Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (355)

Search Parameters:
Keywords = European electricity markets

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5488 KiB  
Article
Treatment of Recycled Metallurgical By-Products for the Recovery of Fe and Zn Through a Plasma Reactor and RecoDust
by Wolfgang Reiter, Loredana Di Sante, Vincenzo Pepe, Marta Guzzon and Klaus Doschek-Held
Metals 2025, 15(8), 867; https://doi.org/10.3390/met15080867 - 1 Aug 2025
Viewed by 147
Abstract
The 1.9 billion metric tons of steel globally manufactured in 2023 justify the steel industry’s pivotal role in modern society’s growth. Considering the rapid development of countries that have not fully taken part in the global market, such as Africa, steel production is [...] Read more.
The 1.9 billion metric tons of steel globally manufactured in 2023 justify the steel industry’s pivotal role in modern society’s growth. Considering the rapid development of countries that have not fully taken part in the global market, such as Africa, steel production is expected to increase in the next decade. However, the environmental burden associated with steel manufacturing must be mitigated to achieve sustainable production, which would align with the European Green Deal pathway. Such a burden is associated both with the GHG emissions and with the solid residues arising from steel manufacturing, considering both the integrated and electrical routes. The valorisation of the main steel residues from the electrical steelmaking is the central theme of this work, referring to the steel electric manufacturing in the Dalmine case study. The investigation was carried out from two different points of view, comprising the action of a plasma electric reactor and a RecoDust unit to optimize the recovery of iron and zinc, respectively, being the two main technologies envisioned in the EU-funded research project ReMFra. This work focuses on those preliminary steps required to detect the optimal recipes to consider for such industrial units, such as thermodynamic modelling, testing the mechanical properties of the briquettes produced, and the smelting trials carried out at pilot scale. However, tests for the usability of the dusty feedstock for RecoDust are carried out, and, with the results, some recommendations for pretreatment can be made. The outcomes show the high potential of these streams for metal and mineral recovery. Full article
20 pages, 10603 KiB  
Article
A Safety-Based Approach for the Design of an Innovative Microvehicle
by Michelangelo-Santo Gulino, Susanna Papini, Giovanni Zonfrillo, Thomas Unger, Peter Miklis and Dario Vangi
Designs 2025, 9(4), 90; https://doi.org/10.3390/designs9040090 - 31 Jul 2025
Viewed by 168
Abstract
The growing popularity of Personal Light Electric Vehicles (PLEVs), such as e-scooters, has revolutionized urban mobility by offering compact, cost-effective, and environmentally friendly transportation solutions. However, safety concerns, including inadequate infrastructure, poor protective measures, and high accident rates, remain critical challenges. This paper [...] Read more.
The growing popularity of Personal Light Electric Vehicles (PLEVs), such as e-scooters, has revolutionized urban mobility by offering compact, cost-effective, and environmentally friendly transportation solutions. However, safety concerns, including inadequate infrastructure, poor protective measures, and high accident rates, remain critical challenges. This paper presents the design and development of an innovative self-balancing microvehicle under the H2020 LEONARDO project, which aims to address these challenges through advanced engineering and user-centric design. The vehicle combines features of monowheels and e-scooters, integrating cutting-edge technologies to enhance safety, stability, and usability. The design adheres to European regulations, including Germany’s eKFV standards, and incorporates user preferences identified through representative online surveys of 1500 PLEV users. These preferences include improved handling on uneven surfaces, enhanced signaling capabilities, and reduced instability during maneuvers. The prototype features a lightweight composite structure reinforced with carbon fibers, a high-torque motorized front wheel, and multiple speed modes tailored to different conditions, such as travel in pedestrian areas, use by novice riders, and advanced users. Braking tests demonstrate deceleration values of up to 3.5 m/s2, comparable to PLEV market standards and exceeding regulatory minimums, while smooth acceleration ramps ensure rider stability and safety. Additional features, such as identification plates and weight-dependent motor control, enhance compliance with local traffic rules and prevent misuse. The vehicle’s design also addresses common safety concerns, such as curb navigation and signaling, by incorporating large-diameter wheels, increased ground clearance, and electrically operated direction indicators. Future upgrades include the addition of a second rear wheel for enhanced stability, skateboard-like rear axle modifications for improved maneuverability, and hybrid supercapacitors to minimize fire risks and extend battery life. With its focus on safety, regulatory compliance, and rider-friendly innovations, this microvehicle represents a significant advancement in promoting safe and sustainable urban mobility. Full article
(This article belongs to the Section Vehicle Engineering Design)
Show Figures

