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Abstract: Real-time gait event detection (GED) using inertial sensors is important for applications
such as remote gait assessments, intelligent assistive devices including microprocessor-based pros-
theses or exoskeletons, and gait training systems. GED algorithms using acceleration and/or angular
velocity signals achieve reasonable performance; however, most are not suited for real-time applica-
tions involving clinical populations walking in free-living environments. The aim of this study was
to develop and evaluate a real-time rules-based GED algorithm with low latency and high accuracy
and sensitivity across different walking states and participant groups. The algorithm was evaluated
using gait data collected from seven able-bodied (AB) and seven lower-limb prosthesis user (LLPU)
participants for three walking states (level-ground walking (LGW), ramp ascent (RA), ramp descent
(RD)). The performance (sensitivity and temporal error) was compared to a validated motion capture
system. The overall sensitivity was 98.87% for AB and 97.05% and 93.51% for LLPU intact and
prosthetic sides, respectively, across all walking states (LGW, RA, RD). The overall temporal error (in
milliseconds) for both FS and FO was 10 (0, 20) for AB and 10 (0, 25) and 10 (0, 20) for the LLPU intact
and prosthetic sides, respectively, across all walking states. Finally, the overall error (as a percentage
of gait cycle) was 0.96 (0, 1.92) for AB and 0.83 (0, 2.08) and 0.83 (0, 1.66) for the LLPU intact and
prosthetic sides, respectively, across all walking states. Compared to other studies and algorithms, the
herein-developed algorithm concurrently achieves high sensitivity and low temporal error with near
real-time detection of gait in both typical and clinical populations walking over a variety of terrains.

Keywords: gait event detection; gait analysis; real-time analysis; signal processing; wearable
technology; ramp walking

1. Introduction
1.1. Overview

Gait event detection (GED), identification of key instances during a gait cycle such as
foot-strike (FS) and foot-off (FO), is important for applications involving gait assessments,
intelligent assistive devices such as microprocessor-based prostheses and exoskeletons, and
gait training systems [1,2]. In free-living environments, GED is most commonly achieved
using inertial measurement units (IMUs) which are robust, inexpensive, wearable, and com-
pact and have minimal power requirements [3]. This makes these systems highly suitable
for applications such as telerehabilitation and gait monitoring in free-living environments,
to improve diagnosis, track rehabilitation progress, or assess treatment effectiveness [4–6]; it
also makes it possible for advanced microprocessor-based assistive prosthetic and orthotic
devices to function [7]. However, for accurate and reliable in-community GED, the systems
must not only be capable of discerning the walking conditions (i.e., terrain, type of gait,
activity), but also be robust when gait is atypical and gait deviations or anomalies are
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present as in the case of clinical populations with lower limb impairments including leg
amputation, stroke, or others [8].

1.2. State of the Art, Problem, and Aims

A variety of state-of-the-art techniques have been used for IMU-based GED such as
machine learning (ML) [9,10] and rules-based algorithms [11,12]. Previous studies have
used ML-based algorithms to develop adaptable GED models suitable for specific patient
populations’ gait [13–15]. A major downside of ML approaches is the need for training
models that require large datasets that are not readily available for clinical populations [13].
Rules-based algorithms, which follow a strict logical sequence, have been used with clinical
populations having gait abnormalities [11,16–19]. However, many of those algorithms are
dependent on a pre-set threshold for gait events such as FS and FO [11,20]. For example,
Maqbool et al. used a threshold of 20 degrees/second and a rate of change of 10 degrees/s
in 80 ms for FO and FS detection, respectively. Using constant thresholds can limit the
adaptability of the algorithm to different walking states (i.e., level-ground, ramp walking,
etc.), as the amplitude of the inertial signals can vary between walking states [21]. In
addition, the threshold values may not always be translatable between clinical populations
with different gait patterns [22].

Moreover, for both ML and rules-based techniques, their implementation may be de-
pendent on large data window sizes to achieve accurate results, and therefore, they are not
well suited for real-time applications [7,23]. For example, many of the previously validated
rules-based algorithms include window sizes consisting of multiple gait cycles to determine
an appropriate threshold value to use for GED [20]. For example, in Aftab et al.’s study,
the algorithm first identifies all of the largest positive peaks to select all of the mid-swing
events before identifying other events such as FS or FO [24]. For real-time application, this
significantly increases the processing time of GED. Finally, clinical populations tend to have
more variable gait patterns than able-bodied (AB) individuals and together with different
walking states can challenge the robustness of both rules-based and ML algorithms.

Therefore, the existing overarching problem is the need for GED algorithms that
can provide accurate real-time measurement of key temporal events under a range of
walking conditions and for diverse users (i.e., clinical populations) with minimal training
or extensive personalization. As described above and further detailed in Section 4, to
the best of our knowledge, no algorithms currently exist that concurrently satisfy all of
these requirements.

In this regard, the goal of this work was to develop and test an algorithm to accurately
detect two key gait events (FS and FO) which are the basis for measuring clinically impor-
tant gait parameters such as cadence, stride time, step time, and single and double support
times. The algorithm was to (1) not require training datasets, (2) be robust across different
walking states and (3) clinical and non-clinical populations, and (4) have minimal latency
for use in real-time applications. Specifically, a rules-based algorithm was developed and
validated with both AB and lower-limb prosthesis user (LLPU) participants under several
walking states (i.e., level-ground walking, ramp ascent and descent). Based on previous
literature (see Section 4, the Discussion section) our goal was to achieve a sensitivity of
>90%, an error of <50 ms, and a latency of less than 50 ms.

2. Materials and Methods
2.1. Algorithm Design

The developed GED algorithm uses the y-axis (frontal–sagittal axis) raw angular
velocity (gyroscope) signal from a triaxial IMU placed on the lower leg below the knee
joint on each leg as in Figure 1. This location was selected as most previously reported
GED algorithms used the same or similar location, due to the convenience of strapping the
sensors on the lower legs [12,20,25]. The IMU signals were acquired using the Xsens MVN
Awinda (Xsens North America Inc., El Segundo, CA, USA), as described in Section 2.2.
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The algorithm, presented in Table 1, is based on a sequence of zero-crossings and
min/max conditions [20,26]. A window of 3 samples (i − 1, i, I + 1 samples), which is
30 ms based on a sampling frequency of 100 Hz, is used. A window size of 3 allows for
local minima and maxima to be detected. Compared to a previous study [20] which used
a 200 ms window, this reduces the processing time significantly. The zero-crossing (ZC)
state of the signal at the ith sample is always determined for each sample. The ZC state is
then stored as a binary flag (i.e., 0, 1). The first mid-swing (MSW) is detected as the first
minimum greater than abs(2) rad/s after descending ZC. This threshold was used for MSW
since it can be easily translated between participants and populations, as every participant
exhibited a MSW value much lower than −2 rad/s from the data collected. Additionally,
based on previous literature, MSW always occurs beyond 2 rad/s (~115 deg/s) [11,20]. FS
is determined as the first maximum after the first ascending ZC following MSW detection.
FO is determined as the last maximum before descending ZC. Since multiple ZCs may
occur between FS and FO, a wait time of 20 samples (200 ms) is placed after FS detection.
The average gait cycle from this study for AB and LLPU participants was 1.04 s and 1.2 s,
respectively. Since the average stance time is 60% of the gait cycle (approximately 624 ms
for AB, 720 ms for LLPU), a 200 ms delay would be well below the timing that would miss
an FO or FS gait event [27]. To ensure the correct maximum is selected, all local maxima
are stored, and once the descending ZC occurs, the last stored value is then selected as
FO. Signals are filtered using a third-order median filter, defined as a nonlinear filter in
which each output sample is computed as the median value of the input samples under the
window. This avoids the use of other filters such as Butterworth filters that are commonly
used in GED work but require a phase shift correction to allow for real-time detection [28].

