Efficiency Improvement on Indium Tin Oxide Films for Dye-Sensitized Solar Cell Using Oxygen Plasma by Bias-Magnetron RF Sputtering Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. ITO Film Fabrication
2.2. Oxygen Plasma Treatment with Bias-Magnetron RF Sputtering Process
2.3. DSSCs Preparation
2.4. Characterization Method
3. Results
3.1. ITO Film Structure
3.2. Optical Properties
3.3. Electrical Properties
3.4. Efficiency of DSSCs
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tedla, A.; Tai, Y. Influence of binary solvent system on the stability and efficiency of liquid dye sensitized solar cells. J. Photochem. Photobiol. A Chem. 2018, 358, 70–75. [Google Scholar] [CrossRef]
- Han, K.-S.; Shin, J.-H.; Yoon, W.-Y.; Lee, H. Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography. Sol. Energy Mater. Sol. Cells 2011, 95, 288–291. [Google Scholar] [CrossRef]
- Agrawal, N.; Ansari, M.Z.; Majumdar, A.; Gahlot, R.; Khare, N. Efficient up-scaling of organic solar cells. Sol. Energy Mater. Sol. Cells 2016, 157, 960–965. [Google Scholar] [CrossRef]
- Sharma, K.; Sharma, V.; Sharma, S.S. Dye-sensitized solar cells: Fundamentals and current status. Nanoscale Res. Lett. 2018, 13, 381. [Google Scholar] [CrossRef] [PubMed]
- Bu, I.Y.Y.; Zheng, J. A new type of counter electrode for dye sensitized solar cells based on solution processed SnO2 and activated carbon. Mater. Sci. Semicond. 2015, 39, 223–228. [Google Scholar] [CrossRef]
- Kao, M.C.; Chen, H.Z.; Young, S.L. Dye-sensitized solar cells with TiO2 nanocrystalline films prepared by conventional and rapid thermal annealing processes. Thin Solid Film. 2011, 519, 3268–3271. [Google Scholar] [CrossRef]
- Kumar, A.; Goyal, A.K.; Gupta, U.; Tanya Gupta, N.; Chaujar, R. Increased efficiency of 23% for CIGS solar cell by using ITO as front contact. Mater. Today Proc. 2020, 28, 361–365. [Google Scholar] [CrossRef]
- Bett, A.J.; Winkler, K.M.; Bivour, M.; Cojocaru, L.; Kabakli, O.S.; Schulze, P.S.C.; Siefer, G.; Tutsch, L.; Hermle, M.; Glunz, S.W.; et al. Semi-transparent perovskite solar cells with ITO directly sputtered on spiro-OMeTAD for tandem applications. ACS Appl. Mater Interfaces 2019, 11, 45796–45804. [Google Scholar] [CrossRef]
- Chavan, G.T.; Kim, Y.; Khokhar, M.Q.; Hussian, S.Q.; Cho, E.-C.; Yi, J.; Ahmad, Z.; Rosaiah, P.; Jeon, C.-W. A brief review of transparent conducting oxides (TCO): The influence of different deposition techniques on the efficiency of solar cells. Nanomaterials 2023, 13, 1226. [Google Scholar] [CrossRef]
- Peng, Y.; Zhang, L.; Cheng, N.; Andrew, T.L. ITO-free transparent organic solar cell distributed bragg reflector for solar harvesting windows. Energies 2017, 10, 707. [Google Scholar] [CrossRef]
- Shikoh, A.S.; Ahmad, Z.; Touati, F.; Shakoor, R.A.; Al-Muhtaseb, S.A. Optimization of ITO glass/TiO2 based DSSC photo-anodes through electrophoretic deposition and sintering techniques. Ceram. Int. 2017, 43, 10540–10545. [Google Scholar] [CrossRef]
- Upadhyaya, H.M.; Senthilarasu, S.; Hsu, M.-H.; Kumar, D.K. Recent progress and the status of dye-sensitised solar cell (DSSC) technology with state-of-the-art conversion efficiencies. Sol. Energy Mater. Sol. Cells 2013, 119, 291–295. [Google Scholar] [CrossRef]
