Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = Eastern Arabian Sea

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 10930 KiB  
Article
Geospatial Analysis of Patterns and Trends of Mangrove Forest in Saudi Arabia: Identifying At-Risk Zone-Based Land Use
by Amal H. Aljaddani
Sustainability 2025, 17(13), 5957; https://doi.org/10.3390/su17135957 - 28 Jun 2025
Viewed by 771
Abstract
Mangrove ecosystems are crucial coastal habitats that support life and regulate the Earth’s atmosphere. However, these ecosystems face prominent threats due to anthropogenic activities and environmental constraints. For instance, the Saudi Arabian coast is particularly vulnerable to species extinction and biodiversity loss due [...] Read more.
Mangrove ecosystems are crucial coastal habitats that support life and regulate the Earth’s atmosphere. However, these ecosystems face prominent threats due to anthropogenic activities and environmental constraints. For instance, the Saudi Arabian coast is particularly vulnerable to species extinction and biodiversity loss due to the fragility of the ecosystem; this highlights the need to understand the spatial and temporal dynamics of mangrove forests in desert environments. Hence, this is the first national study to quantify mangrove forests and analyze at-risk zone-based land use along Saudi Arabian coasts over 40 years. Thus, the primary contents of this research were (1) to produce a new long-term dataset covering the entire Saudi coastline, (2) to identify the patterns, analyze the trends, and quantify the change of mangrove areas, and (3) to determine vulnerability zoning of mangrove area-based land use and transportation networks. This study used Landsat satellite imagery via Google Earth Engine for national-scale mangrove mapping of Saudi Arabia between 1985 and 2024. Visible and infrared bands and seven spectral indices were employed as input features for the random forest classifier. The two classes used were mangrove and non-mangrove; the latter class included non-mangrove land-use and land-cover areas. Then, the study employed the output mangrove mapping to delineate vulnerable mangrove forest-based land use. The overall results showed a substantial increase in mangrove areas, ranging from 27.74 to 59.31 km2 in the Red Sea and from 1.05 to 8.65 km2 in the Arabian Gulf between 1985 and 2024, respectively. However, within this decadal trend, there were noticeable periods of decline. The spatial coverage of mangroves was larger on Saudi Arabia’s western coasts, especially the southwestern coasts, than on its eastern coasts. The overall accuracy, conducted annually, ranged between 91.00% and 98.50%. The results also show that expanding land uses and transportation networks within at-risk zones of mangrove forests may have a high potential effect. This study aimed to benefit the government, conservation agencies, coastal planners, and policymakers concerned with the preservation of mangrove habitats. Full article
Show Figures

Figure 1

23 pages, 11386 KiB  
Article
Tectonic Evolution of Wadi Hebran Area on the Suez Rift Eastern Flank, Sinai, Egypt
by Sherif Mansour, Amr Elkelish, Abdullah S. Alawam, Mohamed A. Gharib, Akihiro Tamura and Noriko Hasebe
Minerals 2025, 15(6), 655; https://doi.org/10.3390/min15060655 - 18 Jun 2025
Viewed by 496
Abstract
Continental rifts represent one of the most important settings geologically and economically. The Suez Rift represents more than 74% of the Egyptian crude oil. It represents the northern end of the Red Sea, which understanding is vital to reconstructing the tectonics, dynamics, and [...] Read more.
Continental rifts represent one of the most important settings geologically and economically. The Suez Rift represents more than 74% of the Egyptian crude oil. It represents the northern end of the Red Sea, which understanding is vital to reconstructing the tectonics, dynamics, and time–temperature history of the whole region. An effective method to reveal rift-related history is by studying its flanks, which are represented here by the Arabian-Nubian Shield Neoproterozoic basement rocks. We applied an approach integrating new fission-track thermochronology data, new time–temperature modeling, stratigraphic information, and geological knowledge, which has proven its effectiveness in such geological settings. The collected samples from the Wadi Hebran area on the eastern flank of the Suez rift showed two differentiated cooling histories: The first has a Carboniferous zircon fission-track and a Cretaceous apatite fission-track age, and the second has a Triassic zircon fission-track and an Oligocene–Miocene apatite fission-track age. The time–temperature history modeling supported four distinct cooling events activated through the Neoproterozoic post-accretion erosional event, Variscan tectonic event, Gondwana disintegration, and the Suez Rift initiation. The rock uplift that accompanied the Suez Rift reaches up to 4 km, explaining the extraordinary elevations of the Catherina region, and supports an active rift component in the southern segment of the Suez Rift eastern flank. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

