Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,562)

Search Parameters:
Keywords = Earth Sciences

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5242 KiB  
Article
Quantification of the Spatial Heterogeneity of PM2.5 to Support the Evaluation of Low-Cost Sensors: A Long-Term Urban Case Study
by Róbert Mészáros, Zoltán Barcza, Bushra Atfeh, Roland Hollós, Erzsébet Kristóf, Ágoston Vilmos Tordai and Veronika Groma
Atmosphere 2025, 16(9), 998; https://doi.org/10.3390/atmos16090998 (registering DOI) - 23 Aug 2025
Abstract
During the last decades, development of novel low-cost sensors commercialized for indoor air quality measurements has gained interest. In this research, three AirVisual Pro air quality monitors were used to monitor PM2.5 and carbon dioxide concentrations in which two were installed indoors [...] Read more.
During the last decades, development of novel low-cost sensors commercialized for indoor air quality measurements has gained interest. In this research, three AirVisual Pro air quality monitors were used to monitor PM2.5 and carbon dioxide concentrations in which two were installed indoors and one outdoors at two residential apartments in Central Europe (Budapest, Hungary). In our research, we present a methodology to support the evaluation of indoor sensors by utilizing official outdoor monitoring data, leveraging the fact that indoor spaces are frequently ventilated and thus influenced by outdoor conditions. We compared six-year measurement data (01.2017–12.2022) with outdoor concentrations provided by the Hungarian Air Quality Monitoring Network (HAQM). However, the well-known low spatial representativeness and high spatio-temporal variability of PM2.5 in city environments made this evaluation problematic, which needed to be addressed before comparison. Here we quantify the spatial heterogeneity of the HAQM PM2.5 data for a maximum of eight stations. Then, based on the carbon dioxide readings of the AirVisual Pro units, data filtering was performed for the AirVisual 1 and AirVisual 2 sensors located in indoor environments to identify ventilated periods (nearly 10,000 ventilated events) for the AirVisual 1 and AirVisual 2 sensors, respectively, for the comparison of indoor and outdoor PM2.5 concentrations. The AirVisual 3 sensor was placed in a garden storage, and the measurements taken there were considered outdoor values throughout. Finally, four heterogeneity criteria were set for the HAQM data to filter conditions that were assumed to be comparable with the indoor sensor data. The results indicate that the spatial heterogeneity was indeed detectable, and in approximately 50–60% of the cases, the readings could be considered as non-representative to single location comparison, but the results depend on the selected homogeneity criteria. The AirVisual and HAQM comparison indicated relatively low sensitivity to heterogeneity criteria, which is a promising result that can be exploited. AirVisual sensors generally overestimated PM2.5, but this bias could be corrected with a simple linear adjustment. Slopes changed across sensors (0.83–0.85 for AirVisual 1, 0.48–0.53 for AirVisual 2, and 0.70–0.73 for AirVisual 3), indicating general overestimation and correlations from moderate to high (R2 = 0.45–0.89) depending on the device. In contrast, when we compared the measurements only with data from the nearest reference station, we obtained a weaker match and slopes that did not match those calculated by taking into account homogeneity criteria. This research contributes to the proliferation of citizen science and supports the application of LCSs in indoor conditions. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
16 pages, 2578 KiB  
Article
Determination of the Solar Angle of Incidence Using an Equivalent Surface and the Possibility of Applying This Approach in Geosciences and Engineering
by Marián Jenčo
ISPRS Int. J. Geo-Inf. 2025, 14(9), 323; https://doi.org/10.3390/ijgi14090323 (registering DOI) - 23 Aug 2025
Abstract
The solar angle of incidence is the angle between the sunlight and the normal on the impact surface. The lower the angle of incidence, the more sun radiation the surface can absorb. There are several methods for calculating of this angle. Determining the [...] Read more.
The solar angle of incidence is the angle between the sunlight and the normal on the impact surface. The lower the angle of incidence, the more sun radiation the surface can absorb. There are several methods for calculating of this angle. Determining the geographical location of the equivalent surface is one of the lesser-known options. The equivalent surface is a tangential plane to the Earth that is parallel to a reference inclined surface. The geographical coordinates of the point of tangency are clearly determined by the slope and aspect. Since the equivalent surface is horizontal, basic solar geometry equations apply. Unlike the conventional equations commonly used today, they provide easily interpretable results. The sunrise and sunset times for an inclined surface and the time of an extreme incidence angle can be calculated directly. Approximate calculations are not necessary. In addition, the geographical approach allows for the hour angle to be determined, as well as the tilt for a given azimuth of the solar panel that is perpendicular to direct sunlight. This new procedure sets the time for regular changes in the horizontal direction of the sun-tracker. The renaissance of the geographical approach for calculating the temporal characteristics, which allows for the use of simple equations and the interpretation of their results, can also benefit agriculture, forestry, land management, botany, architecture, and other sectors and sciences. Full article
Show Figures

