Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = Exoskeleton suit

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 2112 KiB  
Review
From Sensors to Care: How Robotic Skin Is Transforming Modern Healthcare—A Mini Review
by Yuting Zhu, Wendy Moyle, Min Hong and Kean Aw
Sensors 2025, 25(9), 2895; https://doi.org/10.3390/s25092895 - 3 May 2025
Cited by 1 | Viewed by 1422
Abstract
In recent years, robotics has made notable progress, becoming an essential component of daily life by facilitating complex tasks and enhancing human experiences. While most robots have traditionally featured hard surfaces, the growing demand for more comfortable and safer human–robot interactions has driven [...] Read more.
In recent years, robotics has made notable progress, becoming an essential component of daily life by facilitating complex tasks and enhancing human experiences. While most robots have traditionally featured hard surfaces, the growing demand for more comfortable and safer human–robot interactions has driven the development of soft robots. One type of soft robot, which incorporates innovative skin materials, transforms rigid structures into more pliable and adaptive forms, making them better suited for interacting with humans. Especially in healthcare and rehabilitation, robotic skin technology has gained substantial attention, offering transformative solutions for improving the functionality of prosthetics, exoskeletons, and companion robots. Although replicating the complex sensory functions of human skin remains a challenge, ongoing research in soft robotics focuses on developing sensors that mimic the softness and tactile sensitivity necessary for effective interaction. This review provides a narrative analysis of current trends in robotic skin development, specifically tailored for healthcare and rehabilitation applications, including skin types of sensor technologies, materials, challenges, and future research directions in this rapidly developing field. Full article
(This article belongs to the Special Issue Advanced Sensors Technologies for Soft Robotic System)
Show Figures

Figure 1

15 pages, 13291 KiB  
Article
3D Hand Motion Generation for VR Interactions Using a Haptic Data Glove
by Sang-Woo Seo, Woo-Sug Jung and Yejin Kim
Multimodal Technol. Interact. 2024, 8(7), 62; https://doi.org/10.3390/mti8070062 - 15 Jul 2024
Cited by 2 | Viewed by 2421
Abstract
Recently, VR-based training applications have become popular and promising, as they can simulate real-world situations in a safe, repeatable, and cost-effective way. For immersive simulations, various input devices have been designed and proposed to increase the effectiveness of training. In this study, we [...] Read more.
Recently, VR-based training applications have become popular and promising, as they can simulate real-world situations in a safe, repeatable, and cost-effective way. For immersive simulations, various input devices have been designed and proposed to increase the effectiveness of training. In this study, we developed a novel device that generates 3D hand motion data and provides haptic force feedback for VR interactions. The proposed device can track 3D hand positions using a combination of the global position estimation of ultrasonic sensors and the hand pose estimation of inertial sensors in real time. For haptic feedback, shape–memory alloy (SMA) actuators were designed to provide kinesthetic forces and an efficient power control without an overheat problem. Our device improves upon the shortcomings of existing commercial devices in tracking and haptic capabilities such that it can track global 3D positions and estimate hand poses in a VR space without using an external suit or tracker. For better flexibility in handling and feeling physical objects compared to exoskeleton-based devices, we introduced an SMA-based actuator to control haptic forces. Overall, our device was designed and implemented as a lighter and less bulky glove which provides comparable accuracy and performance in generating 3D hand motion data for a VR training application (i.e., the use of a fire extinguisher), as demonstrated in the experimental results. Full article
(This article belongs to the Special Issue 3D User Interfaces and Virtual Reality)
Show Figures