- Wang, Z.; Fang, J.; Mi, Y.; Zhu, X.; Ren, H.; Liu, X.; Yan, Y. Enhanced performance of perovskite solar cells by ultraviolet-ozone treatment of mesoporous TiO2. Appl. Surf. Sci. 2018, 436, 596–602. [Google Scholar] [CrossRef]
- Cho, J.M.; Kwak, S.-W.; Aqoma, H.; Kim, J.W.; Shin, W.S.; Moon, S.-J.; Jang, S.-Y.; Jo, J. Effects of ultraviolet-ozone treatment on organic-stabilized ZnO nanoparticle-based electron transporting layers in inverted polymer solar cells. Org. Electron. 2014, 15, 1942–1950. [Google Scholar] [CrossRef]
- Farina, F.E.; Azmi, W.S.B.; Harafuji, K. Ultraviolet-ozone anode surface treatment and its effect on organic solar cells. Thin Solid Film. 2017, 623, 72–83. [Google Scholar] [CrossRef]
- Ahmed, N.M.; Sabah, F.A.; Abdulgafour, H.I.; Alsadig, A.; Sulieman, A.; Alkhoaryef, M. The effect of post annealing temperature on grain size of indium-tin-oxide for optical and electrical properties improvement. Results Phys. 2019, 13, 102159. [Google Scholar] [CrossRef]
- Legnani, C.; Lima, S.A.M.; Oliveria, H.H.S.; Quirino, W.G.; Machado, R.; Santos, R.M.B.; Davolos, M.R.; Achete, C.A.; Cremona, M. Indium tin oxide films prepared via wet chemical route. Thin Solid Film. 2007, 516, 193–197. [Google Scholar] [CrossRef]
- Khachatryan, H.; Kim, D.-J.; Kim, M.; Kim, H.-K. Roll-to-Roll fabrication of ITO thin film for flexible optoelectronics applications: The role of post-annealing. Mater. Sci. Semicond. 2018, 88, 51–56. [Google Scholar] [CrossRef]
- Qin, G.; Fan, L.; Watanabe, A. Formation of indium tin oxide film by wet process using laser sintering. J. Mater. Process. Technol. 2016, 227, 16–23. [Google Scholar] [CrossRef]
- Khadtare, S.; Bansode, A.S.; Mathe, V.L.; Shrestha, N.K.; Bathula, C.; Han, S.-H.; Pathan, H.M. Effect of oxygen plasma treatment on performance of ZnO based dye sensitized solar cells. J. Alloys Compd. 2017, 784, 348–352. [Google Scholar] [CrossRef]
- He, P.; Wang, S.D.; Wong, W.K.; Cheng, L.F.; Lee, C.S.; Lee, S.T.; Liu, S.Y. Vibrational analysis of oxygen-plasma treated indium tin oxide. Chem. Phys. Lett. 2003, 370, 795–798. [Google Scholar] [CrossRef]
- Lu, D.; Wu, Y.; Guo, J.; Lu, G.; Wang, Y.; Shen, J. Surface treatment of indium tin oxide by oxygen-plasma for organic light-emitting diodes. Mater. Sci. Eng. B. 2003, 97, 141–144. [Google Scholar] [CrossRef]
- Park, Y.S.; Kim, E.; Hong, B.; Lee, J. Characteristics of ITO films with oxygen plasma treatment for thin film solar cell applications. Mater. Res. Bull. 2013, 48, 5115–5120. [Google Scholar] [CrossRef]
- He, K.; Yang, X.; Yan, H.; Wu, Z.; Li, Z.; Zhong, S.; Ou, Q.; Liang, R. Work function changes of plasma treated indium tin oxide. Org. Electron. 2014, 15, 1731–1737. [Google Scholar] [CrossRef]
- Yahya, M.; Fadavieslam, M.R. Effect of oxygen plasma on ITO surface and OLED physical properties. Microelectron. Reliab. 2023, 144, 114981. [Google Scholar] [CrossRef]
- Gao, X.; Lin, B.; Lin, J.; Chen, H.; Wu, Z. Improving the performance of organic light-emitting devices by employing oxygen plasma treatment on indium-tin-oxide surfaces. Displays 2023, 76, 102373. [Google Scholar] [CrossRef]