Figure 1

32 pages, 4803 KiB  
Review
Methods and Applications of Lanthanide/Transition Metal Ion-Doped Luminescent Materials
by Xiaoyi Chen, Jiaqi Liu, Shujing Zhou, Zan Li, Min Yuan, Jinghui Shen, Yifan Zhang and Rongrong Ye
Molecules 2025, 30(17), 3470; https://doi.org/10.3390/molecules30173470 (registering DOI) - 23 Aug 2025
Abstract
Lanthanide/transition metal-doped luminescent materials are advanced materials with broad application potential. This type of material achieves control and optimization of luminescence performance by introducing lanthanide/transition metal ions into the host material and utilizing its unique electronic structure and optical properties. Luminescent materials are [...] Read more.
Lanthanide/transition metal-doped luminescent materials are advanced materials with broad application potential. This type of material achieves control and optimization of luminescence performance by introducing lanthanide/transition metal ions into the host material and utilizing its unique electronic structure and optical properties. Luminescent materials are suitable for optical communication devices, biological imaging, and photodetectors. The combination of lanthanide/transition metals with various matrix materials provides a new platform for creating new chemical and physical properties in materials science and device applications. In this paper, we summarize the latest progress in the research of lanthanide/transition metal-doped luminescent materials and explain their roles in biological imaging, sensing, and optoelectronic applications. It starts with various synthesis techniques and explores how to cleverly incorporate rare earth/transition metals into various matrices, thereby endowing them with unique properties. Then, the advantages and disadvantages of each synthesis technique are discussed. Subsequently, the focus will be on functional strategies and their applications. Finally, strategies for lanthanide/transition metal ion-doped luminescent materials to address challenges are proposed, and insights from each section are summarized. Full article
Show Figures

Graphical abstract

25 pages, 14212 KiB  
Article
Optimization of Composting Locations for Livestock Manure in Bangladesh: Spatial Analysis-Based Potential Environmental Benefits Assessment
by Zinat Mahal, Helmut Yabar and Md Faisal Abedin Khan
Clean Technol. 2025, 7(3), 72; https://doi.org/10.3390/cleantechnol7030072 - 22 Aug 2025
Abstract
For sustainable livestock manure management, composting is a common practice for supplying nutrients to crops. Therefore, optimizing plant locations for composting from livestock manure is essential in Bangladesh. This study performed a land suitability analysis using Geographic Information System (GIS) spatial modeling to [...] Read more.
For sustainable livestock manure management, composting is a common practice for supplying nutrients to crops. Therefore, optimizing plant locations for composting from livestock manure is essential in Bangladesh. This study performed a land suitability analysis using Geographic Information System (GIS) spatial modeling to identify suitable sites for composting plants, which was optimized through network analysis. After spatial analysis, 15, 42, and 147 locations were identified for large-scale, medium-scale, and small-scale manure-based compost production, respectively, across different scenarios. As a result, approximately 1537.74 kilotons/year of compost can be generated from 2703.86 kilotons of livestock manure, replacing about 44.31% of synthetic fertilizer use in Bangladesh in 2024. The potential reduction in greenhouse gas (GHG) emissions was assessed at 1986.76 gigagrams CO2eq/year, with nutrient leaching reduction potentials of 15.11 and 10.98 kilotons/year for nitrogen and phosphorus, respectively. Additionally, around 4.51 million tons of livestock manure can be disposed of annually by establishing composting plants. However, assessing the potential environmental benefits by optimizing composting plant locations can support the development of strategies to produce organic fertilizer by utilizing natural resources in Bangladesh. Full article
Show Figures