Figure 1

22 pages, 7567 KiB  
Article
A Framework for Modeling, Optimization, and Musculoskeletal Simulation of an Elbow–Wrist Exosuit
by Ali KhalilianMotamed Bonab, Domenico Chiaradia, Antonio Frisoli and Daniele Leonardis
Robotics 2024, 13(4), 60; https://doi.org/10.3390/robotics13040060 - 6 Apr 2024
Cited by 4 | Viewed by 3138
Abstract
The light weight and compliance of exosuits are valuable benefits not present rigid exoskeleton devices, yet these intriguing features make it challenging to properly model and simulate their interaction with the musculoskeletal system. Tendon-driven exosuits adopt an electrical motor combined with pulleys and [...] Read more.
The light weight and compliance of exosuits are valuable benefits not present rigid exoskeleton devices, yet these intriguing features make it challenging to properly model and simulate their interaction with the musculoskeletal system. Tendon-driven exosuits adopt an electrical motor combined with pulleys and cable transmission in the actuation stage. An important aspect of the design of these systems for the load transfer efficacy and comfort of the user is the anchor point positioning. In this paper, we propose a framework, whose first purpose is as a design methodology for the synthesis of an exosuit device, achieved by optimizing the anchor point location. The optimization procedure finds the best 3D position of the anchor points based on the interaction forces between the exosuit and the upper arm. The computation of the forces is based on the combination of a mathematical model of a wrist–elbow exosuit and a dynamic model of the upper arm. Its second purpose is the simulation of the kinematic and physiological effects of the interaction between the arm, the exosuit, and the complex upper limb musculoskeletal system. It offers insights into muscular and exoskeleton loading during operation. The presented experiments involve the development and validation of personalized musculoskeletal models, with kinematic, anthropometric, and electromyographic data measured in a load-lifting task. Simulation of the exosuit operation—coupled with the musculoskeletal model—showed the efficacy of the suit in assisting the wrist and elbow muscles and provided interesting highlights about the impact of the assistance on shoulder muscles. Finally, we provide a possible design of an elbow and wrist exosuit based on the optimized results. Full article
(This article belongs to the Special Issue AI for Robotic Exoskeletons and Prostheses)
Show Figures

Figure 1

26 pages, 1287 KiB  
Systematic Review
A State-of-the-Art of Exoskeletons in Line with the WHO’s Vision on Healthy Aging: From Rehabilitation of Intrinsic Capacities to Augmentation of Functional Abilities
by Rebeca Alejandra Gavrila Laic, Mahyar Firouzi, Reinhard Claeys, Ivan Bautmans, Eva Swinnen and David Beckwée
Sensors 2024, 24(7), 2230; https://doi.org/10.3390/s24072230 - 30 Mar 2024
Cited by 7 | Viewed by 5299
Abstract
The global aging population faces significant health challenges, including an increasing vulnerability to disability due to natural aging processes. Wearable lower limb exoskeletons (LLEs) have emerged as a promising solution to enhance physical function in older individuals. This systematic review synthesizes the use [...] Read more.
The global aging population faces significant health challenges, including an increasing vulnerability to disability due to natural aging processes. Wearable lower limb exoskeletons (LLEs) have emerged as a promising solution to enhance physical function in older individuals. This systematic review synthesizes the use of LLEs in alignment with the WHO’s healthy aging vision, examining their impact on intrinsic capacities and functional abilities. We conducted a comprehensive literature search in six databases, yielding 36 relevant articles covering older adults (65+) with various health conditions, including sarcopenia, stroke, Parkinson’s Disease, osteoarthritis, and more. The interventions, spanning one to forty sessions, utilized a range of LLE technologies such as Ekso®, HAL®, Stride Management Assist®, Honda Walking Assist®, Lokomat®, Walkbot®, Healbot®, Keeogo Rehab®, EX1®, overground wearable exoskeletons, Eksoband®, powered ankle–foot orthoses, HAL® lumbar type, Human Body Posturizer®, Gait Enhancing and Motivation System®, soft robotic suits, and active pelvis orthoses. The findings revealed substantial positive outcomes across diverse health conditions. LLE training led to improvements in key performance indicators, such as the 10 Meter Walk Test, Five Times Sit-to-Stand test, Timed Up and Go test, and more. Additionally, enhancements were observed in gait quality, joint mobility, muscle strength, and balance. These improvements were accompanied by reductions in sedentary behavior, pain perception, muscle exertion, and metabolic cost while walking. While longer intervention durations can aid in the rehabilitation of intrinsic capacities, even the instantaneous augmentation of functional abilities can be observed in a single session. In summary, this review demonstrates consistent and significant enhancements in critical parameters across a broad spectrum of health conditions following LLE interventions in older adults. These findings underscore the potential of LLE in promoting healthy aging and enhancing the well-being of older adults. Full article
(This article belongs to the Special Issue Intelligent Sensors and Robots for Ambient Assisted Living)
Show Figures

