Teleseismic P-Wave Attenuation Beneath the Arabian Plate
Abstract
:1. Introduction
2. Data
3. Methodology
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mokhtar, T.A.; Herrmann, R.; Russell, D. Seismic velocity and Q model for the shallow structure of the Arabian shield from short-period Rayleigh waves. Geophysics 1988, 53, 1379–1387. [Google Scholar] [CrossRef]
- Seber, D.; Mitchell, B. Attenuation of surface waves across the Arabian Peninsula. Tectonophysics 1992, 204, 137–150. [Google Scholar] [CrossRef]
- Sandvol, E.; Al-Damegh, K.; Calvert, A.; Seber, D.; Barazangi, M.; Mohamad, R.; Gök, R.; Türkelli, N.; Gürbüz, C. Tomographic imaging of Lg and Sn propagation in the Middle East. Pure Appl. Geophys. 2001, 158, 1121–1163. [Google Scholar] [CrossRef]
- Al-Damegh, K.; Sandvol, E.; Al-Lazki, A.; Barazangi, M. Regional seismic wave propagation (Lg and Sn) and Pn attenuation in the Arabian Plate and surrounding regions. Geophys. J. Int. 2004, 157, 775–795. [Google Scholar] [CrossRef]
- Pasyanos, M.E.; Matzel, E.M.; Walter, W.R.; Rodgers, A.J. Broad-band Lg attenuation modelling in the Middle East. Geophys. J. Int. 2009, 177, 1166–1176. [Google Scholar] [CrossRef]
- Cong, L.; Mitchell, B. Seismic velocity and Q structure of the Middle Eastern crust and upper mantle from surface-wave dispersion and attenuation. Pure Appl. Geophys. 1998, 153, 503–538. [Google Scholar] [CrossRef]
- Cong, L.; Mitchell, B. Lg coda Q and its relation to the geology and tectonics of the Middle East. Pure Appl. Geophys. 1998, 153, 563–585. [Google Scholar] [CrossRef]
- Sheehan, A.F.; Solomon, S.C. Differential shear wave attenuation and its lateral variation in the North Atlantic region. J. Geophys. Res. Solid Earth 1992, 97, 15339–15350. [Google Scholar] [CrossRef]
- Romanowicz, B. A global tomographic model of shear attenuation in the upper mantle. J. Geophys. Res. Solid Earth 1995, 100, 12375–12394. [Google Scholar] [CrossRef]
- Bhattacharyya, J.; Masters, G.; Shearer, P. Global lateral variations of shear wave attenuation in the upper mantle. J. Geophys. Res. Solid Earth 1996, 101, 22273–22289. [Google Scholar] [CrossRef]
- Baqer, S.; Mitchell, B. Regional variation of Lg coda Q in the continental United States and its relation to crustal structure and evolution. Pure Appl. Geophys. 1998, 153, 613–638. [Google Scholar] [CrossRef]
- Billien, M.; Lévêque, J.J.; Trampert, J. Global maps of Rayleigh wave attenuation for periods between 40 and 150 seconds. Geophys. Res. Lett. 2000, 27, 3619–3622. [Google Scholar] [CrossRef]
- Roth, E.G.; Wiens, D.A.; Dorman, L.M.; Hildebrand, J.; Webb, S.C. Seismic attenuation tomography of the Tonga-Fiji region using phase pair methods. J. Geophys. Res. Solid Earth 1999, 104, 4795–4809. [Google Scholar] [CrossRef]
- Reid, F.; Woodhouse, J.; Van Heijst, H. Upper mantle attenuation and velocity structure from measurements of differential S phases. Geophys. J. Int. 2001, 145, 615–630. [Google Scholar] [CrossRef]
- Selby, N.D.; Woodhouse, J.H. The Q structure of the upper mantle: Constraints from Rayleigh wave amplitudes. J. Geophys. Res. Solid Earth 2002, 107, ESE 5-1–ESE 5-11. [Google Scholar] [CrossRef]