Figure 1

20 pages, 3940 KiB  
Article
24 Hours Ahead Forecasting of the Power Consumption in an Industrial Pig Farm Using Deep Learning
by Boris Evstatiev, Nikolay Valov, Katerina Gabrovska-Evstatieva, Irena Valova, Tsvetelina Kaneva and Nicolay Mihailov
Energies 2025, 18(15), 4055; https://doi.org/10.3390/en18154055 - 31 Jul 2025
Viewed by 267
Abstract
Forecasting the energy consumption of different consumers became an important procedure with the creation of the European Electricity Market. This study presents a methodology for 24-hour ahead prediction of the energy consumption, which is suitable for application in animal husbandry facilities, such as [...] Read more.
Forecasting the energy consumption of different consumers became an important procedure with the creation of the European Electricity Market. This study presents a methodology for 24-hour ahead prediction of the energy consumption, which is suitable for application in animal husbandry facilities, such as pig farms. To achieve this, 24 individual models are trained using artificial neural networks that forecast the energy production 1 to 24 h ahead. The selected features include power consumption over the last 72 h, time-based data, average, minimum, and maximum daily temperatures, relative humidities, and wind speeds. The models’ Normalized mean absolute error (NMAE), Normalized root mean square error (NRMSE), and Mean absolute percentage error (MAPE) vary between 16.59% and 19.00%, 22.19% and 24.73%, and 9.49% and 11.49%, respectively. Furthermore, the case studies showed that in most situations, the forecasting error does not exceed 10% with several cases up to 25%. The proposed methodology can be useful for energy managers of animal farm facilities, and help them provide a better prognosis of their energy consumption for the Energy Market. The proposed methodology could be improved by selecting additional features, such as the variation of the controlled meteorological parameters over the last couple of days and the schedule of technological processes. Full article
(This article belongs to the Special Issue Application of AI in Energy Savings and CO2 Reduction)
Show Figures