Table 1. Summary of heuristic rules for GED algorithm.

Gait Event Conditions

Mid-swing (MSW)

MSW is based on:
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mum greater than abs(2) rad/s after descending ZC. This threshold was used for MSW 
since it can be easily translated between participants and populations, as every participant 
exhibited a MSW value much lower than -2 rad/s from the data collected. Additionally, 
based on previous literature, MSW always occurs beyond 2 rad/s (~115 deg/s) [11,20]. FS 
is determined as the first maximum after the first ascending ZC following MSW detection. 
FO is determined as the last maximum before descending ZC. Since multiple ZCs may 
occur between FS and FO, a wait time of 20 samples (200 ms) is placed after FS detection. 
The average gait cycle from this study for AB and LLPU participants was 1.04 s and 1.2 s, 
respectively. Since the average stance time is 60% of the gait cycle (approximately 624 ms 
for AB, 720 ms for LLPU), a 200 ms delay would be well below the timing that would miss 
an FO or FS gait event [27]. To ensure the correct maximum is selected, all local maxima 
are stored, and once the descending ZC occurs, the last stored value is then selected as 
FO. Signals are filtered using a third-order median filter, defined as a nonlinear filter in 
which each output sample is computed as the median value of the input samples under 
the window. This avoids the use of other filters such as Butterworth filters that are com-
monly used in GED work but require a phase shift correction to allow for real-time detec-
tion [28].  

Table 1. Summary of heuristic rules for GED algorithm. 

Gait Event Conditions 

Mid-swing (MSW) 

MSW is based on: 
 Find descending (positive-to-negative signal) zero crossing. 
 Search for minimum value: 
 If minimum value is <−2 rad/s, then save current value (timeframe) as MSW. 
 Else continue minimum value search. 

Foot Strike (FS) 

FS is based on: 
 MSW detection: 
 If MSW for this cycle has been detected, then proceed.  
 Else return to MSW detection search.  

 Find ascending (negative-to-positive signal) zero crossing. 
 Search for maximum value: 
 If maximum value found, then save current value (timeframe) as FS. Trigger a 200 ms time 

delay for FO detection.  
 Else return to MSW detection search. 

Foot Off (FO) 

FO is based on: 
 MSW and FS detection: 
 If MSW and FS for this cycle has been detected, then proceed.  
 Else return to MSW detection search.  

 Check 200 ms time delay is complete.  
 Search for and store all maximum values. 
 Find the next descending (positive-to-negative signal) zero crossing:  

If MSW for this cycle has been detected, then proceed.
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occur between FS and FO, a wait time of 20 samples (200 ms) is placed after FS detection. 
The average gait cycle from this study for AB and LLPU participants was 1.04 s and 1.2 s, 
respectively. Since the average stance time is 60% of the gait cycle (approximately 624 ms 
for AB, 720 ms for LLPU), a 200 ms delay would be well below the timing that would miss 
an FO or FS gait event [27]. To ensure the correct maximum is selected, all local maxima 
are stored, and once the descending ZC occurs, the last stored value is then selected as 
FO. Signals are filtered using a third-order median filter, defined as a nonlinear filter in 
which each output sample is computed as the median value of the input samples under 
the window. This avoids the use of other filters such as Butterworth filters that are com-
monly used in GED work but require a phase shift correction to allow for real-time detec-
tion [28].  

Table 1. Summary of heuristic rules for GED algorithm. 

Gait Event Conditions 

Mid-swing (MSW) 

MSW is based on: 
 Find descending (positive-to-negative signal) zero crossing. 
 Search for minimum value: 
 If minimum value is <−2 rad/s, then save current value (timeframe) as MSW. 
 Else continue minimum value search. 

Foot Strike (FS) 

FS is based on: 
 MSW detection: 
 If MSW for this cycle has been detected, then proceed.  
 Else return to MSW detection search.  

 Find ascending (negative-to-positive signal) zero crossing. 
 Search for maximum value: 
 If maximum value found, then save current value (timeframe) as FS. Trigger a 200 ms time 

delay for FO detection.  
 Else return to MSW detection search. 

Foot Off (FO) 

FO is based on: 
 MSW and FS detection: 
 If MSW and FS for this cycle has been detected, then proceed.  
 Else return to MSW detection search.  

 Check 200 ms time delay is complete.  
 Search for and store all maximum values. 
 Find the next descending (positive-to-negative signal) zero crossing:  

Else return to MSW detection search.
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occur between FS and FO, a wait time of 20 samples (200 ms) is placed after FS detection. 
The average gait cycle from this study for AB and LLPU participants was 1.04 s and 1.2 s, 
respectively. Since the average stance time is 60% of the gait cycle (approximately 624 ms 
for AB, 720 ms for LLPU), a 200 ms delay would be well below the timing that would miss 
an FO or FS gait event [27]. To ensure the correct maximum is selected, all local maxima 
are stored, and once the descending ZC occurs, the last stored value is then selected as 
FO. Signals are filtered using a third-order median filter, defined as a nonlinear filter in 
which each output sample is computed as the median value of the input samples under 
the window. This avoids the use of other filters such as Butterworth filters that are com-
monly used in GED work but require a phase shift correction to allow for real-time detec-
tion [28].  

Table 1. Summary of heuristic rules for GED algorithm. 

Gait Event Conditions 

Mid-swing (MSW) 

MSW is based on: 
 Find descending (positive-to-negative signal) zero crossing. 
 Search for minimum value: 
 If minimum value is <−2 rad/s, then save current value (timeframe) as MSW. 
 Else continue minimum value search. 

Foot Strike (FS) 

FS is based on: 
 MSW detection: 
 If MSW for this cycle has been detected, then proceed.  
 Else return to MSW detection search.  

