Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (71)

Search Parameters:
Keywords = E-beam evaporation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6590 KiB  
Article
Synthesis of ZnS Nano-Powders and Fabrication of ZnS Thin Films via Electron-Beam Evaporation: Structural and Optical Characterization
by Ahmed Al-Mobydeen, Ehab AlShamaileh, Bashar Lahlouh, Mariam Al-Qderat, Ahmed N. AL-Masri, Wadah Mahmoud, Imad Hamadneh, Muayad Esaifan and Iessa Sabbe Moosa
Coatings 2025, 15(7), 796; https://doi.org/10.3390/coatings15070796 - 7 Jul 2025
Viewed by 481
Abstract
Nanoscale zinc sulfide (ZnS) powders have attracted considerable interest due to their unique properties and diverse applications in various fields, including wastewater treatment, optics, electronics, photocatalysis, and solar systems. In this study, nano-powder ZnS was chemically synthetized starting from Zn powder, diluted HCl, [...] Read more.
Nanoscale zinc sulfide (ZnS) powders have attracted considerable interest due to their unique properties and diverse applications in various fields, including wastewater treatment, optics, electronics, photocatalysis, and solar systems. In this study, nano-powder ZnS was chemically synthetized starting from Zn powder, diluted HCl, and laboratory-prepared Na2S. The obtained ZnS was studied using an SEM coupled with EDS, XRD analysis, UV–Visible spectroscopy, and FTIR techniques. The XRD results showed that the synthesized nanoscale ZnS powder was approximately 2.26 nm. Meanwhile, the EDS and XRD patterns confirmed the high purity of the obtained ZnS powder. In addition, the ZnS powder was compacted and sintered in an argon atmosphere at 400 °C for 8 h to prepare the required pellets for thin-film deposition via E-beam evaporation. The microscopic structure of the sintered pellets was investigated using the SEM/EDS. Furthermore, the optical properties of the deposited thin films were studied using UV–Visible spectroscopy in the wavelength range of 190–1100 nm and the FTIR technique. The bandgap energies of the deposited thin films with thicknesses of 111 nm and 40 nm were determined to be around 4.72 eV and 5.82 eV, respectively. This article offers a facile production route of high-purity ZnS powder, which can be compacted and sintered as a suitable source for thin-film deposition. Full article
(This article belongs to the Special Issue Trends in Coatings and Surface Technology, 2nd Edition)
Show Figures

Figure 1

13 pages, 2983 KiB  
Article
Impact of Reset Pulse Width on Gradual Conductance Programming in Al2O3/TiOx-Based RRAM
by Hyeonseong Lim, Wonbo Shim and Tae-Hyeon Kim
Micromachines 2025, 16(6), 718; https://doi.org/10.3390/mi16060718 - 17 Jun 2025
Viewed by 504
Abstract
This work investigates the impact of reset pulse width on multilevel conductance programming in Al2O3/TiOx-based resistive random access memory. A 32 × 32 cross-point array of Ti (12 nm)/Pt (62 nm)/Al2O3 (3 nm)/TiOx [...] Read more.
This work investigates the impact of reset pulse width on multilevel conductance programming in Al2O3/TiOx-based resistive random access memory. A 32 × 32 cross-point array of Ti (12 nm)/Pt (62 nm)/Al2O3 (3 nm)/TiOx (32 nm)/Ti (14 nm)/Pt (60 nm) devices (2.5 µm × 2.5 µm active area) was fabricated via e-beam evaporation, atomic layer deposition, and reactive sputtering. Following an initial forming step and a stabilization phase of five DC reset–set cycles, devices were programmed using an incremental step pulse programming (ISPP) scheme. Reset pulses of fixed amplitude were applied with widths of 100 µs, 10 µs, 1 µs, and 100 ns, and the programming sequence was terminated when the read current at 0.2 V exceeded a 45 µA target. At a 100 µs reset pulse width, most cycles exhibited abrupt current jumps that exceeded the target current, whereas at a 100 ns width, the programmed current increased gradually in all cycles, enabling precise conductance tuning. Cycle-to-cycle variation decreased by more than 50% as the reset pulse width was reduced, indicating more uniform filament disruption and regrowth. These findings demonstrate that controlling reset pulse width offers a straightforward route to reliable, linear multilevel operation in Al2O3/TiOx-based RRAM. Full article
Show Figures