Figure 1

86 pages, 10602 KiB  
Article
Optimizing Virtual Power Plants Cooperation via Evolutionary Game Theory: The Role of Reward–Punishment Mechanisms
by Lefeng Cheng, Pengrong Huang, Mengya Zhang, Kun Wang, Kuozhen Zhang, Tao Zou and Wentian Lu
Mathematics 2025, 13(15), 2428; https://doi.org/10.3390/math13152428 - 28 Jul 2025
Viewed by 275
Abstract
This paper addresses the challenge of fostering cooperation among virtual power plant (VPP) operators in competitive electricity markets, focusing on the application of evolutionary game theory (EGT) and static reward–punishment mechanisms. This investigation resolves four critical questions: the minimum reward–punishment thresholds triggering stable [...] Read more.
This paper addresses the challenge of fostering cooperation among virtual power plant (VPP) operators in competitive electricity markets, focusing on the application of evolutionary game theory (EGT) and static reward–punishment mechanisms. This investigation resolves four critical questions: the minimum reward–punishment thresholds triggering stable cooperation, the influence of initial market composition on equilibrium selection, the sufficiency of static versus dynamic mechanisms, and the quantitative mapping between regulatory parameters and market outcomes. The study establishes the mathematical conditions under which static reward–punishment mechanisms transform competitive VPP markets into stable cooperative systems, quantifying efficiency improvements of 15–23% and renewable integration gains of 18–31%. Through rigorous evolutionary game-theoretic analysis, we identify critical parameter thresholds that guarantee cooperation emergence, resolving longstanding market coordination failures documented across multiple jurisdictions. Numerical simulations and sensitivity analysis demonstrate that static reward–punishment systems enhance cooperation, optimize resources, and increase renewable energy utilization. Key findings include: (1) Reward–punishment mechanisms effectively promote cooperation and system performance; (2) A critical region exists where cooperation dominates, enhancing market outcomes; and (3) Parameter adjustments significantly impact VPP performance and market behavior. The theoretical contributions of this research address documented market failures observed across operational VPP implementations. Our findings provide quantitative foundations for regulatory frameworks currently under development in seven national energy markets, including the European Union’s proposed Digital Single Market for Energy and Japan’s emerging VPP aggregation standards. The model’s predictions align with successful cooperation rates achieved by established VPP operators, suggesting practical applicability for scaled implementations. Overall, through evolutionary game-theoretic analysis of 156 VPP implementations, we establish precise conditions under which static mechanisms achieve 85%+ cooperation rates. Based on this, future work could explore dynamic adjustments, uncertainty modeling, and technologies like blockchain to further improve VPP resilience. Full article
(This article belongs to the Special Issue Modeling, Simulation and Control of Dynamical Systems)
Show Figures

Figure 1

33 pages, 2022 KiB  
Review
A Novel Community Energy Projects Governance Model and Support Ecosystem Framework Based on Heating and Cooling Projects Enabled by Energy Communities
by Anastasios I. Karameros, Athanasios P. Chassiakos and Theo Tryfonas
Sustainability 2025, 17(14), 6571; https://doi.org/10.3390/su17146571 - 18 Jul 2025
Viewed by 509
Abstract
The EU power market system has successfully maintained a centralized governance structure ensuring stable electricity supply and affordable prices for over two decades. However, the ongoing energy transition towards carbon neutrality has exposed critical governance limitations, leading to challenges in community projects implementation. [...] Read more.
The EU power market system has successfully maintained a centralized governance structure ensuring stable electricity supply and affordable prices for over two decades. However, the ongoing energy transition towards carbon neutrality has exposed critical governance limitations, leading to challenges in community projects implementation. Given that Heating and Cooling (H&C) accounts for more than 50% of the EU’s energy consumption, community H&C initiatives can drive local energy transitions and support renewable integration. This study analyzes the best practices from European community energy initiatives, supplemented by insights from the Energy Leap project. By employing a comparative analysis approach, the study proposes a technically sound and regulatory feasible governance model, alongside a robust ecosystem support framework. The proposed framework introduces new roles and new forms of partnerships between communities—private entities and consumers—taking advantage of the benefits offered by the operation of Energy Communities (ECs), enhancing community engagement and regulatory adaptability. These insights offer practical guidance and contribute to effective policymaking in support of the EU’s energy transition objectives. Full article
Show Figures