24 pages, 7343 KiB  
Article
Impact of Mesoscale Eddies on Acoustic Propagation Under a Rough Sea Surface
by Shaoze Zhang, Jian Shi and Xuhui Cao
Remote Sens. 2025, 17(12), 2036; https://doi.org/10.3390/rs17122036 - 13 Jun 2025
Viewed by 396
Abstract
This study investigates the combined effects of mesoscale eddies and rough sea surfaces on acoustic propagation in the eastern Arabian Sea and Gulf of Aden during summer monsoon conditions. Utilizing three-dimensional sound speed fields derived from CMEMS data, sea surface spectra from the [...] Read more.
This study investigates the combined effects of mesoscale eddies and rough sea surfaces on acoustic propagation in the eastern Arabian Sea and Gulf of Aden during summer monsoon conditions. Utilizing three-dimensional sound speed fields derived from CMEMS data, sea surface spectra from the SWAN wave model validated by Jason-3 altimetry, and the BELLHOP ray-tracing model, we quantify their synergistic impacts on underwater sound. A Monte Carlo-based dynamic sea surface roughness model is integrated with BELLHOP to analyze multiphysics interactions. The results reveal that sea surface roughness significantly influences surface duct propagation, increasing transmission loss by approximately 20 dB compared to a smooth sea surface, while mesoscale eddies deepen the surface duct and widen convergence zones by up to 5 km. In deeper waters, eddies shift convergence zones and reduce peak sound intensity in the deep sound channel. These findings enhance sonar performance and underwater communication in dynamic, monsoon-influenced marine environments. Full article
(This article belongs to the Topic Advances in Underwater Acoustics and Aeroacoustics)
Show Figures

Figure 1

29 pages, 6449 KiB  
Article
Long-Term Spatio-Temporal Analysis, Distribution, and Trends of Dust Events over Iran
by Abbas Ranjbar Saadat Abadi, Nasim Hossein Hamzeh, Dimitris G. Kaskaoutis, Christian Opp and Amin Fazl Kazemi
Atmosphere 2025, 16(3), 334; https://doi.org/10.3390/atmos16030334 - 16 Mar 2025
Cited by 3 | Viewed by 1551
Abstract
This study provides a comprehensive evaluation of dust events over Iran, using synoptic data from 286 meteorological stations. The dust events are classified according to synoptic dust codes as suspended dust and others (i.e., blowing dust, dust storms) and based on their intensity [...] Read more.
This study provides a comprehensive evaluation of dust events over Iran, using synoptic data from 286 meteorological stations. The dust events are classified according to synoptic dust codes as suspended dust and others (i.e., blowing dust, dust storms) and based on their intensity with horizontal visibility ≤1, 3, 5, and 10 km. Severe events (visibility ≤ 1 km) of suspended dust (code 06) occurred primarily in the western parts of Iran, while blowing dust events of moderate or severe intensity dominated over the south and eastern Iran, thus revealing a contrasting spatial distribution regarding the type and frequency of dust events. Furthermore, a distinct seasonality is revealed in the number of dust events, since suspended dust maximized in SW Iran from March to July, highly associated with Shamal winds, while blowing dust storms over south and east Iran maximized from April to August. Zabol city, east Iran, and some stations along the coast of the Arabian Sea are highly impacted by this type of dust storm throughout the year. Trend analysis revealed a notable increase in frequency of dust events during the period 1994–2023, particularly in the western part of Iran, mostly attributed to transboundary dust from the Mesopotamian plains. The large increase in dust activity during 1994–2009 was followed by a decrease during the 2010s at many stations, while notable differences were observed in the spatial distribution of the trends in suspended and blowing dust. An inverse correlation between dust events and precipitation anomalies was observed, since years with abnormal precipitation (e.g., 2019; 138% increase) were related to a substantial decrease in dust occurrence. Over an 11-year period, surface dust concentrations exceeded the annual PM10 threshold of 50 µg/m3 on more than 800 days, with maximum concentrations reaching up to 1411 µg/m3. This highlights the urgent need for effective management strategies to mitigate the impacts of dust storms on air quality and public health in Iran. Full article
(This article belongs to the Special Issue Long-Term Dust Transport)
Show Figures

