Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = EA1N steel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 11531 KB  
Article
Premature Fatigue Failure Analysis of Axle in Permanent Magnet Direct-Drive Electric Locomotive
by An-Xia Pan, Chao Wen, Haoyu Wang, Peng Shi, Quanchang Bi, Xicheng Jia, Ping Tao, Xuedong Liu, Yi Gong and Zhen-Guo Yang
Materials 2025, 18(16), 3747; https://doi.org/10.3390/ma18163747 - 11 Aug 2025
Viewed by 818
Abstract
This study investigates premature fatigue failures in three EA1N steel axles from permanent magnet direct-drive locomotives during wheel-seat bending tests. Complete fracture occurred in one axle at 3 million cycles, and in the other two axles, cracks appeared and were observed through magnetic [...] Read more.
This study investigates premature fatigue failures in three EA1N steel axles from permanent magnet direct-drive locomotives during wheel-seat bending tests. Complete fracture occurred in one axle at 3 million cycles, and in the other two axles, cracks appeared and were observed through magnetic particle detection at 3.5 million and 1.6 million cycles, respectively. A comprehensive failure analysis was conducted through metallurgical examination, fractography, mechanical testing, residual stress measurement, and finite element analysis. The fractographic results revealed fractures consistently initiated at the wheel-seat to axle-body transition arc, exhibiting characteristic ratchet marks and beach patterns. The premature fracture mechanism was identified as a high-stress fatigue fracture. The residual stress measurements showed detrimental tensile stresses at the surface. Coupled with the operating stress, the stress on the axle exceeds fatigue strength, which accelerates the initiation and propagation of fatigue cracks. Based on these observations, the failure mechanism was identified, and preventive methods were proposed to reduce the risk of recurrence of the in-service axles. Full article
Show Figures

Figure 1

17 pages, 4255 KB  
Article
Correlation between the Chemical Structure of (Meth)Acrylic Monomers and the Properties of Powder Clear Coatings Based on the Polyacrylate Resins
by Katarzyna Pojnar and Barbara Pilch-Pitera
Materials 2024, 17(7), 1655; https://doi.org/10.3390/ma17071655 - 3 Apr 2024
Cited by 6 | Viewed by 2442
Abstract
This paper presents studies on the influence of the chemical structure of (meth)acrylic monomers on the properties of powder coatings based on polyacrylate resins. For this purpose, a wide range of monomers were selected—2-hydroxyethyl methacrylate (HEMA), methyl methacrylate (MMA), n-butyl acrylate ( [...] Read more.
This paper presents studies on the influence of the chemical structure of (meth)acrylic monomers on the properties of powder coatings based on polyacrylate resins. For this purpose, a wide range of monomers were selected—2-hydroxyethyl methacrylate (HEMA), methyl methacrylate (MMA), n-butyl acrylate (nBA), tert-butyl acrylate (tBA), dodecyl acrylate (DA), ethyl acrylate (EA) and benzyl acrylate (BAZ)—for the synthesis of the polyacrylate resin. The average molecular mass and molecular mass distribution of the synthesized resins were measured by gel permeation chromatography (GPC). The glass transition temperature (Tg) and viscosity of polyacrylate resins were determined by using differential scanning calorimetry (DSC) and a Brookfield viscometer. These parameters were necessary to obtain information about storage stability and behavior during the application of powder clear coatings. Additionally, DSC was also used to checked the course of the low-temperature curing reaction between the hydroxyl group contained in the polyacrylate resin and the blocked polyisocyanate group derived from a commercial agent such as Vestanat B 1358/100. The properties of the cured powder clear coatings were tested, such as: roughness, gloss, adhesion to the steel surface, hardness, cupping, scratch resistance, impact resistance and water contact angle. The best powder clear coating based on the polyacrylate resin L_HEMA/6MMA/0.5nBA/0.5DA was characterized as having good scratch resistance (550 g) and adhesion to the steel surface, a high water contact angle (93.53 deg.) and excellent cupping (13.38 mm). Moreover, its crosslinking density (CD) and its thermal stability was checked by using dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA). Full article
(This article belongs to the Special Issue Recent Advances and Emerging Challenges in Functional Coatings)
Show Figures