Figure 1

11 pages, 3973 KiB  
Article
Impact of Processing Parameters on Ti Schottky Contacts on 4H-SiC
by Marilena Vivona, Gabriele Bellocchi, Valeria Puglisi, Corrado Bongiorno, Salvatore Adamo, Filippo Giannazzo, Simone Rascunà and Fabrizio Roccaforte
Materials 2025, 18(7), 1447; https://doi.org/10.3390/ma18071447 - 25 Mar 2025
Viewed by 589
Abstract
In this paper, we investigated the effects of the processing parameters, such as deposition methods, annealing temperature, and metal thickness, on the electrical characteristics of Ti/4H-SiC contacts. A reduction of the Schottky barrier height from 1.19 to 1.00 eV following an increase of [...] Read more.
In this paper, we investigated the effects of the processing parameters, such as deposition methods, annealing temperature, and metal thickness, on the electrical characteristics of Ti/4H-SiC contacts. A reduction of the Schottky barrier height from 1.19 to 1.00 eV following an increase of the annealing temperature (475–700 °C) was observed for a reference contact with an 80 nm-thick Ti layer. The current transport mechanisms can be described according to the thermionic emission (TE) and thermionic field emission (TFE) models under forward and reverse biases, respectively. The comparison with an e-beam evaporated Ti(80 nm)/4H-SiC contact did not show significant differences for the forward characteristics, while an increase of the leakage current was observed under high reverse voltage (>500 V). Finally, a thickness variation from 10 to 80 nm induced a reduction of the Schottky barrier height, due to the reaction occurring at the interface with a Ti-Al region extended up to the 4H-SiC surface. In addition to a deeper understanding of the Schottky barrier properties, this work is useful for the development of Schottky barrier diodes with tailored characteristics. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

11 pages, 2954 KiB  
Article
Electron-Beam-Evaporated Nickel Oxide Thin Films for Application as a Hole Transport Layer in Photovoltaics
by Mohammad Istiaque Hossain and Brahim Aissa
Processes 2024, 12(12), 2809; https://doi.org/10.3390/pr12122809 - 8 Dec 2024
Cited by 3 | Viewed by 1365
Abstract
We present the growth of nickel oxide (NiO) thin films as a hole transport material in photovoltaic devices using the e-beam evaporation technique. The metal oxide layers were reactively deposited at a substrate temperature of 200 °C using an electron beam evaporator under [...] Read more.
We present the growth of nickel oxide (NiO) thin films as a hole transport material in photovoltaic devices using the e-beam evaporation technique. The metal oxide layers were reactively deposited at a substrate temperature of 200 °C using an electron beam evaporator under an oxygen atmosphere. The oxide films reactively grown through electron-beam evaporation were optimized for carrier transport layers. Optical and structural characterizations were performed using ultraviolet–visible (UV–Vis) spectrometry, X-ray diffraction, contact angle measurements, scanning electron microscopy, and Hall effect measurements. The study of these films confirmed that the NiO layer is a suitable candidate for use as a hole transport layer based on Hall effect measurements. A morphological study using field-emission scanning electron microscopy confirmed the growth of compact, uniform, and defect-free metal oxide layers. Contact angle measurements revealed that the films possessed semi-hydrophilic properties, contributing to improved stability by repelling water from their surfaces. The stoichiometry of the films was influenced by the oxygen pressure during deposition, which affected both their morphological and optical features. The NiO films exhibited a transmittance exceeding 80% in the visible spectrum. These findings highlight the potential applications of such nickel oxide films as hole transport material layers. Full article
(This article belongs to the Special Issue Deposition Process, Characterization and Performance of Thin Films)
Show Figures