Figure 1

27 pages, 1844 KiB  
Article
Renewable Energy Index: The Country-Group Performance Using Data Envelopment Analysis
by Geovanna Bernardino Bello, Luana Beatriz Martins Valero Viana, Gregory Matheus Pereira de Moraes and Diogo Ferraz
Energies 2025, 18(14), 3803; https://doi.org/10.3390/en18143803 - 17 Jul 2025
Viewed by 324
Abstract
Renewable energy stands as a pivotal solution to environmental concerns, prompting substantial research and development endeavors to promote its adoption and enhance energy efficiency. Despite the recognized environmental superiority of renewable energy systems, there is a lack of globally standardized indicators specifically focused [...] Read more.
Renewable energy stands as a pivotal solution to environmental concerns, prompting substantial research and development endeavors to promote its adoption and enhance energy efficiency. Despite the recognized environmental superiority of renewable energy systems, there is a lack of globally standardized indicators specifically focused on renewable energy efficiency. This study aims to develop and apply a non-parametric data envelopment analysis (DEA) indicator, termed the Renewable Energy Indicator (REI), to measure environmental performance at the national level and to identify differences in renewable energy efficiency across countries grouped by development status and income level. The REI incorporates new factors such as agricultural methane emissions (thousand metric tons of CO2 equivalent), PM2.5 air pollution exposure (µg/m3), and aspects related to electricity, including consumption (as % of total final energy consumption), production from renewable sources, excluding hydroelectric (kWh), and accessibility in rural and urban areas (% of population with access), aligning with the emerging paradigm outlined by the United Nations. By segmenting the REI into global, developmental, and income group classifications, this study conducts the Mann–Whitney U test and the Kruskal–Wallis H tests to identify variations in renewable energy efficiency among different country groups. Our findings reveal top-performing countries globally, highlighting both developed (e.g., Sweden) and developing nations (e.g., Costa Rica, Sri Lanka). Central and North European countries demonstrate high efficiency, while those facing political and economic instability perform poorly. Agricultural-dependent nations like Australia and Argentina exhibit lower REI due to significant methane emissions. Disparities between developed and developing markets underscore the importance of understanding distinct socio-economic dynamics for effective policy formulation. Comparative analysis across income groups informs specific strategies tailored to each category. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

32 pages, 3289 KiB  
Article
Optimal Spot Market Participation of PV + BESS: Impact of BESS Sizing in Utility-Scale and Distributed Configurations
by Andrea Scrocca, Roberto Pisani, Diego Andreotti, Giuliano Rancilio, Maurizio Delfanti and Filippo Bovera
Energies 2025, 18(14), 3791; https://doi.org/10.3390/en18143791 - 17 Jul 2025
Viewed by 353
Abstract
Recent European regulations promote distributed energy resources as alternatives to centralized generation. This study compares utility-scale and distributed photovoltaic (PV) systems coupled with Battery Energy-Storage Systems (BESSs) in the Italian electricity market, analyzing different battery sizes. A multistage stochastic mixed-integer linear programming model, [...] Read more.
Recent European regulations promote distributed energy resources as alternatives to centralized generation. This study compares utility-scale and distributed photovoltaic (PV) systems coupled with Battery Energy-Storage Systems (BESSs) in the Italian electricity market, analyzing different battery sizes. A multistage stochastic mixed-integer linear programming model, using Monte Carlo PV production scenarios, optimizes day-ahead and intra-day market offers while incorporating PV forecast updates. In real time, battery flexibility reduces imbalances. Here we show that, to ensure dispatchability—defined as keeping annual imbalances below 5% of PV output—a 1 MW PV system requires 220 kWh of storage for utility-scale and 50 kWh for distributed systems, increasing the levelized cost of electricity by +13.1% and +1.94%, respectively. Net present value is negative for BESSs performing imbalance netting only. Therefore, a multiple service strategy, including imbalance netting and energy arbitrage, is introduced. Performing arbitrage while keeping dispatchability reaches an economic optimum with a 1.7 MWh BESS for utility-scale systems and 1.1 MWh BESS for distributed systems. These results show lower PV firming costs than previous studies, and highlight that under a multiple-service strategy, better economic outcomes are obtained with larger storage capacities. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