Figure 1

30 pages, 2129 KiB  
Review
Fluorescence-Guided Surgery in Head and Neck Squamous Cell Carcinoma (HNSCC)
by Albrecht Blosse, Markus Pirlich, Andreas Dietz, Christin Möser, Katrin Arnold, Jessica Freitag, Thomas Neumuth, David M. Smith, Hans Kubitschke and Maximilian Gaenzle
Int. J. Transl. Med. 2025, 5(3), 40; https://doi.org/10.3390/ijtm5030040 - 22 Aug 2025
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are the seventh most common form of cancer worldwide, typically characterized by high mortality and significant morbidity, including pain and speech and swallowing disorders. Complete tumor tissue resection, the common first line of therapy, remains a [...] Read more.
Head and neck squamous cell carcinomas (HNSCCs) are the seventh most common form of cancer worldwide, typically characterized by high mortality and significant morbidity, including pain and speech and swallowing disorders. Complete tumor tissue resection, the common first line of therapy, remains a surgical challenge with room for improvements. Because tumor cells express highly specific surface molecules serving as receptors for ligands, specific targeting ligands can be conjugated to fluorescent molecules in order to better visualize tumor borders. Targeted fluorescence-guided surgery (T-FGS) as well as tumor-targeted and near-infrared (NIR) fluorescence imaging are emerging techniques for real-time intraoperative cancer imaging. Targeting agents include nanodots or fluorophores, which have been conjugated to specific ligands like antibodies, peptides, or other synthetic moieties. This article surveys tumor-targeted ligands in recent and current preclinical studies and clinical trials related to HNSCC, highlighting common NIRF dyes used for molecular imaging and their physical properties, working concentrations, and associated risks. Smaller ligands, nanodots, dual-modality NIR dyes, and activatable agents can enhance tumor-targeting processes, resulting in faster, more penetrable, and clearer imaging, which could lead to improved clinical applications and better tumor removal rates in the future. Full article
Show Figures

Figure 1

22 pages, 4204 KiB  
Article
Integrative Runoff Infiltration Modeling of Mountainous Urban Karstic Terrain
by Yaakov Anker, Nitzan Ne’eman, Alexander Gimburg and Itzhak Benenson
Hydrology 2025, 12(9), 222; https://doi.org/10.3390/hydrology12090222 - 22 Aug 2025
Abstract
Global climate change, combined with the construction of impermeable urban elements, tends to increase runoff, which might cause flooding and reduce groundwater recharge. Moreover, the first flash of these areas might accumulate pollutants that might deteriorate groundwater quality. A digital elevation model (DEM) [...] Read more.
Global climate change, combined with the construction of impermeable urban elements, tends to increase runoff, which might cause flooding and reduce groundwater recharge. Moreover, the first flash of these areas might accumulate pollutants that might deteriorate groundwater quality. A digital elevation model (DEM) describes urban landscapes by representing the watershed relief at any given location. While, in concept, finer DEMs and land use classification (LUC) are yielding better hydrological models, it is suggested that over-accuracy overestimates minor tributaries that might be redundant. Optimal DEM resolution with integrated spectral and feature-based LUC was found to reflect the hydrological network’s significant tributaries. To cope with the karstic urban watershed complexity, ModClark Transform and SCS Curve Number methods were integrated over a GIS-HEC-HMS platform to a nominal urban watershed sub-basin analysis procedure, allowing for detailed urban runoff modeling. This precise urban karstic terrain modeling procedure can predict runoff volume and discharge in urban, mountainous karstic watersheds, and may be used for water-sensitive design or in such cities to control runoff and prevent its negative impacts. Full article
(This article belongs to the Special Issue The Influence of Landscape Disturbance on Catchment Processes)
Show Figures

