Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (393)

Search Parameters:
Keywords = F. graminearum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1396 KiB  
Article
Dose-Dependent Effect of the Polyamine Spermine on Wheat Seed Germination, Mycelium Growth of Fusarium Seed-Borne Pathogens, and In Vivo Fusarium Root and Crown Rot Development
by Tsvetina Nikolova, Dessislava Todorova, Tzenko Vatchev, Zornitsa Stoyanova, Valya Lyubenova, Yordanka Taseva, Ivo Yanashkov and Iskren Sergiev
Agriculture 2025, 15(15), 1695; https://doi.org/10.3390/agriculture15151695 - 6 Aug 2025
Abstract
Wheat (Triticum aestivum L.) is a crucial global food crop. The intensive crop farming, monoculture cultivation, and impact of climate change affect the susceptibility of wheat cultivars to biotic stresses, mainly caused by soil fungal pathogens, especially those belonging to the genus [...] Read more.
Wheat (Triticum aestivum L.) is a crucial global food crop. The intensive crop farming, monoculture cultivation, and impact of climate change affect the susceptibility of wheat cultivars to biotic stresses, mainly caused by soil fungal pathogens, especially those belonging to the genus Fusarium. This situation threatens yield and grain quality through root and crown rot. While conventional chemical fungicides face resistance issues and environmental concerns, biological alternatives like seed priming with natural metabolites are gaining attention. Polyamines, including putrescine, spermidine, and spermine, are attractive priming agents influencing plant development and abiotic stress responses. Spermine in particular shows potential for in vitro antifungal activity against Fusarium. Optimising spermine concentration for seed priming is crucial to maximising protection against Fusarium infection while ensuring robust plant growth. In this research, we explored the potential of the polyamine spermine as a seed treatment to enhance wheat resilience, aiming to identify a sustainable alternative to synthetic fungicides. Our findings revealed that a six-hour seed soak in spermine solutions ranging from 0.5 to 5 mM did not delay germination or seedling growth. In fact, the 5 mM concentration significantly stimulated root weight and length. In complementary in vitro assays, we evaluated the antifungal activity of spermine (0.5–5 mM) against three Fusarium species. The results demonstrated complete inhibition of Fusarium culmorum growth at 5 mM spermine. A less significant effect on Fusarium graminearum and little to no impact on Fusarium oxysporum were found. The performed analysis revealed that the spermine had a fungistatic effect against the pathogen, retarding the mycelium growth of F. culmorum inoculated on the seed surface. A pot experiment with Bulgarian soft wheat cv. Sadovo-1 was carried out to estimate the effect of seed priming with spermine against infection with isolates of pathogenic fungus F. culmorum on plant growth and disease severity. Our results demonstrated that spermine resulted in a reduced distribution of F. culmorum and improved plant performance, as evidenced by the higher fresh weight and height of plants pre-treated with spermine. This research describes the efficacy of spermine seed priming as a novel strategy for managing Fusarium root and crown rot in wheat. Full article
Show Figures

Figure 1

17 pages, 2307 KiB  
Article
Transforming Tomato Industry By-Products into Antifungal Peptides Through Enzymatic Hydrolysis
by Davide Emide, Lorenzo Periccioli, Matias Pasquali, Barbara Scaglia, Stefano De Benedetti, Alessio Scarafoni and Chiara Magni
Int. J. Mol. Sci. 2025, 26(15), 7438; https://doi.org/10.3390/ijms26157438 - 1 Aug 2025
Viewed by 150
Abstract
In the context of the valorization of agri-food by-products, tomato (Solanum lycopersicum L.) seeds represent a protein-rich matrix containing potential bioactives. The aim of the present work is to develop a biochemical pipeline for (i) achieving high protein recovery from tomato seed, [...] Read more.
In the context of the valorization of agri-food by-products, tomato (Solanum lycopersicum L.) seeds represent a protein-rich matrix containing potential bioactives. The aim of the present work is to develop a biochemical pipeline for (i) achieving high protein recovery from tomato seed, (ii) optimizing the hydrolysis with different proteases, and (iii) characterizing the resulting peptides. This approach was instrumental for obtaining and selecting the most promising peptide mixture to test for antifungal activity. To this purpose, proteins from an alkaline extraction were treated with bromelain, papain, and pancreatin, and the resulting hydrolysates were assessed for their protein/peptide profiles via SDS-PAGE, SEC-HPLC, and RP-HPLC. Bromelain hydrolysate was selected for antifungal tests due to its greater quantity of peptides, in a broader spectrum of molecular weights and polarity/hydrophobicity profiles, and higher DPPH radical scavenging activity, although all hydrolysates exhibited antioxidant properties. In vitro assays demonstrated that the bromelain-digested proteins inhibited the growth of Fusarium graminearum and F. oxysporum f.sp. lycopersici in a dose-dependent manner, with a greater effect at a concentration of 0.1 mg/mL. The findings highlight that the enzymatic hydrolysis of tomato seed protein represents a promising strategy for converting food by-products into bioactive agents with agronomic applications, supporting sustainable biotechnology and circular economy strategies. Full article
Show Figures