Figure 1

17 pages, 9729 KiB  
Article
Characterizing the Tropical Cyclones Activity over Arabian Sea (1982–2021)
by Abdulhaleem H. Labban, H. M. Hasanean, Ali Almahri, Ali Salem Al-Sakkaf and Mahmoud A. A. Hussein
Oceans 2024, 5(4), 840-856; https://doi.org/10.3390/oceans5040048 - 4 Nov 2024
Cited by 1 | Viewed by 2238
Abstract
The current study looks at how the characteristics of Arabian Sea tropical cyclones (TCs) change over time. The results show that in the pre-monsoon (April–June) and the post-monsoon (October–December), the activity of TCs > 34 knots, including cyclonic storm (CS), severe cyclonic storm [...] Read more.
The current study looks at how the characteristics of Arabian Sea tropical cyclones (TCs) change over time. The results show that in the pre-monsoon (April–June) and the post-monsoon (October–December), the activity of TCs > 34 knots, including cyclonic storm (CS), severe cyclonic storm (SCS), very severe cyclonic storm (VSCS), extreme severe cyclonic storm (ESCS), and super cyclonic storm (Sup. CS), has significantly increased, while the tendency of TCs < 34 knots, depressions and deep depressions (Ds) over the Arabian Sea has only slightly increased. Most of the TC activity in the first two decades (1982–2001) over the Arabian Sea activated on the eastern side, while in the last two decades (2002–2021), there was an expansion toward the southwest region of the Arabian Sea, especially in the post-monsoon season. The composite analysis of environmental parameters over the Arabian Sea reveals that the negative anomalies of outgoing longwave radiation (OLR) and the positive anomalies of relative humidity at 500 hPa (RH–500 hPa) in the first decade (1982–1991) and the second decade (1992–2001) are more concentrated on the eastern side of the Arabian Sea, leading to increased activity for TCs. Decades three (2002–2011) and four (2012–2021) demonstrated a wide distribution of weak vertical wind shear (VWS) and strong convection (OLR and RH–500 hPa) over the Arabian Sea basin. This led to TCs occurring more frequently and stronger, especially in the post-monsoon season. SST over the Arabian Sea was sufficient for tropical storm activity (≥26.5 °C) for both typical seasons. Full article
Show Figures

Figure 1

21 pages, 3915 KiB  
Article
Seasonal Surges in Bacterial Diversity along the Coastal Waters of the Eastern Arabian Sea
by S. Hafza, A. Parvathi, A. S. Pradeep Ram, Thampan K. Alok, R. Neeraja, R. Jyothibabu and G. V. M. Gupta
J. Mar. Sci. Eng. 2024, 12(10), 1796; https://doi.org/10.3390/jmse12101796 - 9 Oct 2024
Cited by 3 | Viewed by 1418
Abstract
The upwelling phenomenon plays a vital role within marine ecosystems, transporting essential nutrients from the bottom to the surface and boosting biological productivity. However, the bacterial community structure in upwelling zones along the western coast of India (WCI) is understudied. This research systematically [...] Read more.
The upwelling phenomenon plays a vital role within marine ecosystems, transporting essential nutrients from the bottom to the surface and boosting biological productivity. However, the bacterial community structure in upwelling zones along the western coast of India (WCI) is understudied. This research systematically examines bacterial diversity across three seasons—pre-monsoon (PR), monsoon (MN), and post-monsoon (PM)—using next-generation sequencing. Our findings show distinct spatial patterns of bacterial communities in the Arabian Sea and demonstrate that ecological variations influence bacterial distribution in this dynamic environment. During MN, the bacterial community exhibited greater species diversity but lower overall abundance compared to PR and PM. Non-Metric MDS cluster analysis revealed a 78% similarity (at order level) between PR and PM, indicating that MN supports unique bacterial diversity. KEGG analysis showed significant seasonal variations in metabolic functions, with increased functional potential during MN. Additionally, Carbohydrate-Active enZymes (CAZymes) analysis revealed distinct seasonal profiles, among which the GH13 enzymes were the most prevalent glycoside hydrolases during MN, predominantly being sucrose phosphorylase and glucosidase, known for breaking down glucan deposits derived from phytoplankton. The CAZymes profiles supported taxonomic and KEGG pathway findings, reinforcing that microbial communities are seasonally distinct and functionally adapted to changing availability of nutrients. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Graphical abstract