- Warren, L.M.; Shearer, P.M. Mapping lateral variations in upper mantle attenuation by stacking P and PP spectra. J. Geophys. Res. Solid Earth 2002, 107, ESE 6-1–ESE 6-11. [Google Scholar] [CrossRef]
- Gung, Y.; Romanowicz, B. Q tomography of the upper mantle using three-component long-period waveforms. Geophys. J. Int. 2004, 157, 813–830. [Google Scholar] [CrossRef]
- Lawrence, J.F.; Shearer, P.M.; Masters, G. Mapping attenuation beneath North America using waveform cross-correlation and cluster analysis. Geophys. Res. Lett. 2006, 33, L07315. [Google Scholar] [CrossRef]
- Dalton, C.A.; Ekström, G.; Dziewoński, A.M. The global attenuation structure of the upper mantle. J. Geophys. Res. Solid Earth 2008, 113, B09303. [Google Scholar] [CrossRef]
- Hwang, Y.K.; Ritsema, J.; Goes, S. Spatial variations of P wave attenuation in the mantle beneath North America. J. Geophys. Res. Solid Earth 2009, 114, B06312. [Google Scholar] [CrossRef]
- Hwang, Y.K.; Ritsema, J.; Goes, S. Global variation of body-wave attenuation in the upper mantle from teleseismic P wave and S wave spectra. Geophys. Res. Lett. 2011, 38, L06308. [Google Scholar] [CrossRef]
- Merghelani, T.; Kawahara, J.; Miyashita, K. P wave attenuation structure beneath the Kanto district and surrounding area, Japan. Arab. J. Geosci. 2013, 6, 1991–1999. [Google Scholar] [CrossRef]
- Sandvol, E.; Seber, D.; Barazangi, M.; Vernon, F.; Mellors, R.; Al-Amri, A. Lithospheric seismic velocity discontinuities beneath the Arabian Shield. Geophys. Res. Lett. 1998, 25, 2873–2876. [Google Scholar] [CrossRef]
- Mellors, R.J.; Camp, V.E.; Vernon, F.L.; Al-Amri, A.M.; Ghalib, A. Regional waveform propagation in the Arabian Peninsula. J. Geophys. Res. Solid Earth 1999, 104, 20221–20235. [Google Scholar] [CrossRef]
- Rodgers, A.J.; Walter, W.R.; Mellors, R.J.; Al-Amri, A.M.; Zhang, Y.S. Lithospheric structure of the Arabian Shield and Platform from complete regional waveform modelling and surface wave group velocities. Geophys. J. Int. 1999, 138, 871–878. [Google Scholar] [CrossRef]
- Debayle, E.; Lévêque, J.J.; Cara, M. Seismic evidence for a deeply rooted low-velocity anomaly in the upper mantle beneath the northeastern Afro/Arabian continent. Earth Planet. Sci. Lett. 2001, 193, 423–436. [Google Scholar] [CrossRef]
- Villasenor, A.; Ritzwoller, M.; Levshin, A.; Barmin, M.; Engdahl, E.; Spakman, W.; Trampert, J. Shear velocity structure of central Eurasia from inversion of surface wave velocities. Phys. Earth Planet. Inter. 2001, 123, 169–184. [Google Scholar] [CrossRef]
- Kumar, M.R.; Ramesh, D.; Saul, J.; Sarkar, D.; Kind, R. Crustal structure and upper mantle stratigraphy of the Arabian shield. Geophys. Res. Lett. 2002, 29, 130-1–130-4. [Google Scholar] [CrossRef]
- Benoit, M.H.; Nyblade, A.A.; VanDecar, J.C.; Gurrola, H. Upper mantle P wave velocity structure and transition zone thickness beneath the Arabian Shield. Geophys. Res. Lett. 2003, 30, 1531. [Google Scholar] [CrossRef]
- Julià, J.; Ammon, C.J.; Herrmann, R.B. Lithospheric structure of the Arabian Shield from the joint inversion of receiver functions and surface-wave group velocities. Tectonophysics 2003, 371, 1–21. [Google Scholar] [CrossRef]