Figure 1

21 pages, 18917 KiB  
Article
Efficiency Improvement on Indium Tin Oxide Films for Dye-Sensitized Solar Cell Using Oxygen Plasma by Bias-Magnetron RF Sputtering Process
by Wittawat Poonthong, Narong Mungkung, Tanes Tanitteerapan, Theerapong Maneepen, Apidat Songruk, Khanchai Tunlasakun, Anumut Siricharoenpanich, Somchai Arunrungrusmi and Nat Kasayapanand
Energies 2024, 17(22), 5585; https://doi.org/10.3390/en17225585 - 8 Nov 2024
Viewed by 1236
Abstract
Dye-sensitized solar cells (DSSCs) are among the most widely studied thin-film solar cells because of their cost-effectiveness, low toxicity, and simple fabrication method. However, there is still much scope for replacing current DSSC materials due to their high cost, low volume, and lack [...] Read more.
Dye-sensitized solar cells (DSSCs) are among the most widely studied thin-film solar cells because of their cost-effectiveness, low toxicity, and simple fabrication method. However, there is still much scope for replacing current DSSC materials due to their high cost, low volume, and lack of long-term stability. Accordingly, indium tin oxide (ITO)-nanorod films were fabricated by electron (E)-beam evaporation using the glancing angle deposition method in this study. Then, the ITO-nanorod was treated with oxygen plasma via a bias-magnetron radio-frequency (RF) sputtering process to improve the efficiency of DSSCs under a varying gas flow rate of 20, 40, 60, 80, and 100 sccm. The field emission scanning electron microscopy (FE-SEM) investigation of the ITO film structure revealed that the obtained nanorod structures have slightly different diameters. At the same time, an increase in the oxygen flow rate resulted in a rougher film surface structure. In this, the lower sheet resistance was received because of rougher morphology. When comparing the DSSCs efficiency (η) test results, we found that at a gas flow rate of 100 sccm, the highest efficiency value showed 9.5%. On the other hand, the ITO-nanorod without plasma treatment exhibited the lowest η. Hence, plasma technology can be practically applied to improve the η of DSSC devices. This study will be a prototype of a highly advanced solar cell manufacturing method for the solar cell industry. Full article
(This article belongs to the Section D1: Advanced Energy Materials)
Show Figures

Figure 1

9 pages, 3880 KiB  
Article
Effect of Interlayer on Flatness and Adhesion of Aerosol-Deposited Yttrium Oxide Coating
by Ki-Seong Lim, Tae-Soo Jang, Jae-hyeon Jeong, Sung-Hwan Hong and Joo Jin
Materials 2024, 17(14), 3533; https://doi.org/10.3390/ma17143533 - 17 Jul 2024
Cited by 1 | Viewed by 1211
Abstract
In this study, Y2O3 coating is used as an interlayer between Al2O3 substrate and a ceramic coating; this is in order to minimize the morphological distortion produced by a single deposition of the ceramic coating on the [...] Read more.
In this study, Y2O3 coating is used as an interlayer between Al2O3 substrate and a ceramic coating; this is in order to minimize the morphological distortion produced by a single deposition of the ceramic coating on the Al2O3 substrate, which is performed using the aerosol method. The interlayer coating, which comprises the Y2O3 phase, is deposited on the Al2O3 substrate using an e-beam evaporator. The crystal structure of the powder that was used to process the coating is identified as cubic Y2O3. In contrast, the crystal structure of the top-coating layer and interlayer indicates the presence of two kinds of Y2O3 phases, which possess cubic and monoclinic structures. The single Y2O3 coating without an interlayer exhibits microcracks around the interface between the coating and the substrate, which can be attributed to the stress that occurs during aerosol deposition. In contrast, no cracks are found in the aerosol-deposited Y2O3 coating and interlayer, which show a desirable microstructure. The single Y2O3 coating and the Y2O3 coating with an interlayer exhibit similar hardness and elastic modulus values. Nevertheless, the Y2O3 coating with an interlayer exhibits a higher level of adhesion than the single Y2O3 coating, with a value of 14.8 N compared to 10.2 N. Full article
(This article belongs to the Special Issue Characterization, Properties, and Applications of New Metallic Alloys)
Show Figures