16 pages, 14536 KiB  
Article
Understanding the Dry-to-Wet Transition of Summer Precipitation over the Three-Rivers Headwater Region: Atmospheric Circulation Mechanisms
by Xuan Liu, Mingxiang Yang, Feng Zhou, Fan Wen, Xiaotan Zhang, Chao Gao, Hejia Wang and Ningpeng Dong
Sustainability 2024, 16(15), 6299; https://doi.org/10.3390/su16156299 - 23 Jul 2024
Cited by 1 | Viewed by 1243
Abstract
Summer precipitation has changed over the Three-Rivers Headwater (TRH) region, which may have an impact on droughts and floods in Asia. This study examines the notable interdecadal variation from dry to wet conditions in summer (June to August) precipitation over the TRH region [...] Read more.
Summer precipitation has changed over the Three-Rivers Headwater (TRH) region, which may have an impact on droughts and floods in Asia. This study examines the notable interdecadal variation from dry to wet conditions in summer (June to August) precipitation over the TRH region during the period of 1979–2020. The changes could have been influenced by atmospheric circulations. This study aims to improve our understanding of the interdecadal variation in summer precipitation over the TRH region. Our findings reveal that a zonally oriented teleconnection wave train is generated across the Eurasian mid-to-high latitudes, originating from the North Atlantic and propagating to northern East Asia along the westerly jet. This results in a weakened and northward-shifted westerly jet. Additionally, anticyclonic circulation anomalies over the northern Tibetan Plateau contribute to easterly water-vapor transport anomalies in the region, reducing water-vapor export at the eastern boundary. Concurrently, an anomalous cyclone over the Arabian Sea and an anomalous anticyclone over the Bay of Bengal enhance the influx of oceanic water vapor into the TRH region. The enhanced Walker circulation further augments the equatorial easterly, which in turn strengthens the anomalous anticyclone over the Bay of Bengal. Consequently, these atmospheric changes contribute to the increased summer precipitation over the TRH region, elucidating the mechanisms behind the observed dry-to-wet transition. Full article
Show Figures

Figure 1

15 pages, 3032 KiB  
Article
Estimation of Particulate Matter (PM10) Over Middle Indo-Gangetic Plain (Patna) of India: Seasonal Variation and Source Apportionment
by Ningombam Linthoingambi Devi, Ishwar Chandra Yadav and Amrendra Kumar
Atmosphere 2024, 15(8), 878; https://doi.org/10.3390/atmos15080878 - 23 Jul 2024
Viewed by 1445
Abstract
Despite extensive research on particulate matter (PM) pollution in India’s Indo-Gangetic Plain (IGP), source apportionment remains challenging. This study investigates the effect of particulate matter (PM10)-associated water soluble inorganic ions (WSIIs) on ambient air concentration across the middle IGP from January [...] Read more.
Despite extensive research on particulate matter (PM) pollution in India’s Indo-Gangetic Plain (IGP), source apportionment remains challenging. This study investigates the effect of particulate matter (PM10)-associated water soluble inorganic ions (WSIIs) on ambient air concentration across the middle IGP from January to December 2018. Moreover, the seasonal fluctuation and chemical characterization of PM10 were assessed for the year 2018. The results revealed a high concentration of PM10 (156 µg/m3), exceeding the WHO and National Ambient Air Quality Standard (NAAQS) limits. The highest PM10 levels were observed during autumn, winter, summer, and the rainy season. The study identified SO42− and NH4+ as the most common WSIIs, constituting 46% and 23% of the total WSIIs. Source apportionment analysis indicated that street dust, biomass burning, and vehicle and industrial emissions together with secondary formation significantly contributed to IGP’s PM pollution. Additionally, the investigation of air mass back trajectory suggests that air quality in IGP is largely influenced by eastern and western Maritime air masses originated from the Arabian Sea, the Bay of Bengal, Gujarat, Afghanistan, Pakistan, and Bangladesh. Full article
(This article belongs to the Special Issue Biomass Combustion and Emission Analysis)
Show Figures