- Al-Lazki, A.I.; Sandvol, E.; Seber, D.; Barazangi, M.; Turkelli, N.; Mohamad, R. Pn tomographic imaging of mantle lid velocity and anisotropy at the junction of the Arabian, Eurasian and African plates. Geophys. J. Int. 2004, 158, 1024–1040. [Google Scholar] [CrossRef]
- Al-Damegh, K.; Sandvol, E.; Barazangi, M. Crustal structure of the Arabian plate: New constraints from the analysis of teleseismic receiver functions. Earth Planet. Sci. Lett. 2005, 231, 177–196. [Google Scholar] [CrossRef]
- Tkalčić, H.; Pasyanos, M.E.; Rodgers, A.J.; Gök, R.; Walter, W.; Al-Amri, A. A multistep approach for joint modeling of surface wave dispersion and teleseismic receiver functions: Implications for lithospheric structure of the Arabian Peninsula. J. Geophys. Res. Solid Earth 2006, 111, B11311. [Google Scholar] [CrossRef]
- Chang, S.J.; Merino, M.; Van der Lee, S.; Stein, S.; Stein, C.A. Mantle flow beneath Arabia offset from the opening Red Sea. Geophys. Res. Lett. 2011, 38, L04301. [Google Scholar] [CrossRef]
- Chang, S.J.; Van der Lee, S. Mantle plumes and associated flow beneath Arabia and East Africa. Earth Planet. Sci. Lett. 2011, 302, 448–454. [Google Scholar] [CrossRef]
- Endo, E.; Zahran, H.; Nofal, H.; Hadidy, S. The Saudi national seismic network. Seismol. Res. Lett. 2007, 78, 439–445. [Google Scholar] [CrossRef]
- Stein, S.; Wysession, M. An Introduction to Seismology, Earthquakes, and Earth Structure; Wiley-Blackwell: Malden, MA, USA, 2003; ISBN 978-0-86542-078-6. [Google Scholar]
- Gettings, M.E. Heat-Flow Measurements at Shot Points along the 1978 Saudi Arabian Seismic Deep-Refraction Line: Part 2, Discussion and Interpretation; US Geological Survey: Lawrence, KA, USA, 1982. [Google Scholar]
- Park, Y.; Nyblade, A.A.; Rodgers, A.J.; Al-Amri, A. Upper mantle structure beneath the Arabian Peninsula and northern Red Sea from teleseismic body wave tomography: Implications for the origin of Cenozoic uplift and volcanism in the Arabian Shield. Geochem. Geophys. Geosyst. 2007, 8, Q06021. [Google Scholar] [CrossRef]
- Ritsema, J.; Heijst, H.J.v.; Woodhouse, J.H. Complex shear wave velocity structure imaged beneath Africa and Iceland. Science 1999, 286, 1925–1928. [Google Scholar] [CrossRef]
- Zhao, D. Seismological structure of subduction zones and its implications for arc magmatism and dynamics. Phys. Earth Planet. Inter. 2001, 127, 197–214. [Google Scholar] [CrossRef]
- Bosworth, W.; Huchon, P.; McClay, K. The red sea and gulf of aden basins. J. Afr. Earth Sci. 2005, 43, 334–378. [Google Scholar] [CrossRef]
- Bohannon, R.G.; Naeser, C.W.; Schmidt, D.L.; Zimmermann, R.A. The timing of uplift, volcanism, and rifting peripheral to the Red Sea: A case for passive rifting? J. Geophys. Res. Solid Earth 1989, 94, 1683–1701. [Google Scholar] [CrossRef]
- Camp, V.E.; Roobol, M.J. Comment on “Topographic and volcanic asymmetry around the Red Sea: Constraints on rift models” by TH Dixon, ER Ivins, and JF Brenda. Tectonics 1991, 10, 649–652. [Google Scholar] [CrossRef]