Figure 1

15 pages, 10572 KiB  
Article
Rate-Dependent Evolution of Microstructure and Stress in Silicon Films Deposited by Electron Beam Evaporation
by Runar Plünnecke Dahl-Hansen, Marit Stange, Tor Olav Sunde and Alexander Ulyashin
Coatings 2024, 14(7), 808; https://doi.org/10.3390/coatings14070808 - 28 Jun 2024
Viewed by 1745
Abstract
Growing high-quality Si films at high rates with thicknesses ranging from the few nm- to µm-range while keeping the material consumption at a minimum is important for a wide range of Si-based technologies, spanning from batteries to sensors and solar cells. In this [...] Read more.
Growing high-quality Si films at high rates with thicknesses ranging from the few nm- to µm-range while keeping the material consumption at a minimum is important for a wide range of Si-based technologies, spanning from batteries to sensors and solar cells. In this work, we elucidate the effects of electron beam deposition (e-beam) conditions on the growth of ~4 µm thick Si layers on bare and thermally oxidized (001)-oriented Si substrates. All depositions are performed from a stabilized and refillable melt of broken B-doped wafers and recollected using Si-shields during deposition for recycling. We find that increasing the deposition rate from 0.3 to 23 nm/s at a substrate temperature of 1000 °C reduces the roughness, void fraction, and residual stress of epitaxial Si-on-Si layers. For Si-on-SiO2, all films are polycrystalline under the same deposition conditions as for Si-on-Si, with a reduction in void fraction and increase in roughness at higher deposition rates. The residual stress for Si-on-SiO2 is comparable across all deposition rates >1 nm/s. Furthermore, we measure lower resistivities in the films than in the feedstock for Si-on-Si and higher than the feedstock for Si-on-SiO2. While the films become microstructurally denser and less defective at higher deposition rates, the resistivity increases for each next deposition step in the case of multi-step depositions from the same feedstock. Time-of-flight scanning secondary mass spectroscopy measurements show that the films have a significantly higher B-concentration than the feedstock, suggesting B-gettering to the melted region and transferring to the Si film upon the e-beam deposition process. This work demonstrates how electron beam evaporation can be used to recollect and recycle waste Si pieces, bringing important insights into how the deposition parameters influence the quality of the deposited polycrystalline as well as epitaxial thin-to-thick films. Full article
Show Figures

Figure 1

11 pages, 5666 KiB  
Article
Preparation of Antimony Tin Oxide Thin Film Using Green Synthesized Nanoparticles by E-Beam Technique for NO2 Gas Sensing
by Chaitra Chandraiah, Hullekere Mahadevaiah Kalpana, Challaghatta Muniyappa Ananda and Madhusudan B. Kulkarni
Micro 2024, 4(3), 401-411; https://doi.org/10.3390/micro4030025 - 21 Jun 2024
Viewed by 1880
Abstract
This work delves into the preparation of ATO thin films and their characterization, fabrication, and calibration of a NO2 gas sensor, as well as the development of the packaged sensor. ATO thin films were prepared by e-beam evaporation using green synthesized ATO [...] Read more.
This work delves into the preparation of ATO thin films and their characterization, fabrication, and calibration of a NO2 gas sensor, as well as the development of the packaged sensor. ATO thin films were prepared by e-beam evaporation using green synthesized ATO nanomaterials on different substrates and annealed at 500 and 600 °C for one hour. The structural and morphological properties of the developed thin films were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) techniques. An orthorhombic SnO2 crystal structure was recognized through XRD analysis. The granular-shaped nanoparticles were revealed through SEM and TEM images. The films annealed at 600 °C exhibited improved crystallinity. ATO films prepared on normal 5 µm interdigitated electrodes (IDEs) and annealed at 600 °C exhibited a response of 10.31 ± 0.25 with an optimum temperature of 200 °C for a 4.8 ppm NO2 gas concentration. The packaged NO2 gas sensor developed using IDEs with a microheater demonstrated an improved response of 16.20 ± 0.25 for 4.8 ppm of NO2 gas. Full article
(This article belongs to the Special Issue Advances in Micro- and Nanomaterials: Synthesis and Applications)
Show Figures

Figure 1

11 pages, 10722 KiB  
Article
Assessing the Aging Effect on Ti/Au Bilayers for Transition-Edge Sensor (TES) Detectors
by Maria Gambelli, Matteo D’Andrea, Rita Asquini, Alessio Buzzin, Claudio Macculi, Guido Torrioli and Sara Cibella
Sensors 2024, 24(12), 3995; https://doi.org/10.3390/s24123995 - 20 Jun 2024
Viewed by 1617
Abstract
Transition-edge sensor (TES) microcalorimeters are advanced cryogenic detectors that use a superconducting film for particle or photon detection. We are establishing a new production line for TES detectors to serve as cryogenic anticoincidence (i.e., veto) devices. These detectors are made with a superconducting [...] Read more.
Transition-edge sensor (TES) microcalorimeters are advanced cryogenic detectors that use a superconducting film for particle or photon detection. We are establishing a new production line for TES detectors to serve as cryogenic anticoincidence (i.e., veto) devices. These detectors are made with a superconducting bilayer of titanium (Ti) and gold (Au) thin films deposited via electron beam evaporation in a high vacuum condition on a monocrystalline silicon substrate. In this work, we report on the development of such sensors, aiming to achieve stable sensing performance despite the effects of aging. For this purpose, patterned and non-patterned Ti/Au bilayer samples with varying geometries and thicknesses were fabricated using microfabrication technology. To characterize the detectors, we present and discuss initial results from repeated resistance–temperature (R–T) measurements over time, conducted on different samples, thereby augmenting existing literature data. Additionally, we present a discussion of the sensor’s degradation over time due to aging effects and test a potential remedy based on an easy annealing procedure. In our opinion, this work establishes the groundwork for our new TES detector production line. Full article
Show Figures