Figure 1

29 pages, 28833 KiB  
Article
Mineralization Styles in the Orogenic (Quartz Vein) Gold Deposits of the Eastern Kazakhstan Gold Belt: Implications for Regional Prospecting
by Dmitry L. Konopelko, Valeriia S. Zhdanova, Sergei Y. Stepanov, Ekaterina S. Sidorova, Sergei V. Petrov, Aleksandr K. Kozin, Emil S. Aliyev, Vasiliy A. Saltanov, Mikhail A. Kalinin, Andrey V. Korneev and Reimar Seltmann
Minerals 2025, 15(8), 885; https://doi.org/10.3390/min15080885 - 21 Aug 2025
Abstract
The Eastern Kazakhstan Gold Belt is a major black-shale-hosted gold province in Central Asia where the main types of deposits comprise mineralized zones with auriferous sulfides (micro- and nano-inclusions of gold and refractory gold) and quartz veins with visible gold. The quartz vein [...] Read more.
The Eastern Kazakhstan Gold Belt is a major black-shale-hosted gold province in Central Asia where the main types of deposits comprise mineralized zones with auriferous sulfides (micro- and nano-inclusions of gold and refractory gold) and quartz veins with visible gold. The quartz vein deposits are economically less important but may potentially represent the upper parts of bigger ore systems concealed at depth. In this work, the mineralogy of the quartz vein deposits and related wall rock alteration zones was studied using microscopy and SEM-EDS analysis, and the geochemical dispersion of the ore elements in primary alteration haloes was documented utilizing spatial distribution maps and statistical treatment methods. The studied auriferous quartz veins are classified as epizonal black-shale-hosted orogenic gold deposits. The veins generally have linear shapes with an average width of ca. 1 m and length up to 150 m and contain high-grade native gold with minor amounts of sulfides. In supergene oxidation zones, the native gold is closely associated with Fe-hydroxide minerals cementing brecciated zones within the veins. The auriferous quartz veins are usually enclosed by the wall rock alteration envelopes, where two types of alteration are distinguished. Proximal phyllic alteration (sericite-albite-pyrite ± chlorite, Fe-Mg-Ca carbonates, arsenopyrite, and pyrrhotite) develops as localized alteration envelopes, and pervasive carbonation accompanied by chlorite ± sericite and albite is the dominant process in the distal alteration zones. The rocks within the alteration zones are enriched in Au and chalcophile elements, and three groups of chemical elements showing significant positive mutual correlation have been identified: (1) an early geochemical assemblage includes V, P, and Co (±Ni), which are the chemical elements characteristic for black shale formations, (2) association of Au, As, and other chalcophile elements is distinctly overprinting, and manifests the main stage of sulfide-hosted Au mineralization, and (3) association of Bi and Hg (±Sb and U) includes the chemical elements that are mobile at low temperatures, and can be explained by activity of the late-stage hydrothermal or supergene fluids. The chalcophile elements show negative slopes from proximal to distal alteration zones and form overlapping positive anomalies on spatial distribution mono-elemental maps. Thus, the geochemical methods can provide useful tools to delineate the ore elemental associations and to outline reproducible anomalies for subsequent regional gold prospecting. Full article
Show Figures

Figure 1

20 pages, 2167 KiB  
Review
Extending the Rock Cycle to a Cosmic Scale
by Andrea Vitrano, Nicola Mari, Daniele Musumeci, Luigi Ingaliso and Francesco Vetere
Geosciences 2025, 15(8), 327; https://doi.org/10.3390/geosciences15080327 - 21 Aug 2025
Abstract
The rock cycle, a cornerstone of geosciences, describes rock formation and transformation on Earth. However, this Earth-centric view overlooks the broader history of rock evolution across the cosmos, with two fundamental limitations: (i) Earth-centric paradigms that ignore extraterrestrial lithogenesis, excluding cosmically significant rocks [...] Read more.
The rock cycle, a cornerstone of geosciences, describes rock formation and transformation on Earth. However, this Earth-centric view overlooks the broader history of rock evolution across the cosmos, with two fundamental limitations: (i) Earth-centric paradigms that ignore extraterrestrial lithogenesis, excluding cosmically significant rocks and processes, and (ii) disciplinary fragmentation between geological and astrophysical sciences, from the micro- to the macroscale. This review proposes an extension of the rock cycle concept to a cosmic scale, exploring the origin of rocks and their evolution from interstellar space, through the aggregation of solid materials in protoplanetary disks, and their subsequent evolution on planetary bodies. Through systematic analysis of igneous, metamorphic, and sedimentary processes occurring beyond Earth, we identify four major domains in which distinct dynamics govern the rock cycle, each reworking rocks with domain-specific characteristics: (1) stellar and nebular dynamics, (2) protoplanetary disk dynamics, (3) asteroidal dynamics, and (4) planetary dynamics. Here we propose the cosmic rock cycle as a new epistemic tool that could transform interdisciplinary research and geoscience education. This perspective reveals Earth’s rock cycle as a rare and invaluable subset of rock genesis in the cosmos. Full article
(This article belongs to the Special Issue Insights in Planetary Geology)
Show Figures