 Find ascending (negative-to-positive signal) zero crossing. 
 Search for maximum value: 
 If maximum value found, then save current value (timeframe) as FS. Trigger a 200 ms time 

delay for FO detection.  
 Else return to MSW detection search. 

Foot Off (FO) 

FO is based on: 
 MSW and FS detection: 
 If MSW and FS for this cycle has been detected, then proceed.  
 Else return to MSW detection search.  

 Check 200 ms time delay is complete.  
 Search for and store all maximum values. 
 Find the next descending (positive-to-negative signal) zero crossing:  

Find ascending (negative-to-positive signal) zero crossing.
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The average gait cycle from this study for AB and LLPU participants was 1.04 s and 1.2 s, 
respectively. Since the average stance time is 60% of the gait cycle (approximately 624 ms 
for AB, 720 ms for LLPU), a 200 ms delay would be well below the timing that would miss 
an FO or FS gait event [27]. To ensure the correct maximum is selected, all local maxima 
are stored, and once the descending ZC occurs, the last stored value is then selected as 
FO. Signals are filtered using a third-order median filter, defined as a nonlinear filter in 
which each output sample is computed as the median value of the input samples under 
the window. This avoids the use of other filters such as Butterworth filters that are com-
monly used in GED work but require a phase shift correction to allow for real-time detec-
tion [28].  

Table 1. Summary of heuristic rules for GED algorithm. 

Gait Event Conditions 

Mid-swing (MSW) 

MSW is based on: 
 Find descending (positive-to-negative signal) zero crossing. 
 Search for minimum value: 
 If minimum value is <−2 rad/s, then save current value (timeframe) as MSW. 
 Else continue minimum value search. 

Foot Strike (FS) 

FS is based on: 
 MSW detection: 
 If MSW for this cycle has been detected, then proceed.  
 Else return to MSW detection search.  

 Find ascending (negative-to-positive signal) zero crossing. 
 Search for maximum value: 
 If maximum value found, then save current value (timeframe) as FS. Trigger a 200 ms time 

delay for FO detection.  
 Else return to MSW detection search. 

Foot Off (FO) 

FO is based on: 
 MSW and FS detection: 
 If MSW and FS for this cycle has been detected, then proceed.  
 Else return to MSW detection search.  

 Check 200 ms time delay is complete.  
 Search for and store all maximum values. 
 Find the next descending (positive-to-negative signal) zero crossing:  

Search for maximum value:

Sensors 2022, 22, x FOR PEER REVIEW 3 of 11 
 

 

on each leg as in Figure 1. This location was selected as most previously reported GED 
algorithms used the same or similar location, due to the convenience of strapping the sen-
sors on the lower legs [12,20,25]. The IMU signals were acquired using the Xsens MVN 
Awinda (Xsens North America Inc., El Segundo, CA, USA), as described in Section 2.2. 

The algorithm, presented in Table 1, is based on a sequence of zero-crossings and 
min/max conditions [20,26]. A window of 3 samples (i − 1, i, I + 1 samples), which is 30 ms 
based on a sampling frequency of 100 Hz, is used. A window size of 3 allows for local 
minima and maxima to be detected. Compared to a previous study [20] which used a 200 
ms window, this reduces the processing time significantly. The zero-crossing (ZC) state 
of the signal at the ith sample is always determined for each sample. The ZC state is then 
stored as a binary flag (i.e., 0, 1). The first mid-swing (MSW) is detected as the first mini-
mum greater than abs(2) rad/s after descending ZC. This threshold was used for MSW 
since it can be easily translated between participants and populations, as every participant 
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is determined as the first maximum after the first ascending ZC following MSW detection. 
FO is determined as the last maximum before descending ZC. Since multiple ZCs may 
occur between FS and FO, a wait time of 20 samples (200 ms) is placed after FS detection. 
The average gait cycle from this study for AB and LLPU participants was 1.04 s and 1.2 s, 
respectively. Since the average stance time is 60% of the gait cycle (approximately 624 ms 
for AB, 720 ms for LLPU), a 200 ms delay would be well below the timing that would miss 
an FO or FS gait event [27]. To ensure the correct maximum is selected, all local maxima 
are stored, and once the descending ZC occurs, the last stored value is then selected as 
FO. Signals are filtered using a third-order median filter, defined as a nonlinear filter in 
which each output sample is computed as the median value of the input samples under 
the window. This avoids the use of other filters such as Butterworth filters that are com-
monly used in GED work but require a phase shift correction to allow for real-time detec-
tion [28].  

Table 1. Summary of heuristic rules for GED algorithm. 

Gait Event Conditions 

Mid-swing (MSW) 

MSW is based on: 
 Find descending (positive-to-negative signal) zero crossing. 
 Search for minimum value: 
 If minimum value is <−2 rad/s, then save current value (timeframe) as MSW. 
 Else continue minimum value search. 

Foot Strike (FS) 

FS is based on: 
 MSW detection: 
 If MSW for this cycle has been detected, then proceed.  
 Else return to MSW detection search.  

 Find ascending (negative-to-positive signal) zero crossing. 
 Search for maximum value: 
 If maximum value found, then save current value (timeframe) as FS. Trigger a 200 ms time 

delay for FO detection.  
 Else return to MSW detection search. 

Foot Off (FO) 

FO is based on: 
 MSW and FS detection: 
 If MSW and FS for this cycle has been detected, then proceed.  
 Else return to MSW detection search.  

 Check 200 ms time delay is complete.  
 Search for and store all maximum values. 
 Find the next descending (positive-to-negative signal) zero crossing:  

If maximum value found, then save current value (timeframe) as FS. Trigger a
200 ms time delay for FO detection.
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exhibited a MSW value much lower than -2 rad/s from the data collected. Additionally, 
based on previous literature, MSW always occurs beyond 2 rad/s (~115 deg/s) [11,20]. FS 
is determined as the first maximum after the first ascending ZC following MSW detection. 
FO is determined as the last maximum before descending ZC. Since multiple ZCs may 
occur between FS and FO, a wait time of 20 samples (200 ms) is placed after FS detection. 
The average gait cycle from this study for AB and LLPU participants was 1.04 s and 1.2 s, 
respectively. Since the average stance time is 60% of the gait cycle (approximately 624 ms 
for AB, 720 ms for LLPU), a 200 ms delay would be well below the timing that would miss 
an FO or FS gait event [27]. To ensure the correct maximum is selected, all local maxima 
are stored, and once the descending ZC occurs, the last stored value is then selected as 
FO. Signals are filtered using a third-order median filter, defined as a nonlinear filter in 
which each output sample is computed as the median value of the input samples under 
the window. This avoids the use of other filters such as Butterworth filters that are com-
monly used in GED work but require a phase shift correction to allow for real-time detec-
tion [28].  