Figure 1

15 pages, 4663 KiB  
Article
Photocatalytic Oxidization Based on TiO2/Au Nanocomposite Film for the Pretreatment of Total Phosphorus (TP)
by Jiajie Wang, Seung-Deok Kim, Jae-Yong Lee, June-Soo Kim, Noah Jang, Hyunjun Kim, Da-Ye Kim, Yujin Nam, Maeum Han and Seong-Ho Kong
Appl. Sci. 2024, 14(5), 1774; https://doi.org/10.3390/app14051774 - 22 Feb 2024
Cited by 2 | Viewed by 1752
Abstract
Phosphorus, an essential rare element in aquatic ecosystems, plays a key role in maintaining ecosystem balance. However, excess phosphorus leads to eutrophication and algal proliferation. To prevent eutrophication, the pretreatment and measuring of the concentration of total phosphorus (TP) is crucial. Compared to [...] Read more.
Phosphorus, an essential rare element in aquatic ecosystems, plays a key role in maintaining ecosystem balance. However, excess phosphorus leads to eutrophication and algal proliferation. To prevent eutrophication, the pretreatment and measuring of the concentration of total phosphorus (TP) is crucial. Compared to conventional TP pretreatment equipment (autoclave), a lab-on-a-chip detection device fabricated using micro-electromechanical system technology and titania (TiO2) as a photocatalyst is more convenient, efficient, and cost-effective. However, the wide bandgap of TiO2 (3.2 eV) limits photocatalytic activity. To address this problem, this paper describes the preparation of a TiO2/Au nanocomposite film using electron-beam evaporation and atomic-layer deposition, based on the introduction of gold film and TiO2 to a quartz substrate. The photocatalytic degradation properties of TiO2/Au nanocomposite films with thicknesses of 1, 2, 3, and 4 nm were assessed using rhodamine B as a pollutant. The experimental results demonstrate that the deposition of gold films with different thicknesses can enhance photocatalytic degradation efficiency through synergetic reactions in the charge separation process on the surface. The optimal photocatalytic efficiency is achieved when the deposition thickness is 2 nm, and it decreases with further increase in the thickness. When the photocatalytic reaction time is 15 min, the lab-on-a-chip (LOC) device with a 2-nm-thick gold layer and autoclave exhibits a similar TP pretreatment performance. Therefore, the proposed LOC device based on photocatalytic technology can address the limitations of conventional autoclave equipment, such as large volumes, long processing times, and high costs, thereby satisfying the growing demand for on-site evaluation. Full article
(This article belongs to the Topic Advanced Nanomaterials for Sensing Applications)
Show Figures

Figure 1

10 pages, 3741 KiB  
Article
High-Rate Epitaxial Growth of Silicon Using Electron Beam Evaporation at High Temperatures
by Marit Stange, Tor Olav Sunde, Runar Dahl-Hansen, Kalpna Rajput, Joachim Seland Graff, Branson D. Belle and Alexander G. Ulyashin
Coatings 2023, 13(12), 2030; https://doi.org/10.3390/coatings13122030 - 30 Nov 2023
Cited by 2 | Viewed by 2125
Abstract
This paper describes the high-rate (~1.5 μm/min) growth of Si films on Si supporting substrates with (100) crystallographic orientation at 600 °C, 800 °C, and 1000 °C in a vacuum environment of ~1 × 10−5 mbar using electron beam (e-beam) evaporation. The [...] Read more.
This paper describes the high-rate (~1.5 μm/min) growth of Si films on Si supporting substrates with (100) crystallographic orientation at 600 °C, 800 °C, and 1000 °C in a vacuum environment of ~1 × 10−5 mbar using electron beam (e-beam) evaporation. The microstructure, crystallinity, and conductivity of such films were investigated. It was established that fully crystalline (Raman spectroscopy, EBSD) and stress-free epi-Si layers with a thickness of approximately 50 µm can be fabricated at 1000 °C, while at 600 °C and 800 °C, some poly-Si inclusions were observed using Raman spectroscopy. Hall effect measurements showed that epi-Si layers deposited at 1000 °C had resistivity, carrier concentration, and mobility comparable to those obtained for c-Si wafers fabricated through ingot growth and wafering using the same solar grade Si feedstock used for the e-beam depositions. The dislocation densities were determined to be ∼2 × 107 cm−2 and ∼5 × 106 cm−2 at 800 and 1000 °C, respectively, using Secco etch. The results highlight the potential of e-beam evaporation as a promising and cost-effective alternative to conventional CVD for the growth of epi-Si layers and, potentially, epi-Si wafers. Some of the remaining technical challenges of this deposition technology are briefly indicated and discussed. Full article
Show Figures