Figure 1

25 pages, 14023 KiB  
Article
Seasonal Variation in In Hospite but Not Free-Living, Symbiodiniaceae Communities Around Hainan Island, China
by Tinghan Yang, Zhao Qi, Haihua Wang, Pengfei Zheng, Shuh-Ji Kao and Xiaoping Diao
Microorganisms 2025, 13(8), 1958; https://doi.org/10.3390/microorganisms13081958 - 21 Aug 2025
Abstract
Coral reefs are increasingly threatened by global climate change, and mass bleaching and mortality events caused by elevated seawater temperature have led to coral loss worldwide. Hainan Island hosts extensive coral reef ecosystems in China, yet seasonal variation in Symbiodiniaceae communities within this [...] Read more.
Coral reefs are increasingly threatened by global climate change, and mass bleaching and mortality events caused by elevated seawater temperature have led to coral loss worldwide. Hainan Island hosts extensive coral reef ecosystems in China, yet seasonal variation in Symbiodiniaceae communities within this region remains insufficiently understood. We aimed to investigate the temperature-driven adaptability regulation of the symbiotic Symbiodiniaceae community in reef-building corals, focusing on the environmental adaptive changes in its community structure in coral reefs between cold (23.6–24.6 °C) and warm (28.2–30.6 °C) months. Symbiodiniaceae shuffling and rare genotype turnover were discovered in adaptability variations in the symbiotic Symbiodiniaceae community between two months. Symbiodiniaceae genetic diversity increased during warm months, primarily due to temporal turnover of rare genotypes within the Cladocopium and Durusdinium genera. Coral Favites, Galaxea, and Porites exhibited the shuffling of Symbiodiniaceae between tolerant Durusdinium and sensitive Cladocopium. Symbiodiniaceae interactions in G. fascicularis and P. lutea exhibited the highest levels of stability with the increase in temperature, whereas the interactions in A. digitifera and P. damicornis showed the lowest levels of stability. Rare genotypes functioned as central hubs and important roles within Symbiodiniaceae communities, exhibiting minimal responsiveness to temperature fluctuations while maintaining community structural stability. The temperature-driven adaptability regulation of symbiotic Symbiodiniaceae could be achieved by Symbiodiniaceae shuffling and rare genotype turnover. The process might be aggravated by concurrent adverse factors, including elevated salinity, pollution, and anthropogenic disturbance. These findings provide insights into how the Symbiodiniaceae community influences the adaptation and resilience of coral hosts to temperature fluctuations in coral reefs. Furthermore, they may contribute to assessing the reef-building coral’s capacity to withstand environmental stressors associated with global climate change. Full article
(This article belongs to the Special Issue Microbes in Aquaculture)
Show Figures