Figure 1

15 pages, 5555 KB  
Article
Residual Stresses and the Microstructure of Modeled Laser-Hardened Railway Axle Seats under Fatigue
by Jiří Čapek, Karel Trojan, Jan Kec, Nikolaj Ganev, Ivo Černý and Tomáš Mužík
Metals 2024, 14(3), 290; https://doi.org/10.3390/met14030290 - 29 Feb 2024
Cited by 6 | Viewed by 2028
Abstract
Railway wheels are usually attached to axles by press-fitting; therefore, the mechanical processes taking place during operation can result in failure, with fatal consequences for the axle seats. This manuscript describes the effect of laser hardening on the residual stress state, microstructural parameters [...] Read more.
Railway wheels are usually attached to axles by press-fitting; therefore, the mechanical processes taking place during operation can result in failure, with fatal consequences for the axle seats. This manuscript describes the effect of laser hardening on the residual stress state, microstructural parameters (lattice defects—dislocations, crystallites, microstrains, etc.), and mechanical properties of laser-hardened EA1N steel railway axles under fatigue life conditions. Differences were found between ground, single-track, and multi-track hardened surfaces. Tensile residual stresses, low dislocation densities and hardnesses, and different microstructures (tempered cubic martensite) were found at the overlapped tracks and at the boundary of the heat-affected zone and bulk surface compared with the hardened zone. As a result, the surface treatment of axle seats by laser hardening improved the fatigue failure resistance compared with untreated seats. Optimal properties of the integrity of the axle seat surface were achieved, including fatigue resistance, which seems to be positively influenced mainly by sufficient hardness and the appropriate microstructure. The influence of the other investigated parameters was not evident, and was reduced by the presence of fretting corrosion and press-fitting. Full article
Show Figures

Figure 1

21 pages, 5643 KB  
Article
Guar Gum as an Eco-Friendly Corrosion Inhibitor for N80 Carbon Steel under Sweet Environment in Saline Solution: Electrochemical, Surface, and Spectroscopic Studies
by Gaetano Palumbo, Dominika Święch and Marcin Górny
Int. J. Mol. Sci. 2023, 24(15), 12269; https://doi.org/10.3390/ijms241512269 - 31 Jul 2023
Cited by 16 | Viewed by 2734
Abstract
In this study, the corrosion inhibition performance of the natural polysaccharide guar gum (GG) for N80 carbon steel in CO2-saturated saline solution at different temperatures and immersion times was investigated by weight loss and electrochemical measurements. The results have revealed that [...] Read more.
In this study, the corrosion inhibition performance of the natural polysaccharide guar gum (GG) for N80 carbon steel in CO2-saturated saline solution at different temperatures and immersion times was investigated by weight loss and electrochemical measurements. The results have revealed that GG showed good inhibition performance at lower and higher temperatures. The inhibition efficiency observed via weight loss measurements reached 76.16 and 63.19% with 0.4 g L−1 of GG, at 25 and 50 °C, respectively. The inhibition efficiency of GG increased as the inhibitor concentration and immersion time increased but decreased with increasing temperature. EIS measurements have shown that, even after prolonged exposure, GG was still able to protect the metal surface. Potentiodynamic measurements showed the mixed-type nature of GG inhibitive action. The Temkin and Dubinin–Radushkevich adsorption isotherm models give accurate fitting of the estimated data, and the calculated parameters indicated that the adsorption of GG occurred mainly via an electrostatic or physical adsorption process. The associated activation energy (Ea) and the heat of adsorption (Qa) supported the physical adsorption nature of GG. FTIR analysis was used to explain the adsorption interaction between the inhibitor and the N80 carbon steel surface. SEM-EDS and AFM confirmed the adsorption of GG and the formation of an adsorptive layer of GG on the metal surface. Full article
(This article belongs to the Section Materials Science)
Show Figures