- Calnan, S.; Upadhyaya, H.M.; Dann, S.E.; Thwaites, M.J.; Tiwari, A.N. Effects of target bias voltage on indium tin oxide films deposited high target utilisation sputtering. Thin Solid Film. 2007, 515, 8500–8504. [Google Scholar] [CrossRef]
- Maissel, L.I.; Schaible, P.M. Thin films deposited by bias sputtering. J. Appl. Phys. 1965, 36, 237–242. [Google Scholar] [CrossRef]
- Stamate, E. Lowering the resistivity of aluminum doped zinc oxide thin films by controlling the self-bias during RF magnetron sputtering. Surf. Coat. Technol. 2020, 402, 126306. [Google Scholar] [CrossRef]
- Liang, L.Y.; Cao, H.T.; Liu, Q.; Jiang, K.M.; Liu, Z.M.; Zhuge, F.; Deng, F.L. Substrate biasing effect on the physical properties of reactive RF-magnetron-sputtered aluminum oxide dielectric films on ITO glasses. ACS Appl. Mater. Interfaces 2014, 6, 2255–2261. [Google Scholar] [CrossRef]
- Lee, J.; Jung, H.; Lim, D.; Yang, K.; Song, W.; Yi, J. Effects of bias voltage on the properties of ITO films prepared on polymer substrates. Thin Solid Film. 2005, 480–481, 157–161. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, Z.; Peng, H.; Cui, R. Indium tin oxide thin films by bias magnetron rf sputtering for heterojunction solar cells application. Appl. Surf. Sci. 2005, 252, 385–392. [Google Scholar] [CrossRef]
- Honda, S.-I.; Chihara, K.; Watamori, M.; Oura, K. Depth profiling of oxygen content of indium tin oxide fabricated by bias sputtering. Appl. Surf. Sci. 1997, 113–114, 408–411. [Google Scholar] [CrossRef]
- Perez, I.; Sosa, V.; Perera, F.G.; Galindo, J.T.E.; Enriquez-Carrejo, J.L.; Gonzalez, P.G.M. Effect of ion bombardment on the chemical properties of crystalline tantalum pentoxide films. Vacuum 2019, 165, 274–282. [Google Scholar] [CrossRef]
- Rizzo, A.; Signore, M.A.; Valerini, D.; Altamura, D.; Cappello, A.; Tapfer, L. A study of suppression effect of oxygen contamination by bias voltage in reactively sputtered ZrN films. Surf. Coat. Technol. 2012, 206, 2711–2718. [Google Scholar] [CrossRef]
- Yamamoto, T.; Nomoto, J.; Kitami, H.; Sakemi, T.; Makino, H.; Kobayashi, K.; Aoki, Y.; Kishimoto, S. Design of advanced functional ZnO conductive thin films with arc plasma. J. Vac. Soc. Jpn. 2017, 60, 292–299. [Google Scholar] [CrossRef]
- Holland, L.; Ojha, S.M. The chemical sputtering of graphite in an oxygen plasma. Vacuum 1976, 26, 53–60. [Google Scholar] [CrossRef]
- Rosemann, N.; Ortner, K.; Petersen, J.; Schadow, T.; Baker, M.; Brauer, G.; Rosler, J. Influence of bias voltage and oxygen flow rate on morphology and crystallographic properties of gas flow sputtered zirconia coatings. Surf. Coat. Technol. 2015, 276, 668–676. [Google Scholar] [CrossRef]
- Brewer, S.H.; Franzen, S. Calculation of the electronic and optical properties of indium tin oxide by density functional theory. Chem. Phys. 2004, 300, 285–293. [Google Scholar] [CrossRef]
- Ma, H.L.; Zhang, D.H.; Ma, P.; Win, S.Z.; Li, S.Y. Preparation and properties of transparent conducting indium tin oxide films deposited by reactive evaporation. Thin Solid Films 1995, 263, 105–110. [Google Scholar] [CrossRef]
- Gaussian Function. Available online: https://en.wikipedia.org/wiki/Gaussian_function (accessed on 15 February 2024).