Figure 1

19 pages, 10657 KiB  
Article
Monitoring Off-Shore Fishing in the Northern Indian Ocean Based on Satellite Automatic Identification System and Remote Sensing Data
by Jie Li, Qianguo Xing, Xuerong Li, Maham Arif and Jinghu Li
Sensors 2024, 24(3), 781; https://doi.org/10.3390/s24030781 - 25 Jan 2024
Cited by 5 | Viewed by 2795
Abstract
Satellite-derived Sea Surface Temperature (SST) and sea-surface Chlorophyll a concentration (Chl-a), along with Automatic Identification System (AIS) data of fishing vessels, were used in the examination of the correlation between fishing operations and oceanographic factors within the northern Indian Ocean from March 2020 [...] Read more.
Satellite-derived Sea Surface Temperature (SST) and sea-surface Chlorophyll a concentration (Chl-a), along with Automatic Identification System (AIS) data of fishing vessels, were used in the examination of the correlation between fishing operations and oceanographic factors within the northern Indian Ocean from March 2020 to February 2023. Frequency analysis and the empirical cumulative distribution function (ECDF) were used to calculate the optimum ranges of two oceanographic factors for fishing operations. The results revealed a substantial influence of the northeast and southwest monsoons significantly impacting fishing operations in the northern Indian Ocean, with extensive and active operations during the period from October to March and a notable reduction from April to September. Spatially, fishing vessels were mainly concentrated between 20° N and 6° S, extending from west of 90° E to the eastern coast of Africa. Observable seasonal variations in the distribution of fishing vessels were observed in the central and southeastern Arabian Sea, along with its adjacent high sea of the Indian Ocean. Concerning the marine environment, it was observed that during the northeast monsoon, the suitable SST contributed to high CPUEs in fishing operation areas. Fishing vessels were widely distributed in the areas with both mid-range and low-range Chl-a concentrations, with a small part distributed in high-concentration areas. Moreover, the monthly numbers of fishing vessels showed seasonal fluctuations between March 2020 and February 2023, displaying a periodic pattern with an overall increasing trend. The total number of fishing vessels decreased due to the impact of the COVID-19 pandemic in 2020, but this was followed by a gradual recovery in the subsequent two years. For fishing operations in the northern Indian Ocean, the optimum ranges for SST and Chl-a concentration were 27.96 to 29.47 °C and 0.03 to 1.81 mg/m3, respectively. The preliminary findings of this study revealed the spatial–temporal distribution characteristics of fishing vessels in the northern Indian Ocean and the suitable ranges of SST and Chl-a concentration for fishing operations. These results can serve as theoretical references for the production and resource management of off-shore fishing operations in the northern Indian Ocean. Full article
(This article belongs to the Special Issue Remote Sensing Application for Environmental Monitoring)
Show Figures

Figure 1

14 pages, 3314 KiB  
Brief Report
Teleseismic P-Wave Attenuation Beneath the Arabian Plate
by Talal Merghelani, Jun Kawahara, Kaoru Miyashita and Hani Zahran
Geosciences 2023, 13(11), 343; https://doi.org/10.3390/geosciences13110343 - 9 Nov 2023
Viewed by 1806
Abstract
In order to prove that the Arabian Plate is a tectonically active region even in its shield areas, we obtained the attenuation structure tp* of the upper mantle beneath the Arabian Plate by applying the spectral inversion method to the newly [...] Read more.
In order to prove that the Arabian Plate is a tectonically active region even in its shield areas, we obtained the attenuation structure tp* of the upper mantle beneath the Arabian Plate by applying the spectral inversion method to the newly established seismic network in Saudi Arabia operated by the Saudi Geological Survey (SGS). The data sets consisted of good quality vertical components of the teleseismic events for more than 4400 spectral ratios. The result showed significant and diverse tp* structures between the eastern and western regions of the Arabian Plate. High tp* was the predominant feature underneath the Arabian Shield (western Arabia) and low tp* within the Arabian Platform (eastern Arabia). The obtained tP* values range from −1.0 s to 1.0 s. The observed high tp* patterns followed a line from north to south through the Arabian Shield along the Red Sea margin. The high tp* distribution closely followed the volcanic region, in particular the Makka–Madina–Nafud Volcanic (MMNV) line. The maximum tp* values were observed in the southern region of the Arabian Shield, at the southern part of the Red Sea, where the African and Arabian Plates diverge. The observed high tp* will be attributed to the previously revealed low-velocity anomaly and thermal activities beneath the Arabian Shield, and it is also correlated with the topography (high elevation) in the region. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Figure 1