Graphical abstract

21 pages, 4507 KB  
Article
Novel Imine-Tethering Cationic Surfactants: Synthesis, Surface Activity, and Investigation of the Corrosion Mitigation Impact on Carbon Steel in Acidic Chloride Medium via Various Techniques
by Hany M. Abd El-Lateef, Ahmed H. Tantawy, Kamal A. Soliman, Salah Eid and Mohamed A. Abo-Riya
Molecules 2023, 28(11), 4540; https://doi.org/10.3390/molecules28114540 - 3 Jun 2023
Cited by 5 | Viewed by 2148
Abstract
Novel imine-tethering cationic surfactants, namely (E)-3-((2-chlorobenzylidene)amino)-N-(2-(decyloxy)-2-oxoethyl)-N,N-dimethylpropan-1-aminium chloride (ICS-10) and (E)-3-((2-chlorobenzylidene)amino)-N,N-dimethyl-N-(2-oxo-2-(tetradecyloxy)ethyl)propan-1-aminium chloride (ICS-14), were synthesized, and the chemical structures were elucidated by various spectroscopic approaches. The surface properties of the target-prepared imine-tethering cationic surfactants were investigated. [...] Read more.
Novel imine-tethering cationic surfactants, namely (E)-3-((2-chlorobenzylidene)amino)-N-(2-(decyloxy)-2-oxoethyl)-N,N-dimethylpropan-1-aminium chloride (ICS-10) and (E)-3-((2-chlorobenzylidene)amino)-N,N-dimethyl-N-(2-oxo-2-(tetradecyloxy)ethyl)propan-1-aminium chloride (ICS-14), were synthesized, and the chemical structures were elucidated by various spectroscopic approaches. The surface properties of the target-prepared imine-tethering cationic surfactants were investigated. The effects of both synthesized imine surfactants on carbon steel corrosion in a 1.0 M HCl solution were investigated by weight loss (WL), potentiodynamic polarization (PDP), and scanning electron microscopy (SEM) methods. The outcomes show that the inhibition effectiveness rises with raising the concentration and diminishes with raising the temperature. The inhibition efficiency of 91.53 and 94.58 % were attained in the presence of the optimum concentration of 0.5 mM of ICS-10 and ICS-14, respectively. The activation energy (Ea) and heat of adsorption (Qads) were calculated and explained. Additionally, the synthesized compounds were investigated using density functional theory (DFT). Monte Carlo (MC) simulation was utilized to understand the mechanism of adsorption of inhibitors on the Fe (110) surface. Full article
(This article belongs to the Special Issue Synthesis, Characterization and Application of Surfactants II)
Show Figures

Figure 1

13 pages, 3302 KB  
Article
Torsion Test vs. Other Methods to Obtain the Shear Strength of Elastic-Plastic Adhesives
by Monica Ferraris, Milena Salvo, Valentina Casalegno, Stefano De La Pierre, Luca Goglio and Alessandro Benelli
Appl. Sci. 2022, 12(7), 3284; https://doi.org/10.3390/app12073284 - 23 Mar 2022
Cited by 7 | Viewed by 6505
Abstract
Nowadays adhesive joints are more and more used; therefore, a precise and reliable shear strength measurement of these joints is necessary to design and predict a final components’ performance. This work aimed to assess the shear strength value of adhesively joined ceramics (SiC, [...] Read more.
Nowadays adhesive joints are more and more used; therefore, a precise and reliable shear strength measurement of these joints is necessary to design and predict a final components’ performance. This work aimed to assess the shear strength value of adhesively joined ceramics (SiC, Si3N4) and steel in the case of an elasto-plastic (ductile) joining material (Loctite EA 9321 AERO) by an experimental campaign and associated analytical modelling. The joined samples were tested using a single lap offset test in compression (SLO), an asymmetrical 4-point bending test (A4PB, ASTM C1469), and by torsion on fully joined hourglass shaped samples (THG). A simple model based on the elastic-plastic response in shear was proposed to fit the torque-rotation curve measured in the torsion tests. The results showed that, with the adopted test methods and conditions, and by using the model, consistent values of shear strength could be obtained by torsion tests. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