Figure 1

11 pages, 8967 KiB  
Article
Optical Characteristics of Silver Thin Films from Island to Percolation in the Ultra-Wide Infrared Spectral Range
by Pian Liu, Zhe Shi, Daoxiang Teng, Fuyan Liu, Yue Cao, Yanping Lin, Zhiyong Yang, Anping Yang, Yuxiang Zheng and Liangyao Chen
Coatings 2023, 13(11), 1910; https://doi.org/10.3390/coatings13111910 - 8 Nov 2023
Cited by 2 | Viewed by 1860
Abstract
Silver (Ag) thin films have garnered significant attention due to their unique optical properties. This paper systematically investigates the optical characteristics of Ag films prepared using the electron beam evaporation method. The investigation was conducted using spectroscopic ellipsometry and covers a broad wavelength [...] Read more.
Silver (Ag) thin films have garnered significant attention due to their unique optical properties. This paper systematically investigates the optical characteristics of Ag films prepared using the electron beam evaporation method. The investigation was conducted using spectroscopic ellipsometry and covers a broad wavelength range of 1679 nm to 36 µm (0.738–0.034 eV), spanning from near-infrared to far-infrared regions. Optical and dispersion models were developed to analyze the impacts of Ag nanostructures on the complex refractive indices, dielectric functions, and reflectance. The results indicate that Ag particles and coalescence films exhibit non-metallic and low absorption properties, while Ag percolation and continuous films present a typical Drude model. The reflectance of Ag films increases as the film coverage ratio increases, and it can reach close to 100% in continuous film. Additionally, a non-destructive, non-contact, and vacuum-free means of confirming the percolation threshold of Ag films was proposed based on the slope of the imaginary part curve. This work is useful to guide simulations and provide a basis for the applications of Ag films in different fields. Full article
Show Figures

Figure 1

6 pages, 1542 KiB  
Proceeding Paper
The Structural and Electrical Characterization of Europium Sulfide Thin Films Prepared with E-Beam Evaporation
by Lutfi Bilal Tasyurek, Frowin Dörr, Mustafa Erkovan, Yasser A. Shokr, Necmettin Kilinc and Paul Fumagalli
Eng. Proc. 2023, 56(1), 171; https://doi.org/10.3390/ASEC2023-15294 - 26 Oct 2023
Viewed by 1038
Abstract
In this study, EuS thin films with varying thicknesses (15, 25, and 50 nm) were deposited onto a Si/SiO2 substrate using e-beam evaporation. Subsequently, two Ag contact electrodes with a 0.2 mm spacing were prepared via thermal evaporation using a shadow mask. [...] Read more.
In this study, EuS thin films with varying thicknesses (15, 25, and 50 nm) were deposited onto a Si/SiO2 substrate using e-beam evaporation. Subsequently, two Ag contact electrodes with a 0.2 mm spacing were prepared via thermal evaporation using a shadow mask. To investigate the influence of film thickness and temperature on the electrical properties of EuS thin films, current-voltage (I–V) measurements were performed in a temperature range of 300–433 K for a voltage range of −2 V to +2 V. The I–V characteristics exhibited a temperature-dependent behavior, particularly showing an increase in current with rising temperature in the forward bias region. Furthermore, an improvement in the Schottky behavior was observed with increasing EuS film thickness. Additionally, the AC electrical and dielectric properties of the EuS thin film were examined in a frequency range of 4 Hz–8 MHz. Capacitance, conductance, impedance, and the Cole–Cole characteristic of EuS were analyzed in detail with respect to frequency, temperature, and film thicknesses. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