17 pages, 3808 KiB  
Article
Characteristics of Water Vapor Transport for Extreme Summer Precipitation in the Eastern Southwest China and Its Impact Mechanism
by Yonghua Li, Yao Wu, Jie Zhou, Bo Xiang, Juanxiong He and Dingan Huang
Atmosphere 2023, 14(9), 1328; https://doi.org/10.3390/atmos14091328 - 23 Aug 2023
Cited by 5 | Viewed by 1850
Abstract
To improve understanding of the characteristics of extreme summer rainfall and its water vapor transport in the eastern part of southwestern China (ESWC), this study analyzed data on daily precipitation from 118 meteorological stations in the ESWC from 1979 to 2020, as well [...] Read more.
To improve understanding of the characteristics of extreme summer rainfall and its water vapor transport in the eastern part of southwestern China (ESWC), this study analyzed data on daily precipitation from 118 meteorological stations in the ESWC from 1979 to 2020, as well as daily reanalysis data from ERA5 and daily reanalysis data from NCEP/NCAR. The study employed polynomial fitting, correlation, regression, clustering, and mixed single-particle Lagrangian trajectory (HYSPLITv5.0) modeling methods to simulate extreme summer precipitation and its water vapor transport characteristics in the ESWC and its possible formation mechanism. The results show that: (1) The contribution rate of extreme precipitation in the ESWC from 1979 to 2020 varied significantly on the interannual time scale. When the number of extreme precipitation days is high (low), the contribution rate of extreme precipitation is also high (low), while the contribution rate of general precipitation (the percentage of the sum of general precipitation to the total summer precipitation of that year) is often low (high). (2) When extreme precipitation occurs in the ESWC, compared with general precipitation, the high-level potential vortices are stronger, and the cold air from higher latitude is more likely to move southward. Meanwhile, the amount of water vapor input to the region is significantly larger than that of general precipitation. (3) There are four channels of water vapor sources in the ESWC during the period of extreme precipitation: the Bay of Bengal, the Arabian Sea, the western Pacific, and the northwest. The contribution of water vapor from the Bay of Bengal is the highest. The number of extreme summer precipitation days in the ESWC is significantly negatively correlated with the water vapor budget of the eastern boundary and positively correlated with Indian Ocean Basin-Wide (IOBW) index in the previous winter. (4) When the winter SST is high in the IOBW mode, it can cause the western Pacific subtropical high and the South Asian high to be stronger and shifted southward in summer, resulting in an increase in the number of extreme precipitation days in the ESWC. Full article
Show Figures