Figure 1

21 pages, 4158 KiB  
Article
Insight into the Sporulation Physiology of Elkhorn Fern: Metabolic, Hormonal, and Pigment Changes Within a Single Leaf of Platycerium bifurcatum
by Jakub Oliwa, Iwona Stawoska, Violetta Katarzyna Macioszek, Michał Dziurka, Magdalena Rys, Diana Saja-Garbarz, Anna Maksymowicz, Andrzej Kornaś and Andrzej Skoczowski
Int. J. Mol. Sci. 2025, 26(16), 8084; https://doi.org/10.3390/ijms26168084 - 21 Aug 2025
Abstract
Platycerium bifurcatum is one of the most widely cultivated ornamental fern species worldwide and a valuable component of the biodiversity of pantropical forests. In addition to its photosynthetic function, the sporotrophophyll leaves of this species periodically develop a large, clearly demarcated sporangium at [...] Read more.
Platycerium bifurcatum is one of the most widely cultivated ornamental fern species worldwide and a valuable component of the biodiversity of pantropical forests. In addition to its photosynthetic function, the sporotrophophyll leaves of this species periodically develop a large, clearly demarcated sporangium at the leaf tips, enabling physiological and biochemical measurements both in the active sporulation part and in the non-sporulating leaf area. The aim of this study was to assess anatomical changes, determine thermal effects and the content of selected phytohormones, and analyze the spatial distribution of pigments in the sporophilic and trophophylic part of the same leaf during spore formation. The study utilized fluorescence microscopy, isothermal microcalorimetry, Raman mapping, and ultra-high-performance liquid chromatography coupled with a Triple Quad LC/MS analyzer. The results revealed significant physiological differences between the sporulating and non-sporulating leaf areas. For the first time, differences in thermogenesis within the two leaf regions accompanying sporulation and linked to the sporangium development stage have been demonstrated in ferns. Increases in gibberellins (GA3, GA4, and GA6), auxin (indole-3-butyric acid), (±)-cis, trans-abscisic acid, and abscisic acid glucose ester were observed in the sporophilic part of the leaf, as well as fluctuations in phytohormones in the trophophilic part, indicating internal metabolite relocation within the leaf. Raman analysis and 2D mapping revealed local lignin accumulation and fluctuations in carotenoid levels during spore maturation. The results of this study demonstrate physiological variation within a single leaf and the mechanisms accompanying sporulation, which provide a better understanding of fern adaptive strategies. Full article
(This article belongs to the Special Issue Plant Hormone Signaling)
Show Figures

Figure 1

21 pages, 4703 KiB  
Article
A Web-Based National-Scale Coastal Tidal Flat Extraction System Using Multi-Algorithm Integration on AI Earth Platform
by Shiqi Shen, Qianqian Su, Hui Lei, Zhifeng Yu, Pengyu Cheng, Wenxuan Gu and Bin Zhou
Remote Sens. 2025, 17(16), 2911; https://doi.org/10.3390/rs17162911 - 21 Aug 2025
Abstract
As coastal tidal flats—ecosystems of high ecological significance and socio-economic value—face accelerating degradation driven by climate change and intensified anthropogenic disturbances, there is an urgent need for efficient, automated, and scalable monitoring solutions. Traditional monitoring approaches are constrained by high implementation costs and [...] Read more.
As coastal tidal flats—ecosystems of high ecological significance and socio-economic value—face accelerating degradation driven by climate change and intensified anthropogenic disturbances, there is an urgent need for efficient, automated, and scalable monitoring solutions. Traditional monitoring approaches are constrained by high implementation costs and limited spatial coverage, whereas remote sensing—particularly multispectral satellite imagery such as Sentinel-2—has emerged as a primary and widely adopted tool for large-scale environmental observation. Building upon recent advancements in cloud computing and WebGIS technologies, this study presents a web-based, interactive tidal flat extraction system implemented on Alibaba’s AI Earth platform. The system integrates multiple water indices (NDWI, mNDWI, and IWI) with a machine learning algorithm (Random Forest), and is deployed through a user-friendly interface developed using Vue.js and Leaflet, enabling flexible parameter configuration and real-time visualization of extraction results. Its front-end/back-end decoupled architecture enables non-programming users to conduct large-scale tidal flat mapping, thereby substantially lowering the technical barriers to coastal tidal flat monitoring and management in China. Full article
Show Figures