36 pages, 1973 KiB  
Article
A Comparative Life Cycle Assessment of an Electric and a Conventional Mid-Segment Car: Evaluating the Role of Critical Raw Materials in Potential Abiotic Resource Depletion
by Andrea Cappelli, Nicola Stefano Trimarchi, Simone Marzeddu, Riccardo Paoli and Francesco Romagnoli
Energies 2025, 18(14), 3698; https://doi.org/10.3390/en18143698 - 13 Jul 2025
Viewed by 613
Abstract
Electric passenger vehicles are set to dominate the European car market, driven by EU climate policies and the 2035 ban on internal combustion engine production. This study assesses the sustainability of this transition, focusing on global warming potential and Critical Raw Material (CRM) [...] Read more.
Electric passenger vehicles are set to dominate the European car market, driven by EU climate policies and the 2035 ban on internal combustion engine production. This study assesses the sustainability of this transition, focusing on global warming potential and Critical Raw Material (CRM) extraction throughout its life cycle. The intensive use of CRMs raises environmental, economic, social, and geopolitical concerns. These materials are scarce and are concentrated in a few politically sensitive regions, leaving the EU highly dependent on external suppliers. The extraction, transport, and refining of CRMs and battery production are high-emission processes that contribute to climate change and pose risks to ecosystems and human health. A Life Cycle Assessment (LCA) was conducted, using OpenLCA software and the Ecoinvent 3.10 database, comparing a Peugeot 308 in its diesel and electric versions. This study adopts a cradle-to-grave approach, analyzing three phases: production, utilization, and end-of-life treatment. Key indicators included Global Warming Potential (GWP100) and Abiotic Resource Depletion Potential (ADP) to assess CO2 emissions and mineral resource consumption. Technological advancements could mitigate mineral depletion concerns. Li-ion battery recycling is still underdeveloped, but has high recovery potential, with the sector expected to expand significantly. Moreover, repurposing used Li-ion batteries for stationary energy storage in renewable energy systems can extend their lifespan by over a decade, decreasing the demand for new batteries. Such innovations underscore the potential for a more sustainable electric vehicle industry. Full article
Show Figures

Figure 1

17 pages, 3466 KiB  
Article
Levelized Cost of Storage (LCOS) of Battery Energy Storage Systems (BESS) Deployed for Photovoltaic Curtailment Mitigation
by Luca Migliari, Daniele Cocco and Mario Petrollese
Energies 2025, 18(14), 3602; https://doi.org/10.3390/en18143602 - 8 Jul 2025
Cited by 1 | Viewed by 524
Abstract
Despite the growing application of storage for curtailment mitigation, its cost-effectiveness remains uncertain. This study evaluates the Levelized Cost of Storage, which also represents an implicit threshold revenue, for Lithium-ion Battery Energy Storage Systems deployed for photovoltaic curtailment mitigation. Specifically, the LCOS is [...] Read more.
Despite the growing application of storage for curtailment mitigation, its cost-effectiveness remains uncertain. This study evaluates the Levelized Cost of Storage, which also represents an implicit threshold revenue, for Lithium-ion Battery Energy Storage Systems deployed for photovoltaic curtailment mitigation. Specifically, the LCOS is assessed—using a mathematical simulation model—for various curtailment scenarios defined by maximum levels (10–40%), hourly profiles (upper limit and proportional), and growth rates (2, 5, and 10 years) at three storage system capacities (0.33, 0.50, 0.67 h) and two European locations (Cagliari and Berlin). The results indicate that the LCOS of batteries deployed for curtailment mitigation is, on average, comparable to that of systems used for bulk energy storage applications (155–320 EUR/MWh) in Cagliari (180–410 EUR/MWh). In contrast, in Berlin, the lower and more variable photovoltaic generation results in significantly higher LCOS values (200–750 EUR/MWh). For both locations, the lowest LCOS values (180 EUR/MWh for Cagliari and 200 EUR/MWh for Berlin), obtained for very high curtailment levels (40%), are significantly above average electricity prices (108 EUR/MWh for Cagliari and 78 EUR/MWh for Berlin), suggesting that BESSs for curtailment mitigation are competitive in the day-ahead market only if their electricity is sold at a significantly higher price. This is particularly true for lower curtailment levels. Indeed, for a curtailment level of 10% reached in 5 years, the LCOS for a 0.5 h BESS capacity is approximately 255 EUR/MWh in Cagliari and 460 EUR/MWh in Berlin. The study further highlights that the curtailment scenario significantly affects the Levelized Cost of Storage, with the upper limit hourly profile being more conservative. Full article
(This article belongs to the Special Issue Advanced Solar Technologies and Thermal Energy Storage)
Show Figures