15 pages, 12307 KB  
Article
FEM Simulation of the Riveting Process and Structural Analysis of Low-Carbon Steel Tubular Rivets Fracture
by Jaroslaw Jan Jasinski and Michal Tagowski
Materials 2022, 15(1), 374; https://doi.org/10.3390/ma15010374 - 5 Jan 2022
Cited by 7 | Viewed by 4656
Abstract
Riveted joints are a common way to connect elements and subassemblies in the automotive industry. In the assembly process, tubular rivets are loaded axially with ca. 3 kN forces, and these loads can cause cracks and delamination in the rivet material. Such effects [...] Read more.
Riveted joints are a common way to connect elements and subassemblies in the automotive industry. In the assembly process, tubular rivets are loaded axially with ca. 3 kN forces, and these loads can cause cracks and delamination in the rivet material. Such effects at the quality control stage disqualify the product in further assembly process. The article presents an analysis of the fracture mechanism of E215 low-carbon steel tubular rivets used to join modules of driver and passenger safety systems (airbags) in vehicles. Finite element method (FEM) simulation and material testing were used to verify the stresses and analysis of the rivet fracture. Numerical tests determined the state of stress during rivet forming using the FEM-EA method based on the explicit integration of central differences. Light microscopy (LM), scanning electron microscopy (SEM) and chemical composition analysis (SEM-EDS) were performed to investigate the microstructure of the rivet material and to analyze the cracks. Results showed that the cause of rivet cracking is the accumulation and exceeding of critical tensile stresses in the rivet flange during the tube processing and the final riveting (forming) process. Moreover, it was discovered that rivet fracture is largely caused by structural defects (tertiary cementite Fe,Mn3CIII along the boundaries of prior austenite grains) in the material resulting from the incorrectly selected parameters of the final heat treatment of the prefabricate (tube) from which the rivet was produced. The FEM simulation of the riveting and structural characterization results correlated well, so the rivet forming process and fracture mechanism could be fully investigated. Full article
(This article belongs to the Special Issue Manufacturing and Fatigue Properties of Materials)
Show Figures

Figure 1

14 pages, 6234 KB  
Article
Enhancement of Fatigue Endurance Limit through Ultrasonic Surface Rolling Processing in EA4T Axle Steel
by Xiaodi Wang, Liqin Chen, Peng Liu, Guobiao Lin and Xuechong Ren
Metals 2020, 10(6), 830; https://doi.org/10.3390/met10060830 - 23 Jun 2020
Cited by 26 | Viewed by 4364
Abstract
Fatigue property is a key evaluation index for the service reliability of railway axle. In this work, the effect of ultrasonic surface rolling processing (USRP) on the surface characteristic and fatigue property was investigated in an EA4T axle steel used on high speed [...] Read more.
Fatigue property is a key evaluation index for the service reliability of railway axle. In this work, the effect of ultrasonic surface rolling processing (USRP) on the surface characteristic and fatigue property was investigated in an EA4T axle steel used on high speed trains by several characterization techniques and the staircase method fatigue testing. The surface characteristics were initially studied in EA4T axle steel under different static loads of 1.0 kN, 1.5 kN and 2.0 kN, and served as the important USRP parameter. It was found that the larger static load greatly improved the surface microstructure, microhardness and compressive residual stress, but also increased the surface roughness. Furthermore, the rotating bending fatigue endurance limit of the USRP specimen with a static load of 1.5 kN was obviously enhanced by ~14% (from ~352 MPa to ~401 MPa) relative to the untreated specimen. The enhanced fatigue limit induced by USRP was attributed to the synergistic effect of the grain refinement, as evidenced by transmission electron microscope (TEM) observation, work-hardening, the increased compressive residual stress and the reduced surface roughness. Moreover, the fatigue limit of the USRP specimen was ~4% higher than that of the rolling specimen with turning off the ultrasonic system, ~386 MPa, which showed that the role of the ultrasonic impact could enhance the fatigue property. These findings demonstrate the validity of this technique in modifying the surface characteristics and thus improving the fatigue resistance of axle material, further ensuring its service safety and reliability. Full article
Show Figures