Figure 1

13 pages, 837 KiB  
Article
Investigation of the Effectiveness of the Robotic ReStore Soft Exoskeleton in the Development of Early Mobilization, Walking, and Coordination of Stroke Patients: A Randomized Clinical Trial
by Szilvia Kóra, Adrienn Bíró, Nándor Prontvai, Mónika Androsics, István Drotár, Péter Prukner, Tamás Haidegger, Klaudia Széphelyi and József Tollár
Robotics 2024, 13(3), 44; https://doi.org/10.3390/robotics13030044 - 5 Mar 2024
Cited by 3 | Viewed by 5711
Abstract
Medical robotics nowadays can prevent, treat, or alleviate numerous severe conditions, including the dire consequences of stroke. Our objective was to determine the effect of employing a robotic soft exoskeleton in therapy on the development of the early mobilization, gait, and coordination in [...] Read more.
Medical robotics nowadays can prevent, treat, or alleviate numerous severe conditions, including the dire consequences of stroke. Our objective was to determine the effect of employing a robotic soft exoskeleton in therapy on the development of the early mobilization, gait, and coordination in stroke patients. The ReStore™ Soft Exo-Suit, a wearable exosuit developed by a leading company with exoskeleton technology, was utilized. It is a powered, lightweight device intended for use in stroke rehabilitation for people with lower limb disability. We performed a randomized clinical intervention, using a before–after trial design in a university hospital setting. A total of 48 patients with a history of stroke were included, of whom 39 were randomized and 30 completed the study. Interventions: Barthel Index and modified Rankin scale (mRS) patients were randomly assigned to a non-physical intervention control (n = 9 of 39 completed, 30 withdrew before baseline testing), or to a high-intensity agility program (15 sessions, 5 weeks, n = 30 completed). The main focus of assessment was on the Modified Rankin Scale. Additionally, we evaluated secondary factors including daily life functionality, five dimensions of health-related quality of life, the Beck depression inventory, the 6 min walk test (6MWT), the Berg Balance Scale (BBS), and static balance (center of pressure). The Robot-Assisted Gait Therapy (ROB/RAGT) program led to significant improvements across various measures, including a 37% improvement in Barthel Index scores, a 56% increase in 10 m walking speed, and a 68% improvement in 6 min walking distance, as well as notable enhancements in balance and stability. Additionally, the intervention group demonstrated significant gains in all these aspects compared to the control group. In conclusion, the use of robotic therapy can be beneficial in stroke rehabilitation. These devices support the restoration and improvement of movement in various ways and contribute to restoring balance and stability. Full article
(This article belongs to the Special Issue AI for Robotic Exoskeletons and Prostheses)
Show Figures

Figure 1

16 pages, 4669 KiB  
Article
Soft Finger Rehabilitation Exoskeleton of Biomimetic Dragonfly Abdominal Ventral Muscles: Center Tendon Pneumatic Bellows Actuator
by Dehao Duanmu, Xiaodong Li, Wei Huang and Yong Hu
Biomimetics 2023, 8(8), 614; https://doi.org/10.3390/biomimetics8080614 - 15 Dec 2023
Cited by 8 | Viewed by 3087
Abstract
The development of soft robotics owes much to the field of biomimetics, where soft actuators predominantly mimic the movement found in nature. In contrast to their rigid counterparts, soft robots offer superior safety and human–machine interaction comfort, particularly in medical applications. However, when [...] Read more.
The development of soft robotics owes much to the field of biomimetics, where soft actuators predominantly mimic the movement found in nature. In contrast to their rigid counterparts, soft robots offer superior safety and human–machine interaction comfort, particularly in medical applications. However, when it comes to the hand rehabilitation exoskeletons, the soft devices have been limited by size and material constraints, unable to provide sufficient tensile strength for patients with high muscle tension. In this paper, we drew inspiration from the muscle structure found in the tail of dragonflies and designed a novel central tendon-based bellows actuator. The experimental results demonstrated that the central tendon-based bellows actuator significantly outperforms conventional pneumatic bellows actuators in terms of mechanical output. The tensile strength of the central tendon-based bellows actuator exceeded that of pneumatic actuators more than tenfold, while adding only 2 g to the wearable weight. This finding suggests that the central tendon-based bellows actuator is exceptionally well-suited for applications demanding substantial pulling force, such as in the field of exoskeleton robotics. With tensile strength exceeding that of pneumatic bellows actuators, this biomimetic design opens new avenues for safer and more effective human–machine interaction, revolutionizing various sectors from healthcare to industrial automation. Full article
(This article belongs to the Special Issue Biomimetic Soft Robotics 2.0)
Show Figures

Figure 1

21 pages, 13554 KiB  
Article
A Bimodal Hydrostatic Actuator for Robotic Legs with Compliant Fast Motion and High Lifting Force
by Alex Lecavalier, Jeff Denis, Jean-Sébastien Plante and Alexandre Girard
Actuators 2023, 12(12), 452; https://doi.org/10.3390/act12120452 - 7 Dec 2023
Cited by 1 | Viewed by 2599
Abstract
Robotic legs, such as for lower-limb exoskeletons and prostheses, have bimodal operation: (1) within a task, like for walking (high speed and low force for the swing phase and low speed and higher force when the leg bears the weight of the system); [...] Read more.
Robotic legs, such as for lower-limb exoskeletons and prostheses, have bimodal operation: (1) within a task, like for walking (high speed and low force for the swing phase and low speed and higher force when the leg bears the weight of the system); (2) between tasks, like between walking and sit–stand motions. Sizing a traditional single-ratio actuation system for such extremum operations leads to oversized heavy electric motor and poor energy efficiency at low speeds. This paper explores a bimodal actuation concept where a hydrostatic transmission is dynamically reconfigured using custom motorized ball valves to suit the requirements of a robotic leg with a smaller and more efficient actuation system. First, this paper presents an analysis of the mass and efficiency advantages of the bimodal solution over a baseline solution, for three operating points: high-speed, high-force, and braking modes. Second, an experimental demonstration with a custom-built actuation system and a robotic leg test bench is presented. Control challenges regarding dynamic transition between modes are discussed and a control scheme solution is proposed and tested. The results show the following findings: (1) The actuator prototype can meet the requirements of a leg bimodal operation in terms of force, speed, and compliance while using smaller motors than a baseline solution. (2) The proposed operating principle and control schemes allow for smooth and fast mode transitions. (3) Motorized ball valves exhibit a good trade-off between size, speed, and flow restriction. (4) Motorized ball valves are a promising way to dynamically reconfigure a hydrostatic transmission while allowing energy to be dissipated. Full article
(This article belongs to the Special Issue Actuation Solutions for Wearable Robots)
Show Figures

Figure 1

23 pages, 9270 KiB  
Article
Multicriteria Optimization of Lower Limb Exoskeleton Mechanism
by Sayat Ibrayev, Arman Ibrayeva, Ayaulym Rakhmatulina, Aizhan Ibrayeva, Bekzat Amanov and Nurbibi Imanbayeva
Appl. Sci. 2023, 13(23), 12781; https://doi.org/10.3390/app132312781 - 28 Nov 2023
Cited by 4 | Viewed by 1563
Abstract
Typical leg exoskeletons employ open-loop kinematic chains with motors placed directly on movable joints; while this design offers flexibility, it leads to increased costs and heightened control complexity due to the high number of degrees of freedom. The use of heavy servo-motors to [...] Read more.
Typical leg exoskeletons employ open-loop kinematic chains with motors placed directly on movable joints; while this design offers flexibility, it leads to increased costs and heightened control complexity due to the high number of degrees of freedom. The use of heavy servo-motors to handle torque in active joints results in complex and bulky designs, as highlighted in the existing literature. In this analytical study, we introduced a novel synthesis method with analytical solutions provided for synthesizing the lower-limb exoskeleton. Furthermore, we proposed a mathematical model of multicriteria optimization; as a result, we obtained several lower-limb exoskeleton mechanisms comprising only six links, well-suited to the human anatomical structure, exhibit superior trajectory accuracy, efficient force transmission, satisfactory step height, and having internal transfer segment of the foot. Full article
Show Figures

Figure 1

21 pages, 15681 KiB  
Article
Tracking Control for a Lower Extremity Exoskeleton Based on Adaptive Dynamic Programing
by Qiying Su, Zhongcai Pei and Zhiyong Tang
Biomimetics 2023, 8(4), 353; https://doi.org/10.3390/biomimetics8040353 - 9 Aug 2023
Cited by 1 | Viewed by 2025
Abstract
The utilization of lower extremity exoskeletons has witnessed a growing presence across diverse domains such as the military, medical treatment, and rehabilitation. This paper introduces a novel design of a lower extremity exoskeleton specifically tailored for individuals engaged in heavy object carrying tasks. [...] Read more.
The utilization of lower extremity exoskeletons has witnessed a growing presence across diverse domains such as the military, medical treatment, and rehabilitation. This paper introduces a novel design of a lower extremity exoskeleton specifically tailored for individuals engaged in heavy object carrying tasks. The exoskeleton incorporates an impressive 12 degrees of freedom (DOF), with four of them being effectively controlled through hydraulic cylinders. To achieve optimal control of this intricate lower extremity exoskeleton system, the authors propose an adaptive dynamic programming (ADP) algorithm. Several crucial components are established to implement this control scheme. These include the formulation of the state equation for the lower extremity exoskeleton system, which is well-suited for the ADP algorithm. Additionally, a corresponding performance index function based on the tracking error is devised, along with the game algebraic Riccati equation. By employing the value iteration ADP scheme, the lower extremity exoskeleton demonstrates highly effective tracking control. This research not only highlights the potential of the proposed control approach but also showcases its ability to enhance the overall performance and functionality of lower extremity exoskeletons, particularly in scenarios involving heavy object carrying. Overall, this study contributes to the advancement of lower extremity exoskeleton technology and offers valuable insights into the application of ADP algorithms for achieving precise and efficient control in demanding tasks. Full article
(This article belongs to the Special Issue Bionic Technology – Robotic Exoskeletons and Prostheses)
Show Figures

Figure 1

15 pages, 2553 KiB  
Article
Fabric-Based, Pneumatic Exosuit for Lower-Back Support in Manual-Handling Tasks
by Amit Nirmal Cuttilan, Rainier F. Natividad and Raye Chen-Hua Yeow
Actuators 2023, 12(7), 273; https://doi.org/10.3390/act12070273 - 3 Jul 2023
Cited by 6 | Viewed by 2913
Abstract
Lower-back pain (LBP) is a major cause of occupational disability and morbidity. This study investigates the effectiveness of a fabric-based pneumatic exosuit in reducing discomfort and lumbar muscle activation in healthy individuals who are performing manual-handling tasks. The suit combines the comfort of [...] Read more.
Lower-back pain (LBP) is a major cause of occupational disability and morbidity. This study investigates the effectiveness of a fabric-based pneumatic exosuit in reducing discomfort and lumbar muscle activation in healthy individuals who are performing manual-handling tasks. The suit combines the comfort of soft exosuits and the support of rigid exoskeletons. Ten healthy subjects performed a circuit of lifting tasks, simulating manual-handling work, with and without AireLevate support. We assessed the comfort levels and ease of task completion via a questionnaire after each manual-handling task. There was no difference in spinal range of motion, local discomfort, or general discomfort of activities with or without the AireLevate. There was a statistically significant reduction in muscle activation of the erector spinae at the L-5 level with AireLevate support (p < 0.02). This study demonstrates the exosuit’s ability in reducing lower-back muscle activation during manual-handling tasks, while maintaining comfort and mobility. Practitioner summary: We developed a soft exosuit which was shown to significantly reduce the muscle action of the erector muscles of the lumbar spine. In addition, participants perceived that the suit was easy to use and did not limit manual-handling tasks. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