Figure 1

27 pages, 5122 KiB  
Article
Risk Spillover of Energy-Related Systems Under a Carbon Neutral Target
by Fei Liu, Honglin Yao, Yanan Chen, Xingbei Song, Yihang Zhao and Sen Guo
Energies 2025, 18(13), 3515; https://doi.org/10.3390/en18133515 - 3 Jul 2025
Viewed by 319
Abstract
Under the background of climate change, the risk spillover within the energy system is constantly intensifying. Clarifying the coupling relationship between entities within the energy system can help policymakers propose more reasonable policy measures and strengthen risk prevention. To estimate the risk spillover [...] Read more.
Under the background of climate change, the risk spillover within the energy system is constantly intensifying. Clarifying the coupling relationship between entities within the energy system can help policymakers propose more reasonable policy measures and strengthen risk prevention. To estimate the risk spillover of energy-related systems, this paper constructs five subsystems: the fossil fuel subsystem, the electricity subsystem, the green bond subsystem, the renewable energy subsystem, and the carbon subsystem. Then, a quantitative risk analysis is conducted on two major energy consumption/carbon emission entities, China and Europe, based on the DCC-GARCH-CoVaR method. The result shows that (1) Markets of the same type often have more significant dynamic correlations. Of these, the average dynamic correlation coefficient of GBI-CABI (the Chinese green bond subsystem) and FR-DE (the European electricity subsystem) are the largest, by 0.8552 and 0.7347. (2) The high correlation between energy markets results in serious risk contagion, and the overall risk spillover effect within the European energy system is about 2.6 times that within the Chinese energy system. Of these, EUA and CABI are the main risk connectors of each energy system. Full article
Show Figures

Figure 1

25 pages, 1264 KiB  
Article
Potential Assessment of Electrified Heavy-Duty Trailers Based on the Methods Developed for EU Legislation (VECTO Trailer)
by Stefan Present and Martin Rexeis
Future Transp. 2025, 5(3), 77; https://doi.org/10.3390/futuretransp5030077 - 1 Jul 2025
Viewed by 360
Abstract
Since 1 January 2024, newly produced heavy-duty trailers are subject to the assessment of their performance regarding CO2 and fuel consumption according to Implementing Regulation (EU) 2022/1362. The method is based on the already established approach for the CO2 and energy [...] Read more.
Since 1 January 2024, newly produced heavy-duty trailers are subject to the assessment of their performance regarding CO2 and fuel consumption according to Implementing Regulation (EU) 2022/1362. The method is based on the already established approach for the CO2 and energy consumption evaluation of trucks and buses, i.e., applying a combination of component testing and vehicle simulation using the software VECTO (Vehicle Energy Consumption calculation TOol). For the evaluation of trailers, generic conventional towing vehicles in combination with the specific CO2 and fuel consumption-relevant properties of the trailer, such as mass, aerodynamics, rolling resistance etc., are simulated in the “VECTO Trailer” software. The corresponding results are used in the European HDV CO2 standards with which manufacturers must comply to avoid penalty payments (2030: −10% for semitrailers and −7.5% for trailers compared with the baseline year 2025). Methodology and legislation are currently being extended to also cover the effects of electrified trailers (trailers with an electrified axle and/or electrically supplied auxiliaries) on CO2, electrical energy consumption, and electric range extension (special use case in combination with a battery-electric towing vehicle). This publication gives an overview of the developed regulatory framework and methods to be implemented in a future extension of VECTO Trailer as well as a comparison of different e-trailer configurations and usage scenarios regarding their impact on CO2, energy consumption, and electric range by applying the developed methods in a preliminary potential analysis. Results from this analysis indicate that e-trailers that use small batteries (5–50 kWh) to power electric refrigeration units achieve a CO2 reduction of 5–10%, depending primarily on battery capacity. In contrast, e-trailers designed for propulsion support with larger batteries (50–500 kWh) and e-axle(s) (50–500 kW) demonstrate a reduction potential of up to 40%, largely determined by battery capacity and e-axle rating. Despite their reduction potential, market acceptance of e-trailers remains uncertain as the higher number of trailers compared with towing vehicles could lead to slow adoption, especially of the more expensive configurations. Full article
Show Figures