Figure 1

28 pages, 4114 KB  
Article
New, Amino Acid Based Zwitterionic Polymers as Promising Corrosion Inhibitors of Mild Steel in 1 M HCl
by Mohammad A. Jafar Mazumder
Coatings 2019, 9(10), 675; https://doi.org/10.3390/coatings9100675 - 17 Oct 2019
Cited by 23 | Viewed by 4974
Abstract
The zwitterionic monomers, N,N’-diallylamino propanephosphonate and amino acid residual N,N’-diallyl-l-methionine hydrochloride were synthesized, with excellent yields. These monomers were utilized in the preparation of zwitterionic homo and co-cyclopolymers 57 in aqueous solution using 2,2′-azobis (2-methylpropionamidine) [...] Read more.
The zwitterionic monomers, N,N’-diallylamino propanephosphonate and amino acid residual N,N’-diallyl-l-methionine hydrochloride were synthesized, with excellent yields. These monomers were utilized in the preparation of zwitterionic homo and co-cyclopolymers 57 in aqueous solution using 2,2′-azobis (2-methylpropionamidine) dihydrochloride as an initiator. The polymers were characterized by FT-IR, NMR, and TGA. The performance of these synthesized polymers on mild steel in acidic solution was investigated by gravimetric method, Tafel extrapolation, linear polarization resistance, and electrochemical impedance spectroscopy. At 313 K, the maximum inhibition efficiencies of corrosion inhibitors 57 at 4.50 × 10−4 mol L−1 were found to be 85.2%, 83.3%, and 99.5%, respectively. The inhibition efficiencies obtained from gravimetric weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy measurements were in good agreement. Different adsorption isotherms were also explored to find the best fit, and found to obey Langmuir adsorption isotherm. The thermodynamic parameters, such as activation energy (Ea), standard enthalpy of activation (ΔH*), standard entropy of activation (ΔS*), adsorption–desorption equilibrium constant (Kads), and standard free energy of adsorption (ΔGoads), were determined. Electrochemical data indicated that the zwitterionic copolymer 7 acts as a mixed type inhibitor under the influence of anodic control. The surface morphology of mild steel corrosion was evaluated without and with corrosion inhibitors by AFM, SEM-EDX, and XPS, which confirmed the adsorption of inhibitor molecules on the metal surface. Full article
Show Figures

Figure 1

10 pages, 5283 KB  
Article
Effect of Microstructure on Hydrogen Permeation in EA4T and 30CrNiMoV12 Railway Axle Steels
by Tingzhi Si, Yunpeng Liu, Qingan Zhang, Dongming Liu and Yongtao Li
Metals 2019, 9(2), 164; https://doi.org/10.3390/met9020164 - 1 Feb 2019
Cited by 9 | Viewed by 3479
Abstract
A comparative study was conducted to reveal the effect of microstructure on hydrogen permeation in the EA4T and 30CrNiMoV12 railway axle steels. Unlike the EA4T with its sorbite structure, 30CrNiMoV12 steel shows a typical tempered martensitic structure, in which a large number of [...] Read more.
A comparative study was conducted to reveal the effect of microstructure on hydrogen permeation in the EA4T and 30CrNiMoV12 railway axle steels. Unlike the EA4T with its sorbite structure, 30CrNiMoV12 steel shows a typical tempered martensitic structure, in which a large number of fine, short, rod-like, and spherical carbides are uniformly dispersed at boundaries and inside laths. More importantly, this structure possesses plentifully strong hydrogen traps, such as nanosized Cr7C3, Mo2C, VC, and V4C3, thus resulting in a high density of trapping sites (N = 1.17 × 1022 cm−3). The hydrogen permeation experiments further demonstrated that, compared to EA4T, the 30CrNiMoV12 steel not only delivered minimally effective hydrogen diffusivity but also had a high hydrogen concentration. The activation energy for hydrogen diffusion of the 30CrNiMoV12 steel was greatly increased from 23.27 ± 1.94 of EA4T to 47.82 ± 2.14 kJ mol−1. Full article
Show Figures

Figure 1

10 pages, 2186 KB  
Article
Cryogenic Milling: Study of the Effect of CO2 Cooling on Tool Wear When Machining Inconel 718, Grade EA1N Steel and Gamma TiAl
by David Fernández, Alejandro Sandá and Ion Bengoetxea
Lubricants 2019, 7(1), 10; https://doi.org/10.3390/lubricants7010010 - 21 Jan 2019
Cited by 33 | Viewed by 6132
Abstract
The need for machining advanced materials has increased exponentially in recent years. Ni-based alloys, Ti-based alloys or some steel grades are commonly used in transport, energy generation or biomedicine industries due to their excellent properties that combine hardness, high temperature strength and corrosion [...] Read more.
The need for machining advanced materials has increased exponentially in recent years. Ni-based alloys, Ti-based alloys or some steel grades are commonly used in transport, energy generation or biomedicine industries due to their excellent properties that combine hardness, high temperature strength and corrosion resistance. These desirable properties make such alloys extremely difficult to machine, inducing a quick cutting tool wear that must be overcome. In the last decade, cryogenic machining has emerged in order to improve the machining of these materials. By means of cryogenic fluids such as cutting coolants, significant improvements in the life of cutting tools are obtained. However, most studies on this new technology are focused on turning processes, because of the difficulty of introducing cryogenic fluids through a rotary tool in processes such as drilling and milling. In this study, a cryogenic milling system integrated within the tool holder is used for milling Gamma TiAl, Inconel 718 and grade EA1N steel using carbon dioxide as a coolant. This system has been compared with the traditional cooling method (emulsion) in terms of tool life to check if it is possible to improve the machining operation in terms of efficiency by supplying the cryogenic coolant directly to the cutting zone. The results show that by replacing traditional pollutant cooling fluids with other more ecologically-friendly alternatives, it is possible to improve tool life by 100% and 175% in the cases of Gamma TiAl and grade EA1N steel, respectively, when using the new delivery system for the coolant. Full article
(This article belongs to the Special Issue Tribological Challenges in Extreme Environments)
Show Figures

Graphical abstract

11 pages, 2394 KB  
Article
sym-Trisubstituted 1,3,5-Triazine Derivatives as Promising Organic Corrosion Inhibitors for Steel in Acidic Solution
by Ayman El-Faham, Kholood A. Dahlous, Zeid A. AL Othman, Hamad A. Al-Lohedan and Gamal A. El-Mahdy
Molecules 2016, 21(4), 436; https://doi.org/10.3390/molecules21040436 - 31 Mar 2016
Cited by 33 | Viewed by 7035
Abstract
Triazine derivatives, namely, 2,4,6-tris(quinolin-8-yloxy)-1,3,5-triazine (T3Q), N2,N4,N6-tris(pyridin-2-ylmethyl)-1,3,5-triazine-2,4,6-triamine (T3AMPy) and 2,2′,2′′-[(1,3,5-triazine-2,4,6-triyl)tris(azanediyl)] tris(ethan-1-ol) (T3EA) were synthesized and their inhibition of steel corrosion in hydrochloric acid solution was investigated using electrochemical techniques. The corrosion protection of the prepared compounds increased with [...] Read more.
Triazine derivatives, namely, 2,4,6-tris(quinolin-8-yloxy)-1,3,5-triazine (T3Q), N2,N4,N6-tris(pyridin-2-ylmethyl)-1,3,5-triazine-2,4,6-triamine (T3AMPy) and 2,2′,2′′-[(1,3,5-triazine-2,4,6-triyl)tris(azanediyl)] tris(ethan-1-ol) (T3EA) were synthesized and their inhibition of steel corrosion in hydrochloric acid solution was investigated using electrochemical techniques. The corrosion protection of the prepared compounds increased with increasing concentration and reached up to 98% at 250 ppm. The adsorption of T3Q, T3AMPy, and T3EA on the steel surface was in accordance with the Langmuir adsorption isotherm. The electrochemical results revealed that T3Q, T3AMPy and T3EA act as excellent organic inhibitors and can labeled as mixed type inhibitors. The efficiencies of the tested compounds were affected by the nature of the side chain present in the triazine ring, where T3EA gave the least inhibition while T3Q and T3AMPy gave higher and almost the same inhibition effects. The inhibition efficiencies obtained from the different electrochemical techniques were in good agreement. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

Back to TopTop