | Viewed by 1841
Abstract
T-2 mycotoxin is the most potent representative of the trichothecene group A and is produced by various Fusarium species, including F. sporotrichioides, F. poae, and F. acuminatum. T-2 toxin has been reported to have toxic effects on various tissues and [...] Read more.
T-2 mycotoxin is the most potent representative of the trichothecene group A and is produced by various Fusarium species, including F. sporotrichioides, F. poae, and F. acuminatum. T-2 toxin has been reported to have toxic effects on various tissues and organs, and humans and animals alike suffer a variety of pathological conditions after consumption of mycotoxin-contaminated food. The T-2 toxin’s unique feature is dermal toxicity, characterized by skin inflammation. In this in vitro study, we investigated the molecular mechanism of T-2 toxin-induced genotoxicity in the human skin fibroblast—Hs68 cell line. For the purpose of investigation, the cells were treated with T-2 toxin in 0.1, 1, and 10 μM concentrations and incubated for 24 h and 48 h. Nuclear DNA (nDNA) is found within the nucleus of eukaryotic cells and has a double-helix structure. nDNA encodes the primary structure of proteins, consisting of the basic amino acid sequence. The alkaline comet assay results showed that T-2 toxin induces DNA alkali-labile sites. The DNA strand breaks in cells, and the DNA damage level is correlated with the increasing concentration and time of exposure to T-2 toxin. The evaluation of nDNA damage revealed that exposure to toxin resulted in an increasing lesion frequency in Hs68 cells with HPRT1 and TP53 genes. Further analyses were focused on mRNA expression changes in two groups of genes involved in the inflammatory and repair processes. The level of mRNA increased for all examined inflammatory genes (TNF, INFG, IL1A, and IL1B). In the second group of genes related to the repair process, changes in expression induced by toxin in genes—LIG3 and APEX were observed. The level of mRNA for LIG3 decreased, while that for APEX increased. In the case of LIG1, FEN, and XRCC1, no changes in mRNA level between the control and T-2 toxin probes were observed. In conclusion, the results of this study indicate that T-2 toxin shows genotoxic effects on Hs68 cells, and the molecular mechanism of this toxic effect is related to nDNA damage. Full article
(This article belongs to the Special Issue 25th Anniversary of IJMS: Advances in Biochemistry)
Show Figures

Figure 1

42 pages, 1270 KiB  
Review
T-2 and HT-2 Toxins: Toxicity, Occurrence and Analysis: A Review
by Julie Meneely, Brett Greer, Oluwatobi Kolawole and Christopher Elliott
Toxins 2023, 15(8), 481; https://doi.org/10.3390/toxins15080481 - 29 Jul 2023
Cited by 54 | Viewed by 6970
Abstract
One of the major classes of mycotoxins posing serious hazards to humans and animals and potentially causing severe economic impact to the cereal industry are the trichothecenes, produced by many fungal genera. As such, indicative limits for the sum of T-2 and HT-2 [...] Read more.
One of the major classes of mycotoxins posing serious hazards to humans and animals and potentially causing severe economic impact to the cereal industry are the trichothecenes, produced by many fungal genera. As such, indicative limits for the sum of T-2 and HT-2 were introduced in the European Union in 2013 and discussions are ongoing as to the establishment of maximum levels. This review provides a concise assessment of the existing understanding concerning the toxicological effects of T-2 and HT-2 in humans and animals, their biosynthetic pathways, occurrence, impact of climate change on their production and an evaluation of the analytical methods applied to their detection. This study highlights that the ecology of F. sporotrichioides and F. langsethiae as well as the influence of interacting environmental factors on their growth and activation of biosynthetic genes are still not fully understood. Predictive models of Fusarium growth and subsequent mycotoxin production would be beneficial in predicting the risk of contamination and thus aid early mitigation. With the likelihood of regulatory maximum limits being introduced, increased surveillance using rapid, on-site tests in addition to confirmatory methods will be required. allowing the industry to be proactive rather than reactive. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

12 pages, 5290 KiB  
Article
Molecular Identification and Characterization of Fusarium Associated with Walnut Branch Blight Disease in China
by Ting Ma, Chengde Yang, Fengfeng Cai and Richard Osei
Pathogens 2023, 12(7), 970; https://doi.org/10.3390/pathogens12070970 - 24 Jul 2023
Cited by 5 | Viewed by 3488
Abstract
In October 2020, samples of walnut branch blight were collected from Longnan. Pathogens were isolated and identified based on morphological and molecular features, and their characteristics were analyzed by pathogenicity. Pathogenicity testing revealed that seven strains (LN-1, LN-3, LN-6, LN-19, LN-27, QY3-1, and [...] Read more.
In October 2020, samples of walnut branch blight were collected from Longnan. Pathogens were isolated and identified based on morphological and molecular features, and their characteristics were analyzed by pathogenicity. Pathogenicity testing revealed that seven strains (LN-1, LN-3, LN-6, LN-19, LN-27, QY3-1, and QY9-1) induced symptoms of walnut branch blight that were consistent with those observed in the field after inoculation. Furthermore, some Fusarium-type conidia and spherical chlamydospores were visible indicating that they were Fusarium spp. A molecular characterization including sequence and phylogenetic analysis of the ITS, TEF-1α, βTUB, Fu, and LSU gene regions revealed that LN-1 and LN-19 belonged to F. avenaceum, LN-3 and LN-6 to F. acuminatum, LN-27 to F. sporotrichioides, and QY3-1 and QY9-1 to F. tricinctum. This is the first time that F. acuminatum-, F. sporotrichioides-, and F. tricinctum-caused walnut branch blight has been reported in China. Full article
(This article belongs to the Section Fungal Pathogens)
Show Figures

Figure 1

17 pages, 3269 KiB  
Article
The Fungicidal Effect of Essential Oils of Fennel and Hops against Fusarium Disease of Pea
by Sylwia Barbara Okorska, Joanna Agnieszka Dąbrowska, Katarzyna Głowacka, Agnieszka Pszczółkowska, Krzysztof Józef Jankowski, Jan Paweł Jastrzębski, Tomasz Oszako and Adam Okorski
Appl. Sci. 2023, 13(10), 6282; https://doi.org/10.3390/app13106282 - 21 May 2023
Cited by 7 | Viewed by 3034
Abstract
Modern integrated farming systems encourage the search for alternative (non-chemical), highly effective methods of plant protection. In this study, the fungistatic effect of fennel essential oil (FEO) and hop essential oil (HEO) on fungal growth and their ability to treat Fusarium wilt was [...] Read more.
Modern integrated farming systems encourage the search for alternative (non-chemical), highly effective methods of plant protection. In this study, the fungistatic effect of fennel essential oil (FEO) and hop essential oil (HEO) on fungal growth and their ability to treat Fusarium wilt was investigated. The study was conducted in vitro and in pot experiments. The severity of infection was assessed by disease index (DI), presence of Fusarium culmorum gDNA (qPCR) and anatomical analyses of infected plant tissue using an optical (OM) and scanning electron microscope (SEM). Laboratory analyses showed that FEO inhibits mycelial growth of Fusarium fungi (F. avenaceum, F. culmorum, F. equiseti, F. oxysporum, F. poae, F. solani, F. sporotrichioides, F. tricinctum), Botrytis cinerea and Cylindrocarpon destructans more effectively than HEO. FEO at a concentration of 2000 ppm completely inhibited the growth of F. culmorum, F. poae and B. cinerea. Both essential oils reduced the severity of Fusarium wilt caused by F. culmorum in pea plants (DI, OM, SEM). The qPCR shows that both essential oils are also able to reduce the synthesis of trichothecenes in the tissues of infected pea plants. The results of the study suggest that FEO and HEO represent a broad spectrum bio-fungicidal agent that can be applied directly to plants at a concentration of 500 ppm, greatly reducing the level of infection. Full article
(This article belongs to the Special Issue New Insights into Biocontrol to Improve Food Quality and Safety)
Show Figures

Figure 1

11 pages, 693 KiB  
Article
Fusarium Fungi and Mycotoxins in Bee Pollen Collected in Lithuania
by Jolanta Sinkevičienė, Živilė Tarasevičienė and Vytautas Tamutis
Appl. Sci. 2023, 13(3), 1571; https://doi.org/10.3390/app13031571 - 26 Jan 2023
Cited by 6 | Viewed by 2189
Abstract
This paper presents the results of a study which was aimed at determining the concentration of Fusarium fungi and their mycotoxins in fresh bee pollen, stored for different periods. The analysed parameters included palynological analysis, moisture content, fungal counts, identification and toxigenic profiles. [...] Read more.
This paper presents the results of a study which was aimed at determining the concentration of Fusarium fungi and their mycotoxins in fresh bee pollen, stored for different periods. The analysed parameters included palynological analysis, moisture content, fungal counts, identification and toxigenic profiles. In this study, 45 bee pollen samples collected from the same apiary families were investigated. Palynological analysis determined six plant families, among which Brassicaceae prevailed. The number of detected isolates in the bee pollen during the study period ranged from 3.5 × 103 to 9.1 × 104 cfu g−1. During the study, the most prevalent fungal genera of Alternaria, Cladosporium and Yeasts were found in fresh bee pollen. The significantly highest amounts of fungal colonies were determined after 3 days of storage of undried pollen. Fusarium fungal genera were detected in 46% of all studied samples, with levels ranging from 101 cfu g−1. After 3 days of storage, the most significant Fusarium spp. increase (17.03%) was detected. F. graminearum and F. sporotrichioides prevailed during the whole period of the study. The highest concentrations of mycotoxins ZEN (280 µg kg−1) and DON (120 µg kg−1) were found after 3 days of pollen storage. The results of the present study report the importance of microbiological and mycotoxicological analyses in monitoring bee pollen from the initial stages of its production process. Full article
(This article belongs to the Special Issue Advances in Bee Products and Its Processing Technology)
Show Figures

Figure 1

Back to TopTop