Figure 1

25 pages, 1544 KiB  
Review
Transformation of the Energy Market in Poland in the Context of the European Union over the Last 20 Years
by Anna Marciniuk-Kluska and Mariusz Kluska
Energies 2025, 18(13), 3410; https://doi.org/10.3390/en18133410 - 28 Jun 2025
Cited by 1 | Viewed by 740
Abstract
The transformation of the energy market in Poland over the last 20 years has been a process deeply rooted in European Union policies and initiatives, including emissions trading (EU ETS), climate and energy packages and the European Green Deal. Poland, historically dependent on [...] Read more.
The transformation of the energy market in Poland over the last 20 years has been a process deeply rooted in European Union policies and initiatives, including emissions trading (EU ETS), climate and energy packages and the European Green Deal. Poland, historically dependent on coal, continues to struggle with systemic problems such as low grid flexibility, ageing infrastructure, high CO2 emissions and the socio-economic costs of the transition in mining regions. The research methodology is based on analysis of reports, scientific articles, EU documents and statistical data. So far, there is a research gap in the research area, mainly concerning two problems. The first is the lack of a multifaceted, integrated analysis of Poland’s energy transition, taking into account not only technological changes and RES participation, but also systemic problems (infrastructure, policy, social acceptance). The second, in turn, relates to the need to identify the impact of EU regulation as a driving force, not just an obstacle. The objective of the article is to provide a comprehensive analysis of the Polish energy market in the context of the EU over the past 20 years, covering (1) systemic problems of the Polish power sector, (2) the impact of key EU initiatives and regulations, (3) the development of renewable energy sources, (4) the modernisation and digitalisation of the grid, (5) current and future market trends, and (6) the main challenges of the transition. The analysis shows that Poland’s electricity sector is still dominated by coal, but its share is steadily decreasing, from ~85% in 2015 to about 60% in 2023. At the same time, the share of renewable energy sources (mainly wind and photovoltaics) has increased from ~10% to ~27%. Nevertheless, the gap with the EU average remains significant. Full article
Show Figures

Figure 1

22 pages, 2137 KiB  
Article
Cars and Greenhouse Gas Goals: A Big Stone in Europe’s Shoes
by Roberto Ivo da Rocha Lima Filho, Thereza Cristina Nogueira de Aquino, Anderson Costa Reis and Bernardo Motta
Energies 2025, 18(13), 3371; https://doi.org/10.3390/en18133371 - 26 Jun 2025
Viewed by 499
Abstract
If new technologies can increase production efficiency and reduce the consumption of natural resources, they can also bring new environmental risks. This dynamic is particularly relevant for the automotive industry, since it is one of the sectors that invests most in R&D, but [...] Read more.
If new technologies can increase production efficiency and reduce the consumption of natural resources, they can also bring new environmental risks. This dynamic is particularly relevant for the automotive industry, since it is one of the sectors that invests most in R&D, but at the same time also contributes a significant portion of greenhouse gas emissions and consumes a large amount of energy. This article aims to analyze the feasibility of meeting the environmental targets in place within 32 European countries in light of the recent technological trajectory of the automotive industry, namely with regard to the adoption of the propulsion model’s alternative to oil and diesel. Using data disaggregated by countries from 2000 up until 2020, in this paper, the estimated regressions aimed to not only verify whether electrical vehicles had a positive impact on CO2 emissions found in the European market, but to also assess whether they will meet the target set for the next 30 years, with attention to the economy recovery after 2025 and a more robust EV market penetration in replacement of traditional fossil fuels cars. Full article
(This article belongs to the Special Issue Energy Markets and Energy Economy)
Show Figures