10 pages, 4283 KiB  
Article
Design Methodology and Experimental Study of a Lower Extremity Soft Exosuit
by Long He, Cheng Xu and Xiaorong Guan
Electronics 2023, 12(11), 2502; https://doi.org/10.3390/electronics12112502 - 1 Jun 2023
Cited by 4 | Viewed by 2433
Abstract
Flexibility and light weight have become the development trends in the field of exoskeleton research. With high movement flexibility, low movable inertia and excellent wearable comfort, such a type of system is gradually becoming an exclusive candidate for applications such as military defense, [...] Read more.
Flexibility and light weight have become the development trends in the field of exoskeleton research. With high movement flexibility, low movable inertia and excellent wearable comfort, such a type of system is gradually becoming an exclusive candidate for applications such as military defense, rehabilitation training and industrial production. In this paper, aiming at assisting the walking of human lower limbs, a soft exosuit is investigated and developed based on the considerations of fabric structure, sensing system, cable-driven module, and control strategy, etc. Evaluation experiments are also conducted to verify its effectiveness. A fabric optimization of the flexible suit is performed to realize the tight bond between human and machine. Through the configuration of sensor nodes, the motion intention perception system is constructed for the lower limb exosuit. A flexible actuation unit with a Bowden cable is designed to improve the efficiency of force transmission. In addition, a position control strategy based on division of the gait phase is applied to achieve active assistance during plantar flexion of the ankle joint. Finally, to verify the assistive effectiveness of the proposed lower extremity exosuit, experiments including a physiological metabolic test and a muscle activation test are conducted. The experiment results show that the exosuit proposed in this paper can effectively reduce the metabolic consumption and muscle output of the human body. The design and methodology proposed in this paper can be extended to similar application scenarios. Full article
Show Figures

Figure 1

14 pages, 1929 KiB  
Review
A Review of Rehabilitative and Assistive Technologies for Upper-Body Exoskeletal Devices
by Emilly Hays, Jack Slayton, Gary Tejeda-Godinez, Emily Carney, Kobe Cruz, Trevor Exley and Amir Jafari
Actuators 2023, 12(4), 178; https://doi.org/10.3390/act12040178 - 20 Apr 2023
Cited by 11 | Viewed by 5804
Abstract
This journal review article focuses on the use of assistive and rehabilitative exoskeletons as a new opportunity for individuals with diminished mobility. The article aims to identify gaps and inconsistencies in state-of-the-art assistive and rehabilitative devices, with the overall goal of promoting innovation [...] Read more.
This journal review article focuses on the use of assistive and rehabilitative exoskeletons as a new opportunity for individuals with diminished mobility. The article aims to identify gaps and inconsistencies in state-of-the-art assistive and rehabilitative devices, with the overall goal of promoting innovation and improvement in this field. The literature review explores the mechanisms, actuators, and sensing procedures employed in each application, specifically focusing on passive shoulder supports and active soft robotic actuator gloves. Passive shoulder supports are an excellent option for bearing heavy loads, as they enable the load to be evenly distributed across the shoulder joint. This, in turn, reduces stress and strain around the surrounding muscles. On the other hand, the active soft robotic actuator glove is well suited for providing support and assistance by mimicking the characteristics of human muscle. This review reveals that these devices improve the overall standard of living for those who experience various impairments but also encounter limitations requiring redress. Overall, this article serves as a valuable resource for individuals working in the field of assistive and rehabilitative exoskeletons, providing insight into the state of the art and potential areas for improvement. Full article
(This article belongs to the Special Issue Soft Robotics in Biomedical Application)
Show Figures

Figure 1

16 pages, 2303 KiB  
Article
On the Application of Support Vector Method for Predicting the Current Response of MR Dampers Control Circuit
by Bogdan Sapiński, Janusz Gołdasz, Łukasz Jastrzębski, Michał Awtoniuk and Robert Sałat
Energies 2022, 15(24), 9626; https://doi.org/10.3390/en15249626 - 19 Dec 2022
Cited by 2 | Viewed by 1638
Abstract
Magnetorheological (MR) dampers are controlled energy-dissipating devices utilizing smart fluids. They operate in a fast and valveless manner by taking advantage of the rheological properties of MR fluids. The magnitude of the response of MR fluids, when subjected to magnetic fields, is of [...] Read more.
Magnetorheological (MR) dampers are controlled energy-dissipating devices utilizing smart fluids. They operate in a fast and valveless manner by taking advantage of the rheological properties of MR fluids. The magnitude of the response of MR fluids, when subjected to magnetic fields, is of sufficient magnitude to employ them in various applications, namely, vibration damping, energy absorption, exoskeletons, etc. At the same time, predicting their response to arbitrary mechanical and electrical inputs is still a research challenge. Due to the non-linearities involved in material properties or the design of the solenoid used for activating the fluid modeling the relationships between the control circuit and the material’s response is complex. Modeling studies can be classified into two categories. The parametric approach requires the knowledge of the internal material’s properties and takes advantage of physics formulas to infer the I/O relationships present in the damper. For comparison, the non-parametric approach harnesses various data mapping techniques to describe the device’s behavior. While the latter is more suited for design studies, the former seems ideal for control algorithm prototyping and the like. In this study, based on the so-called Support Vector Method (SVM), the authors develop a non-parametric model of the control circuit of an exemplary rotary MR damper. To the best of the author’s knowledge, it is the first attempt at an SVM application for MR dampers’ control circuit modeling. Using the acquired experimental data, the I/O relationships are inferred using the SVM algorithm, and its performance is verified across a wide range of excitation frequencies. The obtained results are satisfactory, and the current response of the MR damper is well-predicted. The model performance shows the potential for incorporating it into model-based prototyping and designing of MR control systems. Full article
(This article belongs to the Special Issue Energy Problems in Control and Robotics Systems)
Show Figures

Figure 1

15 pages, 1920 KiB  
Article
Revisiting Alloy Design of Al-Base Alloys for Potential Orthotics and Prosthetics Applications
by Muhammad Farzik Ijaz and Faraz Hussain Hashmi
Crystals 2022, 12(12), 1699; https://doi.org/10.3390/cryst12121699 - 23 Nov 2022
Cited by 3 | Viewed by 3050
Abstract
The primary objective of this research was to open a promising avenue for designing new low-cost precipitation-hardened Al base alloys in semblance with the desired mechanical properties that can be exploited in the fabrication of lightweight exoskeleton frames, prosthetics, and wheelchair components. In [...] Read more.
The primary objective of this research was to open a promising avenue for designing new low-cost precipitation-hardened Al base alloys in semblance with the desired mechanical properties that can be exploited in the fabrication of lightweight exoskeleton frames, prosthetics, and wheelchair components. In multicomponent Al-Cu-based systems (2xxx), the substitution of elements such as copper (Cu), magnesium (Mg), and akin Cu/Mg ratio are mainly manipulated to improve the mechanical strength of these alloys. Nonetheless, these kinds of alloying optimizations are not well suited from the cost and sustainability points of view. The starting point of the present work is to screen out the optimum value of the Ag/Sn ratio, which can be a potential substitute for the conventional Cu/Mg alloy ratio in Al-Cu-Mg-based ternary alloys without sacrificing its key features of mechanical properties. Based on our microstructural and mechanical results, it was found that the chemical composition and microstructure were the most important variables influencing the mechanical properties. The increase in the mechanical strength of our alloys was mainly attributed to the precipitation hardening phenomenon. Typically, at peak-aged conditions, the correlation between the mechanical and subsequent microstructural analysis revealed that the synergistic increase in Ag and Sn content in the Al-Cu-Mg-based alloy led to an improvement in the mechanical strength and its trade-offs by changing the shape and distribution of the micron-scaled second phase in the matrix. From optical microscopy and subsequent scanning electron microscopy analyses, this continuous precipitated phase in the matrix is identified as the Mg2Sn phase, which is mainly elicited from the solid-state reaction during artificial aging treatment. Indeed, the presence of suitable microstructure at the peak aged condition that has uniformly dispersed, micron-scale Mg2Sn phase proved to be very useful in blocking the dislocation glide and increasing the mechanical strength of the alloys during tensile testing. This combination of precipitation-hardening phases has not been previously observed in alloys with higher or lower Cu/Mg ratios. Among the studied alloys, the alloy having Ag/Sn ratio of 23 (and chemical composition of Al-4 Cu-0.5 Mg-0.7 Ag-0.03 Sn (wt.%)-T6 (denoted as Al-loy-4) exhibited an average ultimate tensile strength of 450 MPa which is almost four times larger than the pure aluminum having an ultimate tensile strength of 90 MPa currently used in healthcare and medical industries. Full article
(This article belongs to the Special Issue Recent Advances in Light Alloys)
Show Figures

Figure 1

12 pages, 1182 KiB  
Article
Rules-Based Real-Time Gait Event Detection Algorithm for Lower-Limb Prosthesis Users during Level-Ground and Ramp Walking
by Aliaa Gouda and Jan Andrysek
Sensors 2022, 22(22), 8888; https://doi.org/10.3390/s22228888 - 17 Nov 2022
Cited by 9 | Viewed by 2692
Abstract
Real-time gait event detection (GED) using inertial sensors is important for applications such as remote gait assessments, intelligent assistive devices including microprocessor-based prostheses or exoskeletons, and gait training systems. GED algorithms using acceleration and/or angular velocity signals achieve reasonable performance; however, most are [...] Read more.
Real-time gait event detection (GED) using inertial sensors is important for applications such as remote gait assessments, intelligent assistive devices including microprocessor-based prostheses or exoskeletons, and gait training systems. GED algorithms using acceleration and/or angular velocity signals achieve reasonable performance; however, most are not suited for real-time applications involving clinical populations walking in free-living environments. The aim of this study was to develop and evaluate a real-time rules-based GED algorithm with low latency and high accuracy and sensitivity across different walking states and participant groups. The algorithm was evaluated using gait data collected from seven able-bodied (AB) and seven lower-limb prosthesis user (LLPU) participants for three walking states (level-ground walking (LGW), ramp ascent (RA), ramp descent (RD)). The performance (sensitivity and temporal error) was compared to a validated motion capture system. The overall sensitivity was 98.87% for AB and 97.05% and 93.51% for LLPU intact and prosthetic sides, respectively, across all walking states (LGW, RA, RD). The overall temporal error (in milliseconds) for both FS and FO was 10 (0, 20) for AB and 10 (0, 25) and 10 (0, 20) for the LLPU intact and prosthetic sides, respectively, across all walking states. Finally, the overall error (as a percentage of gait cycle) was 0.96 (0, 1.92) for AB and 0.83 (0, 2.08) and 0.83 (0, 1.66) for the LLPU intact and prosthetic sides, respectively, across all walking states. Compared to other studies and algorithms, the herein-developed algorithm concurrently achieves high sensitivity and low temporal error with near real-time detection of gait in both typical and clinical populations walking over a variety of terrains. Full article
(This article belongs to the Collection Sensors for Gait, Human Movement Analysis, and Health Monitoring)
Show Figures

Figure 1

Back to TopTop