Table 1. Summary of heuristic rules for GED algorithm. 

Gait Event Conditions 

Mid-swing (MSW) 

MSW is based on: 
 Find descending (positive-to-negative signal) zero crossing. 
 Search for minimum value: 
 If minimum value is <−2 rad/s, then save current value (timeframe) as MSW. 
 Else continue minimum value search. 

Foot Strike (FS) 

FS is based on: 
 MSW detection: 
 If MSW for this cycle has been detected, then proceed.  
 Else return to MSW detection search.  

 Find ascending (negative-to-positive signal) zero crossing. 
 Search for maximum value: 
 If maximum value found, then save current value (timeframe) as FS. Trigger a 200 ms time 

delay for FO detection.  
 Else return to MSW detection search. 

Foot Off (FO) 

FO is based on: 
 MSW and FS detection: 
 If MSW and FS for this cycle has been detected, then proceed.  
 Else return to MSW detection search.  

 Check 200 ms time delay is complete.  
 Search for and store all maximum values. 
 Find the next descending (positive-to-negative signal) zero crossing:  

Else return to MSW detection search.

Foot Off (FO)

FO is based on:
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mum greater than abs(2) rad/s after descending ZC. This threshold was used for MSW 
since it can be easily translated between participants and populations, as every participant 
exhibited a MSW value much lower than -2 rad/s from the data collected. Additionally, 
based on previous literature, MSW always occurs beyond 2 rad/s (~115 deg/s) [11,20]. FS 
is determined as the first maximum after the first ascending ZC following MSW detection. 
FO is determined as the last maximum before descending ZC. Since multiple ZCs may 
occur between FS and FO, a wait time of 20 samples (200 ms) is placed after FS detection. 
The average gait cycle from this study for AB and LLPU participants was 1.04 s and 1.2 s, 
respectively. Since the average stance time is 60% of the gait cycle (approximately 624 ms 
for AB, 720 ms for LLPU), a 200 ms delay would be well below the timing that would miss 
an FO or FS gait event [27]. To ensure the correct maximum is selected, all local maxima 
are stored, and once the descending ZC occurs, the last stored value is then selected as 
FO. Signals are filtered using a third-order median filter, defined as a nonlinear filter in 
which each output sample is computed as the median value of the input samples under 
the window. This avoids the use of other filters such as Butterworth filters that are com-
monly used in GED work but require a phase shift correction to allow for real-time detec-
tion [28].  

Table 1. Summary of heuristic rules for GED algorithm. 

Gait Event Conditions 

Mid-swing (MSW) 

MSW is based on: 
 Find descending (positive-to-negative signal) zero crossing. 
 Search for minimum value: 
 If minimum value is <−2 rad/s, then save current value (timeframe) as MSW. 
 Else continue minimum value search. 

Foot Strike (FS) 

FS is based on: 
 MSW detection: 
 If MSW for this cycle has been detected, then proceed.  
 Else return to MSW detection search.  

 Find ascending (negative-to-positive signal) zero crossing. 
 Search for maximum value: 
 If maximum value found, then save current value (timeframe) as FS. Trigger a 200 ms time 

delay for FO detection.  
 Else return to MSW detection search. 

Foot Off (FO) 

FO is based on: 
 MSW and FS detection: 
 If MSW and FS for this cycle has been detected, then proceed.  
 Else return to MSW detection search.  

 Check 200 ms time delay is complete.  
 Search for and store all maximum values. 
 Find the next descending (positive-to-negative signal) zero crossing:  

MSW and FS detection:
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on each leg as in Figure 1. This location was selected as most previously reported GED 
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minima and maxima to be detected. Compared to a previous study [20] which used a 200 
ms window, this reduces the processing time significantly. The zero-crossing (ZC) state 
of the signal at the ith sample is always determined for each sample. The ZC state is then 
stored as a binary flag (i.e., 0, 1). The first mid-swing (MSW) is detected as the first mini-
mum greater than abs(2) rad/s after descending ZC. This threshold was used for MSW 
since it can be easily translated between participants and populations, as every participant 
exhibited a MSW value much lower than -2 rad/s from the data collected. Additionally, 
based on previous literature, MSW always occurs beyond 2 rad/s (~115 deg/s) [11,20]. FS 
is determined as the first maximum after the first ascending ZC following MSW detection. 
FO is determined as the last maximum before descending ZC. Since multiple ZCs may 
occur between FS and FO, a wait time of 20 samples (200 ms) is placed after FS detection. 
The average gait cycle from this study for AB and LLPU participants was 1.04 s and 1.2 s, 
respectively. Since the average stance time is 60% of the gait cycle (approximately 624 ms 
for AB, 720 ms for LLPU), a 200 ms delay would be well below the timing that would miss 
an FO or FS gait event [27]. To ensure the correct maximum is selected, all local maxima 
are stored, and once the descending ZC occurs, the last stored value is then selected as 
FO. Signals are filtered using a third-order median filter, defined as a nonlinear filter in 
which each output sample is computed as the median value of the input samples under 
the window. This avoids the use of other filters such as Butterworth filters that are com-
monly used in GED work but require a phase shift correction to allow for real-time detec-
tion [28].  

Table 1. Summary of heuristic rules for GED algorithm. 

Gait Event Conditions 

Mid-swing (MSW) 

MSW is based on: 
 Find descending (positive-to-negative signal) zero crossing. 
 Search for minimum value: 
 If minimum value is <−2 rad/s, then save current value (timeframe) as MSW. 
 Else continue minimum value search. 

Foot Strike (FS) 

FS is based on: 
 MSW detection: 
 If MSW for this cycle has been detected, then proceed.  
 Else return to MSW detection search.  

 Find ascending (negative-to-positive signal) zero crossing. 
 Search for maximum value: 
 If maximum value found, then save current value (timeframe) as FS. Trigger a 200 ms time 

delay for FO detection.  
 Else return to MSW detection search. 

Foot Off (FO) 

FO is based on: 
 MSW and FS detection: 
 If MSW and FS for this cycle has been detected, then proceed.  
 Else return to MSW detection search.  