Figure 1

23 pages, 16300 KiB  
Article
Effect of Water Vapor Transport on a Typical Rainstorm Process in the Arid Region of Southern Xinjiang: Observations and Numerical Simulations
by Chen Jin, Qing He and Qian Huang
Remote Sens. 2023, 15(16), 4082; https://doi.org/10.3390/rs15164082 - 19 Aug 2023
Cited by 1 | Viewed by 1557
Abstract
There are frequent and intensive periods of heavy rain in the arid areas of southern Xinjiang. This study uses a typical rainstorm process in the South Xinjiang Basin to investigate the weather, physical mechanisms, mesoscale characteristics, and income and expenditure characteristics of water [...] Read more.
There are frequent and intensive periods of heavy rain in the arid areas of southern Xinjiang. This study uses a typical rainstorm process in the South Xinjiang Basin to investigate the weather, physical mechanisms, mesoscale characteristics, and income and expenditure characteristics of water vapor sources, analyzing them using the observation data from southern Xinjiang regional automatic stations, ERA5 reanalysis data, multi-source satellite data, and WRF numerical simulation results. The study results show that torrential rain processes occur in the double-body distribution of the South Asian High in the upper troposphere, which is “high in the east and low in the west,” with “two ridges and one trough” in the middle layer. The development and movement of the low vortex, the configuration of low-level convergence and high-level divergence, and vertical upward movement provide favorable dynamic conditions for heavy rain. Additionally, the Black Sea, the Caspian Sea, the Aral Sea, the Arabian Sea, and the Bay of Bengal are important water vapor sources for this rainstorm. The water vapor reaches the South Xinjiang Basin along westward, southwest, and eastward paths. It is mainly imported into the South Xinjiang Basin from 500 to 300 hPa on the southern border and 700–500 hPa on the west, north, and east borders, and exported from 500 to 300 hPa on the eastern border. The simulation results show that the change in water vapor content significantly influences the precipitation intensity and range. The water vapor transport at the southern boundary contributes the most precipitation during the rainstorm. As the water vapor in the rainstorm area increases (decreases), the ascending motion is strengthened (weakened), the low-level convergence and high-level divergence are strengthened (weakened), the water vapor transport to the middle and high levels increases (decreases), and the precipitation increases (decreases). Full article
Show Figures

Graphical abstract

14 pages, 1776 KiB  
Review
Upwelling in Marginal Seas and Its Association with Climate Change Scenario—A Comparative Review
by Muhammad Naim Satar, Mohd Fadzil Akhir, Zuraini Zainol and Jing Xiang Chung
Climate 2023, 11(7), 151; https://doi.org/10.3390/cli11070151 - 18 Jul 2023
Cited by 6 | Viewed by 4109
Abstract
After Bakun proposed his hypothesis in 1990 regarding upwelling under climate change, researchers conducted intensive studies to obtain the trends, current status, and future predictions of upwelling. Numerous studies have mainly focused on four major upwelling areas, which are part of the Eastern [...] Read more.
After Bakun proposed his hypothesis in 1990 regarding upwelling under climate change, researchers conducted intensive studies to obtain the trends, current status, and future predictions of upwelling. Numerous studies have mainly focused on four major upwelling areas, which are part of the Eastern Boundary Upwelling System (EBUS). However, despite its importance, little attention has been given to the marginal seas upwelling areas such as the South China Sea (SCS), Arabian Sea, Baltic Sea, and other small-scale upwelling locations. Here, we combined several published studies to develop a new synthesis describing climate change impacts on these areas. There had been uncertainty regarding the intensification of upwelling, depending on the locations, data type, and method used. For the SCS, Vietnam and the northern SCS showed intensifying upwelling trends, while the Taiwan Strait showed a decreasing trend. Separate studies in eastern Hainan and the Arabian Sea (Somali and Oman) showed contrasting results, where both increasing and decreasing trends of upwelling had been recorded. Like the SCS, the Baltic Sea showed different results for different areas as they found negative trends along the Polish, Latvian and Estonian, and positive trends along the Swedish coast of the Baltic Sea and the Finnish coast of the Gulf of Finland. While small scales upwelling in La Guajira and southern Java showed increasing and decreasing trends, respectively. All of these limited studies suggest that researchers need to conduct a lot more studies, including the future projection of upwelling, by using climate models to develop a new understanding of how the upwelling in the SCS responds to climate change. Full article
Show Figures