Figure 1

20 pages, 3401 KiB  
Article
Fusarium Head Blight in Barley from Subtropical Southern Brazil: Associated Fusarium Species and Grain Contamination Levels of Deoxynivalenol and Nivalenol
by Emanueli Bizarro Furtado, Eduardo Guatimosim, Danielle Ribeiro de Barros, Carlos Augusto Mallmann, Jeronimo Vieira de Araujo Filho, Sabrina de Oliveira Martins, Dauri José Tessmann, Cesar Valmor Rombaldi, Luara Medianeira de Lima Schlösser, Adriana Favaretto and Leandro José Dallagnol
Plants 2025, 14(15), 2327; https://doi.org/10.3390/plants14152327 - 27 Jul 2025
Viewed by 449
Abstract
Fusarium head blight in barley (Hordeum vulgare) reduces grain yield and can lead to the accumulation of deoxynivalenol (DON) and nivalenol (NIV) in grains. We surveyed Fusarium species and evaluated DON and NIV concentrations in barley grains in four regions of [...] Read more.
Fusarium head blight in barley (Hordeum vulgare) reduces grain yield and can lead to the accumulation of deoxynivalenol (DON) and nivalenol (NIV) in grains. We surveyed Fusarium species and evaluated DON and NIV concentrations in barley grains in four regions of Rio Grande do Sul, the southernmost state in subtropical Brazil. Seven Fusarium species were identified: F. asiaticum, F. avenaceum, F. cortaderiae, F. graminearum, F. gerlachii, F. meridionale and F. poae. DON (0 to 10,200 µg/kg) and NIV (0 to 1630 µg/kg) were detected in 74% and 70% of the samples, respectively, with higher concentrations found in experimental fields. However, in commercial barley fields, most samples fell below 2000 µg/kg of DON, which is the maximum limit allowed by Brazilian legislation for grains intended for processing. The seasonality of temperature and precipitation influenced mycotoxin concentrations. Therefore, the variability of Fusarium species in Rio Grande do Sul and a high incidence of DON and NIV in barley grains highlight the complexity of this pathosystem. This variability of Fusarium species may also influence the effectiveness of measures to control the disease, particularly in relation to genetic resistance and fungicide application. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

20 pages, 8487 KiB  
Article
Precise Identification and Analysis of Maize Germplasm Resistance to Ear Rot Caused by Six Fusarium Species
by Shuai Li, Lihong Zhu, Yongxiang Li, Yaxuan Guo, Yuhang Zhang, Chaosong Huang, Wenqi Wu, Suli Sun, Zixiang Cheng and Canxing Duan
Plants 2025, 14(15), 2280; https://doi.org/10.3390/plants14152280 - 24 Jul 2025
Viewed by 308
Abstract
Maize (Zea may L.) is one of the most important crops worldwide, but ear rot poses a significant threat to its production. Diverse pathogens cause ear rot in China, with Fusarium spp. being predominant, especially Fusarium graminearum and Fusarium verticillioides. Current [...] Read more.
Maize (Zea may L.) is one of the most important crops worldwide, but ear rot poses a significant threat to its production. Diverse pathogens cause ear rot in China, with Fusarium spp. being predominant, especially Fusarium graminearum and Fusarium verticillioides. Current methods for the control of ear rot are limited, making the use of resistant germplasm resources an effective and economical management strategy. Earlier research focused on resistance to Fusarium ear rot (FER; caused by F. verticillioides) and Gibberella ear rot (GER; caused by F. graminearum), but assessing maize resistance to multiple major Fusarium spp. is critical in ensuring maize production. Thus, the resistance of 343 maize germplasm resources to ear rot caused by six Fusarium spp. (F. verticillioides, F. graminearum, F. proliferatum, F. meridionale, F. subglutinans, and F. temperatum) was evaluated in this study. Over three years, 69 and 77 lines resistant to six and five ear rot diseases, respectively, and 139 lines resistant to both FER and GER were identified. Moreover, the 343 germplasm resources were divided into eight heterotic groups, of which PH4CV was the most resistant one, whereas NSS and Pioneer Female were the least resistant ones. These findings provide a basis for the development of maize cultivars with broad-spectrum ear rot resistance. Full article
(This article belongs to the Special Issue Identification of Resistance of Maize Germplasm Resources to Disease)
Show Figures