 Check 200 ms time delay is complete.  
 Search for and store all maximum values. 
 Find the next descending (positive-to-negative signal) zero crossing:  

If MSW and FS for this cycle has been detected, then proceed.
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ms window, this reduces the processing time significantly. The zero-crossing (ZC) state 
of the signal at the ith sample is always determined for each sample. The ZC state is then 
stored as a binary flag (i.e., 0, 1). The first mid-swing (MSW) is detected as the first mini-
mum greater than abs(2) rad/s after descending ZC. This threshold was used for MSW 
since it can be easily translated between participants and populations, as every participant 
exhibited a MSW value much lower than -2 rad/s from the data collected. Additionally, 
based on previous literature, MSW always occurs beyond 2 rad/s (~115 deg/s) [11,20]. FS 
is determined as the first maximum after the first ascending ZC following MSW detection. 
FO is determined as the last maximum before descending ZC. Since multiple ZCs may 
occur between FS and FO, a wait time of 20 samples (200 ms) is placed after FS detection. 
The average gait cycle from this study for AB and LLPU participants was 1.04 s and 1.2 s, 
respectively. Since the average stance time is 60% of the gait cycle (approximately 624 ms 
for AB, 720 ms for LLPU), a 200 ms delay would be well below the timing that would miss 
an FO or FS gait event [27]. To ensure the correct maximum is selected, all local maxima 
are stored, and once the descending ZC occurs, the last stored value is then selected as 
FO. Signals are filtered using a third-order median filter, defined as a nonlinear filter in 
which each output sample is computed as the median value of the input samples under 
the window. This avoids the use of other filters such as Butterworth filters that are com-
monly used in GED work but require a phase shift correction to allow for real-time detec-
tion [28].  

Table 1. Summary of heuristic rules for GED algorithm. 

Gait Event Conditions 

Mid-swing (MSW) 

MSW is based on: 
 Find descending (positive-to-negative signal) zero crossing. 
 Search for minimum value: 
 If minimum value is <−2 rad/s, then save current value (timeframe) as MSW. 
 Else continue minimum value search. 

Foot Strike (FS) 

FS is based on: 
 MSW detection: 
 If MSW for this cycle has been detected, then proceed.  
 Else return to MSW detection search.  

 Find ascending (negative-to-positive signal) zero crossing. 
 Search for maximum value: 
 If maximum value found, then save current value (timeframe) as FS. Trigger a 200 ms time 

delay for FO detection.  
 Else return to MSW detection search. 

Foot Off (FO) 

FO is based on: 
 MSW and FS detection: 
 If MSW and FS for this cycle has been detected, then proceed.  
 Else return to MSW detection search.  

 Check 200 ms time delay is complete.  
 Search for and store all maximum values. 
 Find the next descending (positive-to-negative signal) zero crossing:  

Else return to MSW detection search.
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Mid-swing (MSW) 
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 Find descending (positive-to-negative signal) zero crossing. 
 Search for minimum value: 
 If minimum value is <−2 rad/s, then save current value (timeframe) as MSW. 
 Else continue minimum value search. 

Foot Strike (FS) 

FS is based on: 
 MSW detection: 
 If MSW for this cycle has been detected, then proceed.  
 Else return to MSW detection search.  

 Find ascending (negative-to-positive signal) zero crossing. 
 Search for maximum value: 
 If maximum value found, then save current value (timeframe) as FS. Trigger a 200 ms time 

delay for FO detection.  
 Else return to MSW detection search. 

Foot Off (FO) 

FO is based on: 
 MSW and FS detection: 
 If MSW and FS for this cycle has been detected, then proceed.  
 Else return to MSW detection search.  

 Check 200 ms time delay is complete.  
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 Find the next descending (positive-to-negative signal) zero crossing:  

Check 200 ms time delay is complete.
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Gait Event Conditions 

Mid-swing (MSW) 

MSW is based on: 
 Find descending (positive-to-negative signal) zero crossing. 
 Search for minimum value: 
 If minimum value is <−2 rad/s, then save current value (timeframe) as MSW. 
 Else continue minimum value search. 

Foot Strike (FS) 

FS is based on: 
 MSW detection: 
 If MSW for this cycle has been detected, then proceed.  
 Else return to MSW detection search.  

 Find ascending (negative-to-positive signal) zero crossing. 
 Search for maximum value: 
 If maximum value found, then save current value (timeframe) as FS. Trigger a 200 ms time 

delay for FO detection.  
 Else return to MSW detection search. 

Foot Off (FO) 

FO is based on: 
 MSW and FS detection: 
 If MSW and FS for this cycle has been detected, then proceed.  
 Else return to MSW detection search.  
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 Find the next descending (positive-to-negative signal) zero crossing:  

Search for and store all maximum values.

Sensors 2022, 22, x FOR PEER REVIEW 3 of 11 
 

 

on each leg as in Figure 1. This location was selected as most previously reported GED 
algorithms used the same or similar location, due to the convenience of strapping the sen-
sors on the lower legs [12,20,25]. The IMU signals were acquired using the Xsens MVN 
Awinda (Xsens North America Inc., El Segundo, CA, USA), as described in Section 2.2. 

The algorithm, presented in Table 1, is based on a sequence of zero-crossings and 
min/max conditions [20,26]. A window of 3 samples (i − 1, i, I + 1 samples), which is 30 ms 
based on a sampling frequency of 100 Hz, is used. A window size of 3 allows for local 
minima and maxima to be detected. Compared to a previous study [20] which used a 200 
ms window, this reduces the processing time significantly. The zero-crossing (ZC) state 
of the signal at the ith sample is always determined for each sample. The ZC state is then 
stored as a binary flag (i.e., 0, 1). The first mid-swing (MSW) is detected as the first mini-
mum greater than abs(2) rad/s after descending ZC. This threshold was used for MSW 
since it can be easily translated between participants and populations, as every participant 
exhibited a MSW value much lower than -2 rad/s from the data collected. Additionally, 
based on previous literature, MSW always occurs beyond 2 rad/s (~115 deg/s) [11,20]. FS 
is determined as the first maximum after the first ascending ZC following MSW detection. 
FO is determined as the last maximum before descending ZC. Since multiple ZCs may 
occur between FS and FO, a wait time of 20 samples (200 ms) is placed after FS detection. 
The average gait cycle from this study for AB and LLPU participants was 1.04 s and 1.2 s, 
respectively. Since the average stance time is 60% of the gait cycle (approximately 624 ms 
for AB, 720 ms for LLPU), a 200 ms delay would be well below the timing that would miss 
an FO or FS gait event [27]. To ensure the correct maximum is selected, all local maxima 
are stored, and once the descending ZC occurs, the last stored value is then selected as 
FO. Signals are filtered using a third-order median filter, defined as a nonlinear filter in 
which each output sample is computed as the median value of the input samples under 
the window. This avoids the use of other filters such as Butterworth filters that are com-
monly used in GED work but require a phase shift correction to allow for real-time detec-
tion [28].  

Table 1. Summary of heuristic rules for GED algorithm. 

Gait Event Conditions 

Mid-swing (MSW) 

MSW is based on: 
 Find descending (positive-to-negative signal) zero crossing. 
 Search for minimum value: 
 If minimum value is <−2 rad/s, then save current value (timeframe) as MSW. 
 Else continue minimum value search. 