Figure 1

36 pages, 14002 KiB  
Article
Sustainable Archaeological Tourism—A Framework of an Assessment Method for Potential Tourism Use of Hillforts (Gords) in the Lower Silesia Region, Poland
by Damian Werczyński and Krzysztof Widawski
Sustainability 2025, 17(16), 7536; https://doi.org/10.3390/su17167536 - 20 Aug 2025
Viewed by 270
Abstract
This study seeks to develop and evaluate a methodological framework for assessing the tourism potential of hillforts, by using a selected sample of 25 of these heritage resources located in the Lower Silesia Voivodeship. This region, as one of Poland’s most popular among [...] Read more.
This study seeks to develop and evaluate a methodological framework for assessing the tourism potential of hillforts, by using a selected sample of 25 of these heritage resources located in the Lower Silesia Voivodeship. This region, as one of Poland’s most popular among domestic and international tourists, is increasingly confronting overtourism at its primary attractions. Concurrently, it possesses underutilised cultural assets, notably 250 remnants of gords/hillforts (grodziska in Polish) spanning various historical periods and dispersed across the whole area. Thus, to ensure the universality of the method, samples of hillforts from three main topographic zones of Lower Silesia were selected. In addition to the aim of testing the method, a secondary objective of the research involved conducting a preliminary assessment of selected hillforts’ tourism potential in different parts of the voivodeship. The methodology combined desk research and field studies across all selected archaeological sites. Concerning the primary objective, the developed assessment tool effectively replicated the multidimensional analytical framework characteristic of established methodologies, yielding reliable outcomes for evaluating gords’ tourism potential. However, modifications to the scoring system are recommended to enhance methodological precision. Regarding analysis of the 25 surveyed hillforts, the results indicate that objects from all zones mainly demonstrate high tourism potential, suggesting an opportunity for transformation into tourist attractions. The integration of hillforts into existing tourism infrastructure could significantly contribute to localised sustainable development across the region. The primary significance of these heritage resources lies in their capacity to facilitate the diversification of tourism offerings across distinct areas of the voivodeship. This development holds particular strategic value for northern poviats currently peripherally engaged in tourism economy. Moreover, by leveraging hillforts, communities obtain assets important in the process of building a common identity around cultural/historical place while safeguarding monuments. Concurrently, the most attractive southern poviats will benefit from the new attractions as they can help in mitigating overtourism pressures at overcrowded places, being an interesting alternative to the top attractions. This approach aligns with strategies to disperse tourist flows through specialised archaeological tourism products, thereby balancing economic benefits and local communities’ well-being with heritage preservation. Full article
(This article belongs to the Special Issue Sustainable Development of Regional Tourism)
Show Figures

Figure 1

18 pages, 5228 KiB  
Article
Detection, Tracking, and Statistical Analysis of Mesoscale Eddies in the Bay of Bengal
by Hafez Ahmad, Felix Jose, Padmanava Dash and Shakila Islam Jhara
Oceans 2025, 6(3), 52; https://doi.org/10.3390/oceans6030052 - 20 Aug 2025
Viewed by 273
Abstract
Mesoscale eddies have a significant influence on primary productivity and upper-ocean variability, particularly in stratified and monsoon-driven basins like the Bay of Bengal (BoB). This study analyzes mesoscale eddies in the BoB from January 2010 to March 2020 using post-processed and gridded daily [...] Read more.
Mesoscale eddies have a significant influence on primary productivity and upper-ocean variability, particularly in stratified and monsoon-driven basins like the Bay of Bengal (BoB). This study analyzes mesoscale eddies in the BoB from January 2010 to March 2020 using post-processed and gridded daily sea surface height anomaly (SLA) data from the Copernicus Marine Environment Monitoring Service. We used a hybrid detection method combining the Okubo–Weiss parameter and SLA contour analysis to identify 1880 anticyclonic and 1972 cyclonic eddies. Cyclonic eddies were mainly found in the western BoB along the east Indian coast, while anticyclonic eddies were less frequent in this area. Analysis of eddy lifespans revealed that short-lived (1-week) eddies were nearly equally distributed between anticyclonic (48.81%) and cyclonic (51.19%) types. However, for longer-lived eddies, cyclonic eddies became more prevalent, comprising 83.33% of 30-week eddies. A notable, consistent eddy presence was observed east of Sri Lanka, influencing the East India Coastal Current. Most eddies (91%) propagated west/southwestward along the western slope of the Andaman Archipelago, likely influenced by ocean currents and coastal topography, with concentrations in the Andaman Sea and central BoB. These patterns suggest significant interactions between eddies, coastal upwelling zones, and boundary currents, impacting nutrient transport and marine ecosystem productivity. This study contributes valuable insights into the dynamics of ocean circulation and the impacts of eddies, which can inform fisheries management strategies, advance climate resilience measures, expand scientific knowledge, and guide policies related to conservation and sustainable resource utilization. Full article
Show Figures