Figure 1

18 pages, 5095 KiB  
Article
Fusarium Species Infecting Greenhouse-Grown Cannabis (Cannabis sativa) Plants Show Potential for Mycotoxin Production in Inoculated Inflorescences and from Natural Inoculum Sources
by Zamir K. Punja, Sheryl A. Tittlemier and Sean Walkowiak
J. Fungi 2025, 11(7), 528; https://doi.org/10.3390/jof11070528 - 16 Jul 2025
Viewed by 929
Abstract
Several species of Fusarium are reported to infect inflorescences of high-THC-containing cannabis (Cannabis sativa L.) plants grown in greenhouses in Canada. These include F. graminearum, F. sporotrichiodes, F. proliferatum, and, to a lesser extent, F. oxysporum and F. solani. [...] Read more.
Several species of Fusarium are reported to infect inflorescences of high-THC-containing cannabis (Cannabis sativa L.) plants grown in greenhouses in Canada. These include F. graminearum, F. sporotrichiodes, F. proliferatum, and, to a lesser extent, F. oxysporum and F. solani. The greatest concern surrounding the infection of cannabis by these Fusarium species, which cause symptoms of bud rot, is the potential for the accumulation of mycotoxins that may go undetected. In the present study, both naturally infected and artificially infected inflorescence tissues were tested for the presence of fungal-derived toxins using HPLC-MS/MS analysis. Naturally infected cannabis tissues were confirmed to be infected by both F. avenaceum and F. graminearum using PCR. Pure cultures of these two species and F. sporotrichiodes were inoculated onto detached inflorescences of two cannabis genotypes, and after 7 days, they were dried and assayed for mycotoxin presence. In these assays, all Fusarium species grew prolifically over the tissue surface. Tissues infected by F. graminearum contained 3-acetyl DON, DON, and zearalenone in the ranges of 0.13–0.40, 1.18–1.91, and 31.8 to 56.2 μg/g, respectively, depending on the cannabis genotype. In F. sporotrichiodes-infected samples, HT2 and T2 mycotoxins were present at 13.9 and 10.9 μg/g in one genotype and were lower in the other. In F. avenaceum-inoculated tissues, the mycotoxins enniatin A, enniatin A1, enniatin B, and enniatin B1 were produced at varying concentrations, depending on the isolate and cannabis genotype. Unexpectedly, these tissues also contained detectable levels of 3-acetyl DON, DON, and zearalenone, which was attributed to apre-existing natural infection by F. graminearum that was confirmed by RT-qPCR. Beauvericin was detected in tissues infected by F. avenaceum and F. sporotrichiodes, but not by F. graminearum. Naturally infected, dried inflorescences from which F. avenaceum was recovered contained beauvericin, enniatin A1, enniatin B, and enniatin B1 as expected. Uninoculated cannabis inflorescences were free of mycotoxins except for culmorin at 0.348 μg/g, reflecting pre-existing infection by F. graminearum. The mycotoxin levels were markedly different between the two cannabis genotypes, despite comparable mycelial colonization. Tall fescue plants growing in the vicinity of the greenhouse were shown to harbor F. avenaceum and F. graminearum, suggesting a likely external source of inoculum. Isolates of both species from tall fescue produced mycotoxins when inoculated onto cannabis inflorescences. These findings demonstrate that infection by F. graminearum and F. avenaceum, either from artificial inoculation or natural inoculum originating from tall fescue plants, can lead to mycotoxin accumulation in cannabis inflorescences. However, extensive mycelial colonization following prolonged incubation of infected tissues under high humidity conditions is required. Inoculations with Penicillium citrinum and Aspergillus ochraceus under these conditions produced no detectable mycotoxins. The mycotoxins alternariol and tentoxin were detected in several inflorescence samples, likely as a result of natural infection by Alternaria spp. Fusarium avenaceum is reported to infect cannabis inflorescences for the first time and produces mycotoxins in diseased tissues. Full article
(This article belongs to the Special Issue Plant Pathogens and Mycotoxins)
Show Figures