Foot Strike (FS) 

FS is based on: 
 MSW detection: 
 If MSW for this cycle has been detected, then proceed.  
 Else return to MSW detection search.  
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Gait Event Conditions 

Mid-swing (MSW) 

MSW is based on: 
 Find descending (positive-to-negative signal) zero crossing. 
 Search for minimum value: 
 If minimum value is <−2 rad/s, then save current value (timeframe) as MSW. 
 Else continue minimum value search. 

Foot Strike (FS) 

FS is based on: 
 MSW detection: 
 If MSW for this cycle has been detected, then proceed.  
 Else return to MSW detection search.  

 Find ascending (negative-to-positive signal) zero crossing. 
 Search for maximum value: 
 If maximum value found, then save current value (timeframe) as FS. Trigger a 200 ms time 

delay for FO detection.  
 Else return to MSW detection search. 

Foot Off (FO) 

FO is based on: 
 MSW and FS detection: 
 If MSW and FS for this cycle has been detected, then proceed.  
 Else return to MSW detection search.  

 Check 200 ms time delay is complete.  
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 Find the next descending (positive-to-negative signal) zero crossing:  

If count (maximum values found) > 1, then save the latest value as FO.
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2.2. System Instrumentation

The performance of the developed algorithm was validated by comparing the gait
events (FS, FO) detected by the developed algorithm and the results from a validated
reference motion capture system, the Xsens MVN Awinda. Seven inertial sensors (Xsens
North America Inc., CA, USA) were attached to the feet (x2), lower leg (x2), upper leg
(x2), and pelvis (x1) (Figure 1). Foot contact events were processed and extracted using



Sensors 2022, 22, 8888 4 of 12

the MVN Analyze software (Xsens North America Inc., CA, USA), which uses all seven
sensors to reliably and accurately measure the FS and FO gait events across a wide range of
gait conditions [29–31]. However, it is noted here that our GED algorithm uses only the
raw angular velocity (gyroscope) signals from two lower-leg inertial sensors. All sensor
data were sampled at a frequency of 100 Hz.
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current prosthetic device for LLPU participants). LLPU participants with unilateral am-
putations at any level (Symes, below-knee, above-knee) were included. Bilateral lower-
limb amputations and/or participants using additional walking aids (i.e., crutches, canes, 
etc.) were excluded. All participants had no previously known neurological disorders. 

All participants were recruited through Holland Bloorview Kids Rehabilitation Hos-
pital. AB participants were recruited through posted recruitment bulletins, and potential 

Figure 1. LLPU participant equipped with the Xsens MVN suit: (a) frontal view; (b) sagittal view.
Sensors were attached to the feet (middle of the bridge of foot), lower leg (flat on the shin bone,
medial surface of the tibia, approximately 5 cm below the patella), upper leg (middle of the lateral
thigh, above the knee), and pelvis (flat on the sacrum) [32]. Solid and dashed outlines represent
visible and not visible sensors, respectively. Lower-leg sensors (highlighted by filled light blue boxes)
were used for validating the proposed GED algorithm.

2.3. Participants

Participants were recruited if they were fourteen years or older and community
ambulators able to walk on level ground and ramps without ambulatory aids (except
for current prosthetic device for LLPU participants). LLPU participants with unilateral
amputations at any level (Symes, below-knee, above-knee) were included. Bilateral lower-
limb amputations and/or participants using additional walking aids (i.e., crutches, canes,
etc.) were excluded. All participants had no previously known neurological disorders.

All participants were recruited through Holland Bloorview Kids Rehabilitation Hos-
pital. AB participants were recruited through posted recruitment bulletins, and potential
LLPU participants were referred to our research group through the Prosthetics and Or-
thotics department at the hospital, based on the aforementioned criteria.

Seven AB (4 females; 26.1 ± 3.4 years; height 169.5 ± 5.1 cm; weight 67.6 ± 12.8 kg)
and 7 unilateral LLPU (5 males; age 27.6 ± 8.7 years; height 170.1 ± 8.7 cm; weight
63.7 ± 9.5 kg; 4 transfemoral and 3 transtibial; years since amputation median 18 (IQR 6.75,
22); years with their current prosthesis median 2 (IQR 1.15, 6.5)) participants were recruited
for this study.
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2.4. Experimental Protocol

Participants were involved in a single 2 h data collection session. Participants were
equipped with the Xsens wearable motion capture system as outlined in Figure 1. Then, an
N-pose calibration was performed for the Xsens Awinda system to initialize the orientation
of the inertial sensors [25]. During data collection, subjects walked in three different
walking states: level-ground walking (LGW), ramp ascent (RA), and ramp descent (RD).
As outlined in Figure 2, each participant completed six 20 m straight LGW and eight 15 m
RD–turn–RA walk trials. Five-minute rest breaks were taken between LGW and RA/RD.
After each walking pass, data collection was stopped before the participant turned around
and then restarted after the turn was completed. This was done to ensure only straight
walking was included in the analysis. The experimental protocol was approved (REB-
0102) by the Research Ethics Board at Holland Bloorview Kids Rehabilitation Hospital,
Canada. Informed written consent from each participant was obtained before the study
was conducted.
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The developed algorithm was implemented, tested, and analyzed using a custom Py-
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signal of each limb, the GED algorithm yielded all MSW, FS, and FO events. Foot contact 
data from the validated algorithms within Xsens were processed and exported to XML 
format using Xsens MVN Analyze software (Xsens North America Inc., El Segundo, CA, 
USA). Data were then parsed using another custom python script, which extracted all the 
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2.5. Data Analysis

The developed algorithm was implemented, tested, and analyzed using a custom
Python script. The script ran through each gait trial and using the y-axis angular velocity
signal of each limb, the GED algorithm yielded all MSW, FS, and FO events. Foot contact
data from the validated algorithms within Xsens were processed and exported to XML
format using Xsens MVN Analyze software (Xsens North America Inc., El Segundo, CA,
USA). Data were then parsed using another custom python script, which extracted all the
FS and FO events from each trial. In total, 1260 steps were detected and evaluated for each
side (30 steps per activity per participant). Sensitivity (Equation (1)) and temporal error
(Equations (2) and (4)) were evaluated by comparing the gait events detected by the Xsens
MVN Analyze software and by the developed GED algorithm respectively [33–35].

Sensitivity =
True Positives

True Positives + False Negatives
(1)

Error (ms) = Timestampxsens − Timestampalgorithm (2)

Gait Cycle Duration (ms) = FSi − FSi−1 (3)

Error(% of Gait Cycle) =
Error

Gait Cycle Duration
× 100% (4)

Significant differences in temporal error levels between groups (AB vs. LLPU) were
statistically analyzed in JMP Pro 16 software (Statistical Discovery, SAS, Cary, NC, USA).
To assess the normality of the data distribution, Shapiro–Wilk test was used (p < 0.05),
which indicated all data to be non-normally distributed. Thus, a non-parametric two-tailed
Wilcoxon signed-rank test was used to assess the difference in accuracy and sensitivity
levels. Using a Bonferroni correction with an adjusted critical alpha value of 0.00417
(p = 0.05/12), statistical significance was adjusted to account for any potential type I errors.
Since the temporal error data were found to be non-normally distributed, median and
interquartile ranges were reported [36]. Finally, to assess the agreement between the results
from the developed GED algorithm and the Xsens MVN Analyze software, Kendall’s W
(coefficient of concordance) was calculated, since the data were found to be non-normally
distributed [37].
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3. Results

The overall sensitivity was 98.87% for AB and 97.05% and 93.51% for LLPU intact
and prosthetic sides, respectively, across all walking states (LGW, RA, RD) (Table 2). The
overall temporal error (ms) between the proposed and referenced detection for both FS
and FO was 10 (0, 20) ms for AB and 10 (0, 25) ms and 10 (0, 20) ms for the LLPU intact
and prosthetic sides, respectively, across all walking states (Figure 3, Table 3). The overall
temporal error, as a percentage of gait cycle, was 0.96 (0, 1.92)% for AB and 0.83 (0, 2.08)%
and 0.83 (0, 1.66)% for the LLPU intact and prosthetic sides, respectively, across all walking
states (Table 4). The overall ICC was found to be 0.99 for both AB and LLPU groups.

Table 2. Overall sensitivity (mean (standard deviation)) results of GED algorithm.

Walking State Event

Sensitivity (%)

AB LLPU

Both Intact Prosthetic

LGW
FS 100.00 (0.0) 98.44 (3.74) 97.64 (3.04)
FO 99.77 (0.38) 99.8 (0.52) 98.57 (1.39)

RA
FS 98.78 (1.30) 94.52 (7.38) 89.93 (7.05)
FO 98.08 (2.21) 95.25 (9.22) 90.44 (7.13)

RD
FS 98.28 (3.49) 98.00 (3.40) 89.93 (7.05)
FO 98.31 (3.41) 96.31 (4.34) 90.44 (7.13)

Overall 98.87 (2.25) 97.05 (5.52) 93.51 (9.92)
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Table 3. Temporal error (median (IQR1, IQR3)) results of GED algorithm between the proposed
algorithm and validated Xsens results. Pairwise comparison (p-values) results between accuracy of
AB and LLPU group for each mode and side.

Error (ms) Pairwise Comparison

Walking State Event
AB LLPU

AB—Intact AB—Prosthetic
Both Intact Prosthetic

LGW
FS 10 (0, 20) 10 (0, 30) 10 (0, 20) <0.001 0.779
FO 10 (0, 20) 10 (0, 20) 10 (0, 30) <0.001 0.407

RA
FS −10 (−20, 0) −20 (−30, −10) −20 (−30, 0) 0.319 0.322
FO 20 (10, 30) 20 (20, 30) 20 (10, 30) <0.001 0.006

RD
FS 30 (20, 40) 20 (20, 30) 10 (0, 20) 00.004 <0.001
FO −10 (−20, 10) 0 (−10, 10) 10 (0, 20) <0.001 <0.001

Overall 10 (0, 20) 10 (0, 25) 10 (0, 20) - -

Negative and positive values indicate that the proposed algorithm leads or lags the reference Xsens results,
respectively. Statistically significant differences are highlighted in bold font (adjusted critical alpha value =
0.05/12 = 0.0041667).

Table 4. Temporal error (median (IQR1, IQR3)) and corresponding gait cycle length (mean (standard
deviation)) results of GED algorithm.

Error (% of Gait Cycle) Gait Cycle Length (s)

Walking State Event
AB LLPU AB LLPU

Both Intact Prosthetic Both Intact Prosthetic

LGW
FS 0.96

(0, 1.92)
0.85

(0, 2.55)
0.85

(0, 1.69) 1.04
(0.06)

1.18
(0.14)

1.18
(0.14)

FO 0.93
(0, 1.86)

0.78
(0, 1.56)

0.78
(0, 2.35)

RA

FS −1
(−2, 0)

−1.74
(−2.61,
−0.87)

−1.73
(−2.6, 0) 1.07

(0.13)
1.28

(0.17)
1.28

(0.16)
FO 1.92

(0.96, 2.88)
1.7

(1.7, 2.55)
1.69

(0.85, 2.54)

RD

FS 2.8
(1.86, 3.73)

1.56
(1.56, 2.34)

0.78
(0, 1.57) 1.00

(0.07)
1.15

(0.15)
1.15

(0.16)
FO −1

(−2, 1)
0

(−0.87, 0.87)
0.87

(0, 1.73)

Overall 0.96
(0, 1.92)

0.83
(0, 2.08)

0.83
(0, 1.66)

1.04
(0.09)

1.20
(0.15)

1.20
(0.16)

When evaluating the results separately across different walking states and groups, FS
and FO detection of the AB group had the highest sensitivity during all walking states,
whereas for the LLPU group, sensitivity was approximately 8% lower for RA and RD
walking states. On the other hand, the accuracy of FS and FO had similar ranges between
each of the groups. However, accuracy decreased during RA and RD for both AB and LLPU
groups. The pairwise statistical comparison results, as highlighted in Table 3, indicate a
significant difference between the LLPU and AB groups for all comparisons except for FS
during RA of the intact side and FS and FO during LGW and RA of the prosthetic side.

4. Discussion

The study presents a new rules-based algorithm that can be used in real time for FS
and FO detection using a single gyroscope signal on each leg that achieved an overall mean
sensitivity of >93% and a median error of <30 ms and <1% of a gait cycle for both AB
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and LLPU groups across three different walking states (LGW, RA, RD). Furthermore, a
very high agreement (Kendall’s W = 0.99) between the developed algorithm and the Xsens
results was found for both groups.

Sensitivity and error were compared to previous studies (Table 5). However, few
studies used the same methods (i.e., type of participant group, walking states, real-time
application), and thus a direct comparison was not possible. Table 4 suggests that this
study’s algorithm performed comparably to or better than previous studies. Most of the
mentioned studies did not report sensitivity results. However, Catalfamo et al. reported an
overall 99.5% sensitivity for LGW, RA, and RD when tested with an AB group [20]. The
sensitivity in our study was slightly lower in all groups (98.87%, 97.05%, and 93.51% for AB,
LLPU intact, and LLPU prosthetic, respectively). However, this could be due to the larger
sample size in our study resulting in a higher probability of detecting outliers resulting in
false negatives, which might have been missed in smaller sample size studies.

Table 5. Summary of results of previous studies with at least partially comparable results
[11,12,19,20,24,26].

Study Participant
Population Activity Detection Method FS Error (ms) FO Error (ms) Real-Time

Analysis

Aftab et al. [24] LLPU (n = 10) LGW Shank velocity derived
from marker data

Mean:
−8 (prosthetic)

1 (intact)

Mean:
35 (prosthetic)

84 (intact)
No

Zahradka et al. [26] AB (n = 11), CP
(n = 6)

Treadmill
LGW

Shank angular velocity
algorithm −33.41 ± 0.86 −56.20 ± 1.02 No

Catalfamo et al. [20] AB (n = 7)

LGW
Shank angular velocity
algorithm: threshold-

and ZC-based

[−16, 1] [37, 63]
Window size

= 200 msRA [−35, −8] [34, 52]

RD [−29, 12] [60, 85]

Simonetti et al. [19] LLPU (n = 7) LGW

Shank mediolateral
angular velocity,

flexion–extension angle,
and axial acceleration

Mean:
−30 (prosthetic)
−10 (intact)

Mean:
−10 (prosthetic)
−50 (intact)

No

Maqbool et al. [12] AB (n = 4)
LLPU (n = 1) LGW

Shank angular velocity
(sagittal) and linear

acceleration
(longitudinal)

algorithm;
threshold-based only

17 ± 11.4 (AB)
21.8 ± 20 (LLPU,

prosthetic)
12 ± 9.5 (LLPU,

intact)

−15.5 ± 22 (AB)
−7.5 ± 15.5

(LLPU, prosthetic)
−23.8 ± 8 (LLPU,

intact)

Window size
not reported

Maqbool et al. [11] AB (n = 8)
LLPU (n = 1)

RA

Shank angular velocity:
threshold-based only

[11, 17] (AB)
[14, 49] (LLPU,

prosthetic)
[8, 18] (LLPU,

intact)

[−10, 0.2] (AB)
[−39, 27] (LLPU,

prosthetic)
[−43, −16]

(LLPU, intact) Window size
not reported

RD

[10.5, 17] (AB)
[−19, 19] (LLPU,

prosthetic)
[−0.3, 17] (LLPU,

intact)

[−25, 36] (AB)
[−141, 105]

(LLPU, prosthetic)
[−44, −26]

(LLPU, intact)

AB: able-bodied; LLPU: lower-limb prosthesis user; CP: cerebral palsy; LGW: level-ground walking; RA: ramp
ascent; RD: ramp descent; ZC: zero-crossing.

Compared to the reported studies in Table 5, the accuracy of our algorithm achieved
similar results. However, in some instances such as FO detection, the algorithm yields
considerably higher accuracy results. For example, compared to the results of Maqbool et al.
during RD walking, the temporal error is improved by approximately 100 ms for the LLPU
group [11]. This highlights the improved accuracy exhibited by the proposed algorithm, as
FO is typically more challenging to detect due to the increased variations of the gait signal
prior to mid-swing [38]. The improved accuracy can be due to the proposed algorithm
being independent of a constant threshold, which has been used in previous studies,
when detecting FO. Therefore, any variability in the magnitude of the angular velocity



Sensors 2022, 22, 8888 9 of 12

signal typically observed due to the walking state (i.e., ramp ascent or descent) [39] or
prosthesis technology used (i.e., hydraulic, bionic prosthesis, etc.) would not affect the
accuracy [40]. As aforementioned, the overall error as a percentage of the gait cycle was
<1%, with the highest median error (percentage of gait cycle) being 2.8 (1.86, 3.73)% for FS
detection of the AB group during RD (Table 4). For real-time gait analysis, such an accuracy
level is acceptable since it is below the coefficient of variation of AB gait, as reported by
Beauchet et al. to be 4% and 3% for swing and stance time, respectively [41].

Although the algorithm performed better for the AB relative to the LLPU group, based
on the statistical pairwise comparison, the differences were small and the LLPU group
results were still comparable to other studies that evaluated their GED algorithms with the
LLPU population [12,19]. This reduced performance in the LLPU (compared to AB) could
be due to the variety of gait styles exhibited by the LLPU participants based on the level
of their amputation and/or the type of prosthetic device used. In addition, to account for
such differences, future work should investigate adaptable delays. For example, the 200 ms
delay applied after FS detection can be adjusted based on the individual’s own stance time
(i.e., faster/slower walking). This will ensure that in cases where an individual may be
walking faster (stance time less than approximately 600 ms), the delay remains below the
individual’s average stance time.

Finally, one of the unique features of the proposed algorithm is the minimal window
size required for accurate GED. The algorithm requires three samples or 30 ms of data at a
time, whereas other studies have either used the overall signal to identify all the peaks at
once [12,24] or used larger window sizes of 200 ms, which can be approximately 20% of an
average gait cycle [20]; neither of these algorithms is suitable for real-time implementations
such as biofeedback systems used for gait training and prosthetic control [19,42,43]. Such
systems require a minimal delay to allow for the sensory feedback to activate. However, it
is important to note that with a lower sampling frequency, the window size would increase,
as it is based on the number of samples as opposed to the timing length of the window.
Future work should evaluate the algorithm using different sampling rates, and with a faster
sampling rate, it may be possible to reduce the latency further.

Some of the limitations of this study include the large error variability, which appears
to be a consistent issue with many of the previously studied GED algorithms [11,12,19].
This could be addressed by first evaluating the GED algorithms with a significantly higher
sampling rate and then identifying additional signal features that increase accuracy. Addi-
tionally, this study did not evaluate the differences between both sides of the AB group.
Some studies have suggested that, although gait in healthy populations is often symmetri-
cal with less variability, there are cases of gait asymmetry with higher variability that may
occur due to factors such as fatigue or walking speed [39,44]. Thus, future studies should
account for some of these factors to assess the difference in GED performance between
both sides. Finally, future work should focus on improving and validating the proposed
algorithm for other walking states (i.e., uneven terrain, running, stair walking) and with
other patient populations (i.e., cerebral palsy, Parkinson’s). Moreover, future studies should
assess the algorithm performance over longer periods of time (i.e., multiple sessions for the
same participant) to evaluate the test–retest reliability.

5. Conclusions

The results of this study support the use of angular velocity signals acquired from
the lower legs for real-time GED in the AB and LLPU populations for gait on a variety of
terrains, while avoiding the use of pre-set thresholds for FS and FO detection. The new
algorithm achieved near real-time gait event detection, with error and sensitivity levels of
<30 ms and >93%, respectively, using only a single sensor (signal) for each limb, which is
comparable and in some cases an improvement compared to previous studies. The findings
of the proposed algorithm support the translation of this work into clinical practice using
low-cost gyroscopes for gait analysis, as it was tested with two distinct groups (AB and
LLPU). Future work should focus on assessing the robustness of the GED algorithm for
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different walking states and clinical populations. Furthermore, to improve the variability
of accuracy levels, future work should assess the performance for significantly higher
sampling rates.
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