- Coleman, R.G.; McGuire, A.V. Magma systems related to the Red Sea opening. Tectonophysics 1988, 150, 77–100. [Google Scholar] [CrossRef]
- Mohr, P.; Zanettin, B. The Ethiopian flood basalt province. In Continental Flood Basalts; Springer: Dordrecht, The Netherlands, 1988; pp. 63–110. [Google Scholar]
- Camp, V.E.; Roobol, M.J. Upwelling asthenosphere beneath western Arabia and its regional implications. J. Geophys. Res. Solid Earth 1992, 97, 15255–15271. [Google Scholar] [CrossRef]
- McGuire, A.V.; Bohannon, R.G. Timing of mantle upwelling: Evidence for a passive origin for the Red Sea rift. J. Geophys. Res. Solid Earth 1989, 94, 1677–1682. [Google Scholar] [CrossRef]
- Hansen, S.; Schwartz, S.; Al-Amri, A.; Rodgers, A. Combined plate motion and density-driven flow in the asthenosphere beneath Saudi Arabia: Evidence from shear-wave splitting and seismic anisotropy. Geology 2006, 34, 869–872. [Google Scholar] [CrossRef]
- Artemieva, I.M.; Mooney, W.D. Thermal thickness and evolution of Precambrian lithosphere: A global study. J. Geophys. Res. Solid Earth 2001, 106, 16387–16414. [Google Scholar] [CrossRef]
- Nyblade, A.A.; Pollack, H.N. A comparative study of parameterized and full thermal-convection models in the interpretation of heat flow from cratons and mobile belts. Geophys. J. Int. 1993, 113, 747–751. [Google Scholar] [CrossRef]
- Nyblade, A.A.; Pollack, H.N. A global analysis of heat flow from Precambrian terrains: Implications for the thermal structure of Archean and Proterozoic lithosphere. J. Geophys. Res. Solid Earth 1993, 98, 12207–12218. [Google Scholar] [CrossRef]
- Sebai, A.; Stutzmann, E.; Montagner, J.P.; Sicilia, D.; Beucler, E. Anisotropic structure of the African upper mantle from Rayleigh and Love wave tomography. Phys. Earth Planet. Inter. 2006, 155, 48–62. [Google Scholar] [CrossRef]
- McClusky, S.; Reilinger, R.; Mahmoud, S.; Ben Sari, D.; Tealeb, A. GPS constraints on Africa (Nubia) and Arabia plate motions. Geophys. J. Int. 2003, 155, 126–138. [Google Scholar] [CrossRef]
- Reilinger, R.; McClusky, S.; Oral, M.; King, R.; Toksoz, M.; Barka, A.; Kinik, I.; Lenk, O.; Sanli, I. Global Positioning System measurements of present-day crustal movements in the Arabia-Africa-Eurasia plate collision zone. J. Geophys. Res. Solid Earth 1997, 102, 9983–9999. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merghelani, T.; Kawahara, J.; Miyashita, K.; Zahran, H. Teleseismic P-Wave Attenuation Beneath the Arabian Plate. Geosciences 2023, 13, 343. https://doi.org/10.3390/geosciences13110343
Merghelani T, Kawahara J, Miyashita K, Zahran H. Teleseismic P-Wave Attenuation Beneath the Arabian Plate. Geosciences. 2023; 13(11):343. https://doi.org/10.3390/geosciences13110343
Chicago/Turabian StyleMerghelani, Talal, Jun Kawahara, Kaoru Miyashita, and Hani Zahran. 2023. "Teleseismic P-Wave Attenuation Beneath the Arabian Plate" Geosciences 13, no. 11: 343. https://doi.org/10.3390/geosciences13110343
APA StyleMerghelani, T., Kawahara, J., Miyashita, K., & Zahran, H. (2023). Teleseismic P-Wave Attenuation Beneath the Arabian Plate. Geosciences, 13(11), 343. https://doi.org/10.3390/geosciences13110343