Figure 1

17 pages, 3009 KiB  
Article
Influence of Light Spectrum on Bread Wheat Head Colonization by Fusarium graminearum and on the Accumulation of Its Secondary Metabolites
by Minely Cerón-Bustamante, Francesco Tini, Giovanni Beccari, Andrea Onofri, Emilio Balducci, Michael Sulyok, Lorenzo Covarelli and Paolo Benincasa
Plants 2025, 14(13), 2013; https://doi.org/10.3390/plants14132013 - 1 Jul 2025
Viewed by 509
Abstract
Previous studies indicated that light influences mycotoxin production and wheat’s defense responses to the cereal fungal pathogen Fusarium graminearum. Herein, the effect of different light wavelengths on F. graminearum colonization and secondary metabolite biosynthesis in bread wheat was assessed. Heads of a [...] Read more.
Previous studies indicated that light influences mycotoxin production and wheat’s defense responses to the cereal fungal pathogen Fusarium graminearum. Herein, the effect of different light wavelengths on F. graminearum colonization and secondary metabolite biosynthesis in bread wheat was assessed. Heads of a susceptible bread wheat cultivar were point-inoculated and exposed to red (627 nm), blue (470 nm), blue/red, and white light. Symptom severity, fungal DNA, and secondary metabolite accumulation were evaluated. Blue and red wavelengths reduced F. graminearum infection but had an opposite effect on the production of its fungal secondary metabolites. While blue light enhanced the accumulation of sesquiterpene mycotoxins, red light promoted the production of polyketide compounds. In addition, blue light stimulated deoxynivalenol glycosylation. These findings suggest that the light spectrum could affect mycotoxin contamination of wheat grains, highlighting the importance of light quality studies in field crops. Full article
(This article belongs to the Special Issue Light and Plant Responses)
Show Figures

Figure 1

17 pages, 3783 KiB  
Article
Electrospun Biocarriers with Immobilized Yeasts for Eco-Friendly Biocontrol of Fusarium graminearum
by Petya Tsekova, Mariana Petkova, Mariya Spasova and Olya Stoilova
Agronomy 2025, 15(7), 1541; https://doi.org/10.3390/agronomy15071541 - 25 Jun 2025
Viewed by 271
Abstract
This study reports, for the first time, the successful application of chitosan oligosaccharide (COS) and 2-hydroxyethyl cellulose (HEC) coatings on electrospun poly(3-hydroxybutyrate) (PHB) materials for the immobilization of non-conventional yeast strains with fungal biocontrol potential. The coatings enhanced the surface wettability of PHB [...] Read more.
This study reports, for the first time, the successful application of chitosan oligosaccharide (COS) and 2-hydroxyethyl cellulose (HEC) coatings on electrospun poly(3-hydroxybutyrate) (PHB) materials for the immobilization of non-conventional yeast strains with fungal biocontrol potential. The coatings enhanced the surface wettability of PHB fibers, facilitating efficient yeast adhesion and viability maintenance. Among the tested strains, Pichia acaciae YD6 was newly isolated and characterized, while Pichia fermentans YP6 and Zygosaccharomyces bailii YE1 had previously been identified as endophytic colonizers. All three strains demonstrated high adaptability, efficient immobilization, and antagonistic activity, confirming their potential for biocontrol applications. COS-coated PHB fibers promoted greater colony expansion than those coated with HEC. Antifungal assays of the yeast-containing biocarriers showed significant inhibition of F. graminearum growth. These findings underscore the potential of PHB-based fibrous materials as sustainable, bioactive carriers for yeast immobilization, with desirable biological properties. This approach offers a promising and eco-friendly strategy for pest control and bioactive agent delivery in agricultural applications. Full article
Show Figures

Figure 1

16 pages, 4001 KiB  
Article
Characterization of the C2H2 Zinc Finger Protein Family in Setosphaeria turcica
by Hui Jia, Qihui Zhou, Pan Li, Minye Li, Xueran Li, Zhihang Liu, Xiaodong Gong, Jingao Dong, Shouqin Gu and Yuwei Liu
Agronomy 2025, 15(6), 1434; https://doi.org/10.3390/agronomy15061434 - 12 Jun 2025
Viewed by 1073
Abstract
C2H2 zinc finger (C2H2-ZF) transcription factors, characterized by the presence of a conserved ZnF-C2H2 domain, are widespread among plant-pathogenic fungi such as Magnaporthe oryzae, Fusarium graminearum, and Sclerotinia sclerotiorum and have critical roles in the regulation of fungal growth, development, stress [...] Read more.
C2H2 zinc finger (C2H2-ZF) transcription factors, characterized by the presence of a conserved ZnF-C2H2 domain, are widespread among plant-pathogenic fungi such as Magnaporthe oryzae, Fusarium graminearum, and Sclerotinia sclerotiorum and have critical roles in the regulation of fungal growth, development, stress adaptation, and secondary metabolism. However, little is known about the presence and roles of C2H2-ZF transcription factors in Setosphaeria turcica (syn. Exserohilum turcicum), the causal agent of northern corn leaf blight. To address this gap, we identified the complete set of C2H2-ZF transcription factors in the S. turcica genome and characterized their structural characteristics, physicochemical properties, and protein–protein interaction network. We then used RNA sequencing to profile their expression dynamics during fungal development and host infection. The 27 S. turcica C2H2-ZF proteins were classified into three major subfamilies and contained six conserved motifs. All 27 genes were transcribed during 5 stages of fungal development, and 24 were expressed during the infection of susceptible maize, suggesting that they function in both fungal growth and pathogenesis. This study represents the first systematic characterization of C2H2-ZF proteins in S. turcica, offering insight into their potential roles in pathogenicity and establishing a foundation for future functional studies of individual family members. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