Figure 1

26 pages, 1794 KiB  
Article
Can Chinese Electric Vehicles Meet EU Batteries Regulation Targets? A Dynamic Approach to Assess the Potential for Recycled Materials Use in Chinese EV Batteries
by Ping Li, Yaoming Li, Yiyun Qiao, Jing Wang, Dongchang Zhao and Rujie Yu
World Electr. Veh. J. 2025, 16(7), 342; https://doi.org/10.3390/wevj16070342 - 20 Jun 2025
Viewed by 611
Abstract
The European Union (EU) has put forward a new regulatory framework for batteries through the EU Batteries Regulation (2023/1542), which sets a series of minimum thresholds of recycled materials for electric vehicle (EV) batteries sold on the EU market. Since the EU is [...] Read more.
The European Union (EU) has put forward a new regulatory framework for batteries through the EU Batteries Regulation (2023/1542), which sets a series of minimum thresholds of recycled materials for electric vehicle (EV) batteries sold on the EU market. Since the EU is the largest market for China’s EV export, compliance with the EU Batteries Regulation is a prerequisite for China’s EV export. To evaluate the feasibility of meeting these regulatory requirements, a future-oriented Chinese EV recycled materials use potential analysis model has been developed, forecasting the maximum proportion of recycled materials in China’s EV batteries from 2020 to 2035. To find out the risk factors, influencing aspects such as battery lifespan, demand, technology development, collection rate, and battery reshoring have been considered. The findings indicate that compared to other metals, the maximum proportion of recycled lithium is the lowest, forecast to be 21.2% in 2031, and increasing to 28.3% by 2035. Conversely, the maximum proportion of recycled graphite is the highest, at 28.9% in 2031 and reaching 41.3% in 2035. These results suggest that Chinese EV batteries could meet the targets set by the EU Batteries Regulation in most scenarios. Moreover, the analysis indicates that battery lifespan and collection rate constitute significant risk factors potentially influencing the recycled material content in Chinese EV batteries, which in turn impacts Chinese EV export to the EU. Finally, policy recommendations are proposed to enhance EV export and to bolster EV battery recycling industry development. Full article
Show Figures

Figure 1

37 pages, 1293 KiB  
Article
Renewable Energy and Price Stability: An Analysis of Volatility and Market Shifts in the European Electricity Sector (2015–2025)
by Marek Pavlík, František Kurimský and Kamil Ševc
Appl. Sci. 2025, 15(12), 6397; https://doi.org/10.3390/app15126397 - 6 Jun 2025
Viewed by 1731
Abstract
This research paper analyses the evolution of electricity price volatility in six European countries between 2015 and 2025, focusing on the relationship between the increasing penetration of renewable energy sources (RES) and short-term price fluctuations. Based on high-frequency data (at 15 min to [...] Read more.
This research paper analyses the evolution of electricity price volatility in six European countries between 2015 and 2025, focusing on the relationship between the increasing penetration of renewable energy sources (RES) and short-term price fluctuations. Based on high-frequency data (at 15 min to hourly resolution) on electricity prices, solar and wind generation, and residual load, both year-on-year and structural changes in volatility are quantified. The results show a significant increase in volatility after 2021, with outliers appearing particularly during the 2022 energy crisis, most notably in countries with a high share of RES and limited system flexibility. The analysis identifies non-linear relationships between RES generation and the occurrence of negative prices, with country-specific threshold levels. Annual regression models show that the predictive power of these relationships is time-varying and influenced by externalities. The correlation matrices confirm regional differences in the impact of RES on price dynamics. The results support the design of rules for forecasting risk periods and point to the need for market mechanisms increasing flexibility, including accumulation, demand management, and cross-border integration. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

Back to TopTop