Figure 1

18 pages, 4880 KiB  
Article
Study on the Design of Broadcast Ephemeris Parameters for Low Earth Orbit Satellites
by Dongzhu Liu, Xing Su, Xin Xie, Han Zhou and Zhengjian Qu
Remote Sens. 2025, 17(16), 2894; https://doi.org/10.3390/rs17162894 - 20 Aug 2025
Viewed by 101
Abstract
The integration of low Earth orbit (LEO) satellite constellations into the Global Navigation Satellite System (GNSS) has emerged as a prominent research focus, as LEO satellites can significantly enhance the precision of GNSS positioning, navigation, and timing (PNT) services. In the design of [...] Read more.
The integration of low Earth orbit (LEO) satellite constellations into the Global Navigation Satellite System (GNSS) has emerged as a prominent research focus, as LEO satellites can significantly enhance the precision of GNSS positioning, navigation, and timing (PNT) services. In the design of LEO navigation constellations, the development of an efficient broadcast ephemeris model is critical for delivering high-accuracy navigation solutions. This study extends the conventional 16-parameter Keplerian broadcast ephemeris model by proposing enhanced 18-, 20-, 22-, and 24-parameter models, ensuring compatibility with existing GNSS ephemeris standards. The performance of these models was evaluated using precise science orbit from five satellites at varying altitudes, ranging from 320 km to 1336 km. By analyzing fitting errors, Signal-in-Space Range Error (SISRE), and Message Size Bits (MSB) across different fitting arc durations and parameter counts, the optimal model configuration was identified. The results demonstrate that the 22-parameter model, which was constructed by augmenting the standard 16-parameter ephemeris with (a˙, n˙, Crs3, Crc3, Crs1, Crc1) delivers the best balance of accuracy and efficiency. With a fitting arc length of 20 min, the SISRE for the GRACE-A (320 km), GRACE-C (475 km), Sentinel-2A (786 km), HY-2A (966 km), and Sentinel-6A (1336 km) satellites were measured at 8.88 cm, 6.21 cm, 2.87 cm, 2.11 cm, and 0.75 cm, respectively. Meanwhile, the corresponding MSB remained compact at 501, 490, 491, 487, and 476 bits. These findings confirm that the proposed 22-parameter broadcast ephemeris model meets the stringent accuracy requirements for next-generation LEO-augmented GNSSs, paving the way for enhanced global navigation services. Full article
Show Figures

Figure 1

16 pages, 4771 KiB  
Article
Identifying Deep Seismogenic Sources in Southern Piedmont (North-Western Italy) via the New Tool TESLA for Microseismicity Analysis
by Francisca Guiñez-Rivas, Guido Maria Adinolfi, Cesare Comina and Sergio Carmelo Vinciguerra
GeoHazards 2025, 6(3), 47; https://doi.org/10.3390/geohazards6030047 - 20 Aug 2025
Viewed by 146
Abstract
The analysis of earthquake source mechanisms is key for seismotectonic studies, but it is often limited to traditional methods plagued with issues of precision and automation. This is particularly true in low-seismicity areas with deep and/or hidden seismogenic sources, where the identification of [...] Read more.
The analysis of earthquake source mechanisms is key for seismotectonic studies, but it is often limited to traditional methods plagued with issues of precision and automation. This is particularly true in low-seismicity areas with deep and/or hidden seismogenic sources, where the identification of precise source mechanisms is a difficult and non-trivial task. In this study, we present a detailed application of TESLA (Tool for automatic Earthquake low-frequency Spectral Level estimAtion), a novel tool designed to overcome these limitations. We demonstrated TESLA’s effectiveness in defining source mechanism analysis by applying it to seismic sequences that occurred near Asti (AT), in the Monferrato area (Southern Piedmont, Italy). Our analysis reveals that the observed clusters consist of two distinct seismic sequences, occurring in 1991 and 2012, which were activated by the same seismogenic source. We relocated a total of 36 events with magnitudes ranging from 1.1 to 3.7, using a 3D velocity model, and computed 12 well-constrained focal mechanism solutions using the first motion polarities and the low-frequency spectral level ratios. The results highlight a relatively small seismogenic source located at approximately 5 km north of Asti (AT), at a depth of between 10 and 25 km, trending SW–NE with strike-slip kinematics. A smaller cluster of three events shows an activation of a different fault segment at around 60 km of depth, also showing strike-slip kinematics. These findings are in good agreement with the regional stress field acting in the Monferrato area and support the use of investigation tools such as TESLA for microseismicity analysis. Full article
Show Figures

Figure 1

Back to TopTop