41 pages, 3831 KiB  
Article
Significance of the Stability of Fusarium Head Blight Resistance in the Variety Registration, Breeding, and Genetic Research of Winter Wheat Using Disease Index, Fusarium-Damaged Kernels, and Deoxynivalenol Contamination
by Ákos Mesterhazy, Beata Tóth, Attila Berényi, Katalin Ács and Tamas Meszlényi
Toxins 2025, 17(6), 288; https://doi.org/10.3390/toxins17060288 - 6 Jun 2025
Viewed by 623
Abstract
Fusarium head blight is one of the greatest threats to global wheat production. Despite the special attention paid by researchers to resistance genetics, the stability of resistance and the expression of its epidemiological relationships have not been tested in depth. As most studies [...] Read more.
Fusarium head blight is one of the greatest threats to global wheat production. Despite the special attention paid by researchers to resistance genetics, the stability of resistance and the expression of its epidemiological relationships have not been tested in depth. As most studies only present data on visual symptoms, in this study, we present data from four experiments. Here, 15–40 genotypes were tested with four and eight isolates (inocula) in 3–4-year experiments, with 32, 24, 36, and 12 epidemic situations used to determine the disease index (DI), Fusarium-damaged kernels (FDKs), and DON. All genotypes were tested for stability by the variance across epidemics, and the b value of the linear function was considered. Both indices were suitable for measuring stability/instability, but the variance results were more closely correlated with the experimental data than the b value, known as the stability index (SI). The use of variance is recommended due to its simplicity and reliability. In the first test, the rate of maximum/minimum variance for DI, FDK, and DON differed 15-, 20-, and 120-fold, respectively. In the second test, the same rates were 200, 400, and over 4000, with the other tests exhibiting similar tendencies. The traits differ, the epidemics vary, and a dependence on resistance level can be proven. The genotype ranking varies strongly in different epidemics, with approximately 50% of the correlations between variety responses being insignificant. Therefore, many epidemics are needed to obtain a reliable picture of the adaptation ability of the resistance traits and their stability. Approximately 25% of the genotypes tested belong to the most stable group. About 35% were discarded, and in the 40% medium, we observed both highly unstable and moderately stable genotypes. Principal component analysis (PCA) of the three traits in the experiments showed a confirmatory, nearly uniform distribution of genotypes, with a different footprint or “identity card” present for each genotype. The genotypes for the traits belong to one or two groups, although sometimes individual genotypes seem to be independent. No strict rule was found. This underlines the necessity of considering the plant’s traits (Di, FDK, and DON) in resistance testing. Highly resistant winter wheat lines could also be bred with very low variance and SI values and very high stability (SI values lower than 0.3). Of the traits, DON is the most important. With this methodology, variety registration also becomes possible. The epidemiological aspect has a decisive role in resistance studies, and without identifying stability in FHB resistance, no food safety estimates can be made. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

18 pages, 5964 KiB  
Article
Species Identification and Fungicide Sensitivity of Fusarium spp. Causing Peanut Root Rot in Henan, China
by Min Li, Liting Chen, Qinqin Wang, Leiming He, Yun Duan, Xuewei Mao and Lin Zhou
J. Fungi 2025, 11(6), 433; https://doi.org/10.3390/jof11060433 - 6 Jun 2025
Viewed by 1168
Abstract
Peanut Root Rot (PRR) is a devastating disease that significantly limits peanut production worldwide. Although PRR has been frequently reported in Henan Province of China, the predominant Fusarium species and their sensitivity to different fungicides remain unclear. Between 2021 and 2023, we surveyed [...] Read more.
Peanut Root Rot (PRR) is a devastating disease that significantly limits peanut production worldwide. Although PRR has been frequently reported in Henan Province of China, the predominant Fusarium species and their sensitivity to different fungicides remain unclear. Between 2021 and 2023, we surveyed 81 peanut fields across 17 cities in Henan Province, China, to assess PRR prevalence and Fusarium species distribution. A total of 1131 Fusarium isolates were identified based on the morphological characters and phylogenetic analyses and classified into 11 recognized Fusarium species: F. solani (56.06%), F. oxysporum (20.87%), F. neocosmosporiellum (13.62%), F. proliferatum (4.69%), F. acuminatum (1.33%), F. commune (1.15%), F. graminearum (1.06%), F. pseudograminearum (0.35%), F. ipomoeae (0.35%), F. lacertarum (0.26%), and F. armeniacum (0.26%). Pathogenicity assessments showed that all 11 Fusarium species were capable of causing PRR, with F. solani exhibiting the highest isolation frequency and widespread distribution in all areas. Furthermore, the four Fusarium species (F. solani, F. oxysporum, F. neocosmosporiellum, and F. proliferatum) were highly sensitive to the six fungicides, including prochloraz (EC50 values of 0.02 ± 0.00~0.06 ± 0.01 mg/L), pydiflumetofen (EC50 values of 0.31 ± 0.07~0.67 ± 0.06 mg/L), tetramycin (EC50 values of 0.11 ± 0.02~0.58 ± 0.08 mg/L), tebuconazole (EC50 values of 0.26 ± 0.07~0.65 ± 0.10 mg/L), prothioconazole (EC50 values of 1.14 ± 0.16~3.15 ± 0.81 mg/L), and difenoconazole (EC50 values of 0.62 ± 0.12~3.58 ± 0.76 mg/L). This comprehensive study is the first systematic documentation on the prevalence, virulence, and fungicide sensitivity of PRR pathogens in Henan Province. The findings of the current study will provide a theoretical basis for the effective management of peanut root rot in Henan, China. Full article
Show Figures