Figure 1

15 pages, 3982 KiB  
Article
Reconstructing the Tectonic History of the Arabian–Nubian Shield in Sinai: Low-Temperature Thermochronology Implications on Wadi Agar Area
by Sherif Mansour, Noriko Hasebe, Kamal Abdelrahman, Mohammed S. Fnais and Akihiro Tamura
Minerals 2023, 13(4), 574; https://doi.org/10.3390/min13040574 - 20 Apr 2023
Cited by 11 | Viewed by 2658
Abstract
The Arabian–Nubian Shield envelops the entire regional tectonic history from its formation during the Ediacaran to the Red Sea/Gulf of Suez rifting in the Oligocene–Miocene. The occurrence and extent of the expected successive tectonic events on Sinai basement rocks remain uncertain. Integration of [...] Read more.
The Arabian–Nubian Shield envelops the entire regional tectonic history from its formation during the Ediacaran to the Red Sea/Gulf of Suez rifting in the Oligocene–Miocene. The occurrence and extent of the expected successive tectonic events on Sinai basement rocks remain uncertain. Integration of thermochronological techniques with time–temperature modelling has proven to be a powerful tool for thermal-tectonic history reconstruction. Therefore, we collected representative samples from the Arabian–Nubian Shield basement rocks of the Wadi Agar area at the eastern flank of the Suez rift. Zircon fission-track data show two cooling age possibilities of Ediacaran and Devonian ages. Meanwhile, apatite fission-track data represent three cooling age spans of Carboniferous, Triassic, and Cretaceous. The integration of these data with the modelled time–temperature histories reveals four different cooling events synchronous with the regional events; (1) the Neoproterozoic post-accretion erosional event that causes near-surface rock uplift, (2) the Devonian–Carboniferous Hercynian tectonic event which affected the region with rocks exhumation of ca. 4.2 ± 1.4 km, (3) the Triassic Gondwana breakup initiation, and (4) the Oligocene–Miocene Gulf of Suez rifting which caused flanks uplift in the studied region of ca. 1.2 ± 0.4 km. The Gulf of Suez is a passive rift with a dominant mechanical component that is divided into two differently exhumed northern and southern segments, where an additional far-field thermal overprint was restricted to the southern segment. Full article
Show Figures

Figure 1

16 pages, 4123 KiB  
Article
Assessment of the Sea Surface Salinity Simulation and Projection Surrounding the Asian Waters in the CMIP6 Models
by Shanshan Jin, Haidong Pan and Tengfei Xu
Atmosphere 2023, 14(4), 726; https://doi.org/10.3390/atmos14040726 - 17 Apr 2023
Cited by 8 | Viewed by 2657
Abstract
Sea surface salinity (SSS) is a crucial indicator that is used to monitor the hydrological cycle in the ocean system. In this study, we evaluated the simulation skill of the Coupled Model Intercomparison Project Phase 6 (CMIP6) models in reproducing the SSS in [...] Read more.
Sea surface salinity (SSS) is a crucial indicator that is used to monitor the hydrological cycle in the ocean system. In this study, we evaluated the simulation skill of the Coupled Model Intercomparison Project Phase 6 (CMIP6) models in reproducing the SSS in the Asian Marginal Seas (AMSs). The results show that the AMSs’ SSS simulated by most CMIP6 models is generally in good agreement with the observations in terms of spatial patterns and seasonal variability. However, these models tend to overestimate the SSS in the Eastern Arabian Sea and the Bay of Bengal by up to 1.3 psu, while they underestimate the SSS in the Bohai Sea, the Yellow Sea, the Southern South China Sea, and the Indonesian Seas, with the bias exceeding −1.5 psu. Additionally, the seasonal variations in the Sea of Okhotsk, the Bay of Bengal, and the Arabian Sea exhibit large biases with phase shift or reversal in some CMIP6 models. Notably, the observed magnitudes in the AMSs are significantly higher than the global average of 0.2 psu, ranging from 0.22 to 1.19 psu. Furthermore, we calculated the projected trends in sea surface salinity under different future scenarios by using the CMIP6 models. The results reveal relatively larger SSS freshening trends in the second half of the 21st century compared to the first half. Specifically, the freshening trends for the Shared Socio-Economic Pathway (SSP) of low- (global radiative forcing of 2.6 W/m2 by the year 2100), medium- (global radiative forcing of 4.5 W/m2 by 2100), and high-end (8.5 W/m2 by 2100) pathways are 0.05–0.21, 0.12–0.39, and 0.28–0.78 psu/century, respectively. The most rapid freshening trends of SSS are observed in the East China Seas and the Indonesian Seas, which are over two times greater than the global mean. On the other hand, the SSS freshening trends in the Arabian Sea are slightly lower than the global mean SSS freshening trend. Full article
(This article belongs to the Special Issue Recent Advances in Researches of Ocean Climate Variability)
Show Figures

Figure 1

Back to TopTop