- Galagan, Y.; Zimmermann Coenen, E.W.C.; Jorgensen, M.; Tanenbaum, D.M.; Krebs, F.C.; Gorter, H.; Sabik, S.; Slooff, L.H.; Veenstra, S.C.; Kroon, J.M.; et al. Current collecting grids for ITO-Free solar cells. Adv. Energy Mater. 2012, 2, 103–110. [Google Scholar] [CrossRef]
- Cardinaud, C.; Peignon, M.-C.; Tessier, P.-Y. Plasma etching: Principles, mechanisms, application to micro- and nano-technologies. Appl. Surf. Sci. 2000, 164, 72–83. [Google Scholar] [CrossRef]
- Coburn, J.W.; Winters, H.F. Ion- and electron-assisted gas-surface chemistry—An important effect in plasma etching. J. Appl. Phys. 1979, 50, 3189–3196. [Google Scholar] [CrossRef]
- Tennakone, K.; Kumara, G.R.R.A.; Kottegoda, I.R.M.; Perera, V.P.S. An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zinc. Chem. Comn. 1999, 1, 15–16. [Google Scholar] [CrossRef]
- Fung, A.K.M.; Chiu, B.K.W.; Lam, M.H.W. Surface modification of TiO2 by a ruthenium (II) polypyridyl complex via silyl-linkage for sensitized photocatalytic degradation of carbon tetrachloride by visible irradiation. Water Res. 2003, 37, 1939–1947. [Google Scholar] [CrossRef]
- Zaban, A.; Ferrere, S.; Gregg, B.A. Relative Energetics at the semiconductor/sensitizing dye/electrolyte interface. J. Phys. Chem. B 1998, 102, 452–460. [Google Scholar] [CrossRef]
- Fakharuddin, A.; Jose, R.; Brown, T.M.; Fabregat-Santiago, F.; Bisquert, J. A perspective on the production of dye-sensitized solar modules. Energy Environ. Sci. 2014, 7, 3952–3981. [Google Scholar] [CrossRef]
- Wang, M.; Anghel, A.M.; Marsan, B.; Cevey Ha, N.L.; Pootrakulchote, N.; Zekeeruddin, S.M.; Grätzel, M. CoS supersedes Pt as efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells. J. Am. Chem. Soc. 2009, 131, 15976–15977. [Google Scholar] [CrossRef]
- Murakami, T.N.; Gratzel, M. Counter electrode for DSC: Application of functional materials as catalysts. Inorganica Chim. Acta 2008, 361, 572–580. [Google Scholar] [CrossRef]
ITO Substrate | [ ] | [mV] | [%] | η [%] |
---|---|---|---|---|
ASD | 26.8 | 336 | 63 | 6 |
20 sccm | 27.9 | 491 | 66 | 8.6 |
40 sccm | 28.1 | 493 | 66 | 8.7 |
60 sccm | 28.5 | 494 | 67 | 8.9 |
80 sccm | 28.8 | 497 | 66 | 9.2 |
100 sccm | 29.3 | 500 | 70 | 9.5 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poonthong, W.; Mungkung, N.; Tanitteerapan, T.; Maneepen, T.; Songruk, A.; Tunlasakun, K.; Siricharoenpanich, A.; Arunrungrusmi, S.; Kasayapanand, N. Efficiency Improvement on Indium Tin Oxide Films for Dye-Sensitized Solar Cell Using Oxygen Plasma by Bias-Magnetron RF Sputtering Process. Energies 2024, 17, 5585. https://doi.org/10.3390/en17225585
Poonthong W, Mungkung N, Tanitteerapan T, Maneepen T, Songruk A, Tunlasakun K, Siricharoenpanich A, Arunrungrusmi S, Kasayapanand N. Efficiency Improvement on Indium Tin Oxide Films for Dye-Sensitized Solar Cell Using Oxygen Plasma by Bias-Magnetron RF Sputtering Process. Energies. 2024; 17(22):5585. https://doi.org/10.3390/en17225585
Chicago/Turabian StylePoonthong, Wittawat, Narong Mungkung, Tanes Tanitteerapan, Theerapong Maneepen, Apidat Songruk, Khanchai Tunlasakun, Anumut Siricharoenpanich, Somchai Arunrungrusmi, and Nat Kasayapanand. 2024. "Efficiency Improvement on Indium Tin Oxide Films for Dye-Sensitized Solar Cell Using Oxygen Plasma by Bias-Magnetron RF Sputtering Process" Energies 17, no. 22: 5585. https://doi.org/10.3390/en17225585
APA StylePoonthong, W., Mungkung, N., Tanitteerapan, T., Maneepen, T., Songruk, A., Tunlasakun, K., Siricharoenpanich, A., Arunrungrusmi, S., & Kasayapanand, N. (2024). Efficiency Improvement on Indium Tin Oxide Films for Dye-Sensitized Solar Cell Using Oxygen Plasma by Bias-Magnetron RF Sputtering Process. Energies, 17(22), 5585. https://doi.org/10.3390/en17225585