Figure 1

24 pages, 7044 KiB  
Article
Genomics and Transcriptomics of 3ANX (NX-2) and NX (NX-3) Producing Isolates of Fusarium graminearum
by Philip L. Walker, Sean Walkowiak, Srinivas Sura, E. RoTimi Ojo and Maria A. Henriquez
Toxins 2025, 17(6), 284; https://doi.org/10.3390/toxins17060284 - 5 Jun 2025
Viewed by 666
Abstract
Fusarium head blight (FHB) is an important fungal disease caused by Fusarium graminearum and other Fusarium spp., resulting in significant yield losses across cereal grains. Recently identified F. graminearum isolates in Canada, capable of producing type A trichothecene mycotoxins 3ANX (NX-2, 7-α hydroxy,15-deacetylcalonectrin) [...] Read more.
Fusarium head blight (FHB) is an important fungal disease caused by Fusarium graminearum and other Fusarium spp., resulting in significant yield losses across cereal grains. Recently identified F. graminearum isolates in Canada, capable of producing type A trichothecene mycotoxins 3ANX (NX-2, 7-α hydroxy,15-deacetylcalonectrin) and NX (NX-3, 7-α hydroxy, 3,15-dideacetylcalonectrin), demonstrated high levels of genetic diversity. While recent studies have detected this genetic and chemical diversity, little is known of the underlying molecular mechanisms and processes influenced by these distinct chemotypes and regional populations. In the current study, we used an -omics approach coupled with high-resolution mass spectrometry to characterize twenty F. graminearum isolates collected from five distinct regions across Manitoba. These data identified regional F. graminearum populations within Manitoba that demonstrate distinct genomic variation and patterns of gene expression, particularly within pathogenicity-associated processes. Further, we identified genetic variation and differential expression between isolates showing high and low levels of pathogenicity, allowing for the identification of previously characterized and novel putative pathogenicity factors. Lastly, we detected the production of 3ANX and/or NX mycotoxins within the majority of our twenty characterized F. graminearum isolates, suggesting the 3ANX chemotype may be more prevalent than previously expected in Canada. Ultimately, these findings highlight the diversity of F. graminearum across Manitoba and, more importantly, uncover specific genomic regions and candidate pathogenicity factors influenced by this diversity. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

19 pages, 11326 KiB  
Article
A Novel Plate Compartment–Confrontation Method Discovered That Volatile Organic Compounds Produced by Saccharomyces cerevisiae Inhibit Botrytis cinerea and Fusarium graminearum
by Ying Meng, Jing Wang, Hui Xu, Yaqi Yu and Yongheng Liang
J. Fungi 2025, 11(6), 418; https://doi.org/10.3390/jof11060418 - 29 May 2025
Viewed by 630
Abstract
Biological control of plant diseases is important for crop production. Botrytis cinerea and Fusarium graminearum are two common pathogenic fungi which result in great harm to crop production, processing, and storage of foodstuffs. Yeasts have unique advantages to be the focus of biological [...] Read more.
Biological control of plant diseases is important for crop production. Botrytis cinerea and Fusarium graminearum are two common pathogenic fungi which result in great harm to crop production, processing, and storage of foodstuffs. Yeasts have unique advantages to be the focus of biological control of plant diseases through multiple mechanisms, including producing volatile organic compounds (VOCs) with inhibitory effect. However, the discontinuous display of inhibitory effect by yeast VOCs on pathogenic fungi is restricted by the conventional confrontation method, and the inhibitory mechanisms are unclear. We developed a new method to detect the inhibitory effect of Saccharomyces cerevisiae (yeast) VOCs on B. cinerea and F. graminearum. Our results showed that the yeast VOCs inhibited the growth and development of B. cinerea and F. graminearum and the strength of the inhibitory effect is positively related to the yeast inoculation amount. We confirmed the inhibition effect of ethyl acetic, one of the main yeast VOCs, on both pathogenic fungi. We further found that the deletion or overexpression of the ethyl acetic synthesis-related genes (ATF1 and/or ATF2) did not change the inhibitory effect much. The overexpression of ATF1 changed the main composition of VOCs. One of the changed VOCs, phenethyl acetic, even had stronger inhibitory effect than ethyl acetic on F. graminearum when they were added alone. These results suggest that the inhibitory effect of yeast VOCs on pathogenic fungi is a complex module. The lonely added individual component of VOCs may inhibit the growth and development of pathogenic fungi, while the partial alternation of VOC composition through gene modification may not be enough to change the total inhibitory effect. Full article
(This article belongs to the Section Fungal Pathogenesis and Disease Control)
Show Figures