21 pages, 6792 KiB  
Review
A Comprehensive Review on Combinatorial Film via High-Throughput Techniques
by Dongxin Wang, Wei Jiang, Shurong Li, Xuehui Yan, Shuaishuai Wu, Haochen Qiu, Shengli Guo and Baohong Zhu
Materials 2023, 16(20), 6696; https://doi.org/10.3390/ma16206696 - 15 Oct 2023
Cited by 11 | Viewed by 2875
Abstract
Numerous technological advancements in the 21st century depend on the creation of novel materials possessing enhanced properties; there is a growing reliance on materials that can be optimized to serve multiple functions. To efficiently save time and meet the requirements of diverse applications, [...] Read more.
Numerous technological advancements in the 21st century depend on the creation of novel materials possessing enhanced properties; there is a growing reliance on materials that can be optimized to serve multiple functions. To efficiently save time and meet the requirements of diverse applications, high-throughput and combinatorial approaches are increasingly employed to explore and design superior materials. Among them, gradient thin-film deposition is one of the most mature and widely used technologies for high-throughput preparation of material libraries. This review summarizes recent progress in gradient thin-film deposition fabricated by magnetron sputtering, multi-arc ion plating, e-beam evaporation, additive manufacturing, and chemical bath deposition, providing readers with a fundamental understanding of this research field. First, high-throughput synthesis methods for gradient thin films are emphasized. Subsequently, we present the characteristics of combinatorial films, including microstructure, oxidation, corrosion tests, and mechanical properties. Next, the screening methods employed for evaluating these properties are discussed. Furthermore, we delve into the limitations of high-throughput preparation and characterization techniques for combinatorial films. Finally, we provide a summary and offer our perspectives. Full article
(This article belongs to the Special Issue Physical Metallurgy of Metals and Alloys II)
Show Figures

Figure 1

14 pages, 9755 KiB  
Article
Thermal Stability of Cu-Al-Ni Shape Memory Alloy Thin Films Obtained by Nanometer Multilayer Deposition
by Jose F. Gómez-Cortés, María L. Nó, Andrey Chuvilin, Isabel Ruiz-Larrea and Jose M. San Juan
Nanomaterials 2023, 13(18), 2605; https://doi.org/10.3390/nano13182605 - 21 Sep 2023
Cited by 4 | Viewed by 1949
Abstract
Cu-Al-Ni is a high-temperature shape memory alloy (HTSMA) with exceptional thermomechanical properties, making it an ideal active material for engineering new technologies able to operate at temperatures up to 200 °C. Recent studies revealed that these alloys exhibit a robust superelastic behavior at [...] Read more.
Cu-Al-Ni is a high-temperature shape memory alloy (HTSMA) with exceptional thermomechanical properties, making it an ideal active material for engineering new technologies able to operate at temperatures up to 200 °C. Recent studies revealed that these alloys exhibit a robust superelastic behavior at the nanometer scale, making them excellent candidates for developing a new generation of micro-/nano-electromechanical systems (MEMS/NEMS). The very large-scale integration (VLSI) technologies used in microelectronics are based on thin films. In the present work, 1 μm thickness thin films of 84.1Cu-12.4 Al-3.5Ni (wt.%) were obtained by solid-state diffusion from a multilayer system deposited on SiNx (200 nm)/Si substrates by e-beam evaporation. With the aim of evaluating the thermal stability of such HTSMA thin films, heating experiments were performed in situ inside the transmission electron microscope to identify the temperature at which the material was decomposed by precipitation. Their microstructure, compositional analysis, and phase identification were characterized by scanning and transmission electron microscopy equipped with energy dispersive X-ray spectrometers. The nucleation and growth of two stable phases, Cu-Al-rich alpha phase and Ni-Al-rich intermetallic, were identified during in situ heating TEM experiments between 280 and 450 °C. These findings show that the used production method produces an HTSMA with high thermal stability and paves the road for developing high-temperature MEMS/NEMS using shape memory and superelastic technologies. Full article
(This article belongs to the Special Issue Nanostructural Processing Effects in Shape Memory Alloys)
Show Figures

Figure 1

Back to TopTop