Figure 1

15 pages, 8520 KiB  
Article
Natural Product-Based Fungicides: Design, Synthesis, and Antifungal Activity of Rhein Derivatives Against Phytopathogenic Fungi
by Xiang Zhu, Li Li, Jinchao Shi, Yao Tian, Guoqing Mao, Xiaojun Zhang, Linhua Yu and Junkai Li
Agronomy 2025, 15(5), 1148; https://doi.org/10.3390/agronomy15051148 - 8 May 2025
Viewed by 557
Abstract
With the long-term use of certain types of traditional chemical fungicides, phytopathogen resistance and environmental pollution have made the application of these fungicides face unprecedented challenges. Therefore, using the low toxicity and structural diversity of natural product analogs to develop alternatives has become [...] Read more.
With the long-term use of certain types of traditional chemical fungicides, phytopathogen resistance and environmental pollution have made the application of these fungicides face unprecedented challenges. Therefore, using the low toxicity and structural diversity of natural product analogs to develop alternatives has become an important tactic to improve control efficiency and reduce pathogen resistance, as well as environmental risks. In this study, thirty-eight rhein derivatives were synthesized after our continuous efforts aiming to discover new anthraquinone-based antifungal agents. Their structures were characterized by 1H-NMR, 13C-NMR and high-resolution mass spectrometry. The antifungal activities of rhein derivatives were first evaluated against four phytopathogenic fungi. The bioassay results indicated that most derivatives exhibited good antifungal activity against Rhizoctonia solani at 0.5 mM in vitro. Compounds 3e, 3j, 4a, 9d and 10f showed potent activities against R. solani, with inhibition rates over 50% at a low concentration of 0.2 mM in vitro. In particular, compound 10a strongly inhibited the growth of Sclerotinia sclerotiorum, Fusarium graminearum and P. capsica, with EC50 values of 0.079 mM, 0.082 mM and 0.134 mM, respectively, which are comparable to the commercial biofungicide phenazine-1-carboxylic acid (PCA). An in vivo study showed that 10a presented excellent curative and protective activities (92.1% and 91.1%, 0.2 mM) against wheat powdery mildew. The phytotoxicity results indicated that rhein amino acid derivatives could significantly eliminate phytotoxicity to rice and rape and could be safely used in these two crops. The resistance development assay indicated that these rhein derivatives could effectively avoid the risk of resistance development in these two strains of fungi, R. solani and S. sclerotiorum. In conclusion, rhein derivatives can be used for the development of potential agricultural fungicides. Full article
Show Figures

Figure 1

18 pages, 3937 KiB  
Article
Alteration of the Rhizosphere Microbiota and Growth Performance of Barley Infected with Fusarium graminearum and Screening of an Antagonistic Bacterial Strain (Bacillus amyloliquefaciens)
by Yang Fu, Jing Luan, Jialei Shi, Wenzhu Tang, Xianzhen Li, Zhimin Yu and Fan Yang
Microorganisms 2025, 13(5), 1010; https://doi.org/10.3390/microorganisms13051010 - 27 Apr 2025
Viewed by 582
Abstract
Fusarium graminearum is one of the most important pathogenic fungi with a wide range of plant and animal hosts. This study investigated the effects of F. graminearum infection on the rhizosphere microbiota and growth of two barley (Hordeum vulgare L.) cultivars, Baudin [...] Read more.
Fusarium graminearum is one of the most important pathogenic fungi with a wide range of plant and animal hosts. This study investigated the effects of F. graminearum infection on the rhizosphere microbiota and growth of two barley (Hordeum vulgare L.) cultivars, Baudin and Kenpi 7, and explored microbiota transplantation as a strategy to enhance disease resistance. By exchanging surface microbiotas between varieties and analyzing rhizosphere bacterial communities using 16S rRNA sequencing, researchers observed that F. graminearum infection increased bacterial diversity and abundance, especially in Baudin barley. Growth indicators (root length, plant height, fresh/dry mass) also exhibited that Baudin barley showed stronger resistance. Functional analysis underscored that the microbial community composition of Baudin barley promoted metabolic pathways related to plant resilience and was associated with improved seedling health. In contrast, Kenpi 7 barley showed weaker resistance, emphasizing the role of seed-specific microbiotas in pathogen defense. An effective antagonistic strain, Bacillus amyloliquefaciens B1, was isolated from Baudin barley, and its inhibition rate against F. graminearum was 80%. The results showed that microbiota transplantation enhanced the disease resistance of low-diversity seeds, and identified B. amyloliquefaciens B1 as a promising biocontrol agent, providing a potential application for sustainable agriculture and reducing dependence on chemical fungicides. This study highlights the importance of seed-associated microbial communities in plant–pathogen interactions and provides a basis for the development of microbiota-based strategies to mitigate crop diseases. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

15 pages, 5147 KiB  
Article
Molecular Characterization of Acyl-CoA Oxidase (ACX) Family Genes in Maize Reveals Their Role in Disease Resistance
by Ruobing He, Wenxiao Ma, Fan Zhou, Hongzhe Cao, Kang Zhang, Jingao Dong and Jihong Xing
Genes 2025, 16(5), 486; https://doi.org/10.3390/genes16050486 - 25 Apr 2025
Viewed by 542
Abstract
Background: Acyl-CoA oxidase (ACX), a ubiquitous eukaryotic enzyme, catalyzes the initial steps of fatty acid β oxidation and plays an important role in the biosynthesis of jasmonic acid (JA). At present, no studies have been reported on ACX family members of maize and [...] Read more.
Background: Acyl-CoA oxidase (ACX), a ubiquitous eukaryotic enzyme, catalyzes the initial steps of fatty acid β oxidation and plays an important role in the biosynthesis of jasmonic acid (JA). At present, no studies have been reported on ACX family members of maize and their function in disease resistance. Objectives: This study aims to lay a foundation for clarifying the functions of ACX family genes in maize growth, development, and stress response by conducting a genome-wide identification of ACX family genes in maize, analyzing the expression characteristics of these genes in maize growth and development, hormone treatment and response to biotic and abiotic stresses, and exploring the functions of key genes in the maize disease resistance process through the use of mutants. Methods: ProtParam, TBtools, MEME, MEGA, and IBS tools were used to identify maize ACX family genes and analyze the physicochemical properties of their proteins, chromosome location, phylogenetic relationships among family members, conserved domains, conserved motifs, and cis-acting elements. Meanwhile, the expression patterns of maize ACX family genes in different tissues and their expression patterns under abiotic and biotic stresses were studied by using the data from the maize GDB database and qRT-PCR technology. Moreover, the mutants of ZmACX1, ZmACX3, ZmACX4, and ZmACX5 genes were obtained, and the disease resistance of the mutants was detected to further determine the functions of ACX genes in the maize disease resistance process. This study identified maize ACX family genes using bioinformatics methods. Results: We discovered that six ACX genes in the maize genome are distributed across four different chromosomes. Cluster analysis further classified these genes into three subfamilies. All maize ACX genes possess a conserved ACOX domain, and their promoter regions are enriched with cis-acting elements associated with heat stress and the plant hormone response. Under various tissue, biotic, and abiotic stress conditions, as well as treatments with methyl jasmonate (MeJA) and salicylic acid (SA), the expression levels of maize ACX family genes exhibited significant differences. Notably, the expression levels of ZmACX1, ZmACX3, ZmACX4, and ZmACX5 were significantly up-regulated following stress and pathogen infection, suggesting their involvement in maize growth, development, and disease resistance. To elucidate the function of these genes in maize disease resistance, the resistance of ZmACX1, ZmACX3, ZmACX4, and ZmACX5 mutants to Cochliobolus heterostrophus, Curvularia lunata, and Fusarium graminearum were further examined. The results revealed that compared to the wild-type B73, the lesion area of the mutants was significantly increased after inoculation with pathogens. This directly demonstrated the crucial role of these genes in maize resistance to C. heterostrophus, C. lunata, and F. graminearum. Conclusions: In summary, this study systematically identified maize ACX family genes, and thoroughly investigated their expression patterns and functions in maize disease resistance. Our findings provide valuable insights into the comprehensive understanding of the function and mechanism of maize ACX family genes. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop