Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = Digital Beamforming (DBF)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3374 KB  
Technical Note
A Novel Real-Time Multi-Channel Error Calibration Architecture for DBF-SAR
by Jinsong Qiu, Zhimin Zhang, Yunkai Deng, Heng Zhang, Wei Wang, Zhen Chen, Sixi Hou, Yihang Feng and Nan Wang
Remote Sens. 2025, 17(16), 2890; https://doi.org/10.3390/rs17162890 - 19 Aug 2025
Viewed by 265
Abstract
Digital Beamforming SAR (DBF-SAR) provides high-resolution wide-swath imaging capability, yet it is affected by inter-channel amplitude, phase and time-delay errors induced by temperature variations and random error factors. Since all elevation channel data are weighted and summed by the DBF module in real [...] Read more.
Digital Beamforming SAR (DBF-SAR) provides high-resolution wide-swath imaging capability, yet it is affected by inter-channel amplitude, phase and time-delay errors induced by temperature variations and random error factors. Since all elevation channel data are weighted and summed by the DBF module in real time, conventional record-then-compensate approaches cannot meet real-time processing requirements. To resolve the problem, a real-time calibration architecture for Intermediate Frequency DBF (IFDBF) is presented in this paper. The Field-Programmable Gate Array (FPGA) implementation estimates amplitude errors through simple summation, time-delay errors via a simple counter, and phase errors via single-bin Discrete-Time Fourier Transform (DTFT). The time-delay and phase error information are converted into single-tone frequency components through Dechirp processing. The proposed method deliberately employs a reduced-length DTFT implementation to achieve enhanced delay estimation range adaptability. The method completes calibration within tens of PRIs (under 1 s). The proposed method is analyzed and validated through a spaceborne simulation and X-band 16-channel DBF-SAR experiments. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

31 pages, 8841 KB  
Article
An Ultra-Wide Swath Synthetic Aperture Radar Imaging System via Chaotic Frequency Modulation Signals and a Random Pulse Repetition Interval Variation Strategy
by Wenjiao Chen, Jiwen Geng, Yufeng Guo and Li Zhang
Remote Sens. 2025, 17(10), 1719; https://doi.org/10.3390/rs17101719 - 14 May 2025
Viewed by 438
Abstract
Ultra-wide swath synthetic aperture radar (SAR) systems are of great significance for applications such as terrain measurement and ocean monitoring. In conventional SAR systems, targets echo from the near-range and far-range of an observed swath mutually overlap, and the blind ranges are caused [...] Read more.
Ultra-wide swath synthetic aperture radar (SAR) systems are of great significance for applications such as terrain measurement and ocean monitoring. In conventional SAR systems, targets echo from the near-range and far-range of an observed swath mutually overlap, and the blind ranges are caused by those that the radar cannot receive while it is transmitting. Therefore, the swath of conventional SAR systems is limited due to their range ambiguity as well as the transmitted pulse blockage. With the development of waveform diversity, range ambiguity can be suppressed by radar waveform design with a low-range sidelobe without increasing the system’s complexity when compared to the scan-on-receive (SCORE) based on digital beamforming (DBF) technique. Additionally, by optimizing the pulse repetition interval (PRI) variation strategy, the negative impact of blind range on imaging can be reduced. Based on these technologies, this paper proposes a theoretical architecture to achieve an ultra-wide swath SAR imaging system via chaotic frequency modulation (FM) signals and a random pulse repetition interval variation strategy without increasing the antenna area. By transmitting time-variant chaotic-FM signals, the interference between targets in the near range and far range can be reduced by the corresponding match filters. Furthermore, random pulse repetition intervals increase the irregularity and aperiodicity of the blind ranges to further improve the imaging quality. Simulation results demonstrate that the proposed wide-swath SAR system has better performance compared to classical SAR systems. Full article
(This article belongs to the Section Engineering Remote Sensing)
Show Figures

Figure 1

20 pages, 6982 KB  
Article
An Advanced Real-Time Internal Calibration Scheme for the DBF-SCORE Spaceborne SAR Systems
by Yuanbo Jiao, Liang Wu, Zhanyang Ai, Mingjie Zheng, Heng Zhang and Fengjun Zhao
Remote Sens. 2025, 17(8), 1425; https://doi.org/10.3390/rs17081425 - 16 Apr 2025
Viewed by 517
Abstract
Based on Digital Beamforming (DBF) technology, spaceborne SAR systems can achieve high-resolution and wide-swath (HRWS) imaging. When combined with reflector antennas, the DBF-SCORE (Digital Beamforming-SCan On REceive) system also features light weight and low cost, making it an important choice for spaceborne HRWS [...] Read more.
Based on Digital Beamforming (DBF) technology, spaceborne SAR systems can achieve high-resolution and wide-swath (HRWS) imaging. When combined with reflector antennas, the DBF-SCORE (Digital Beamforming-SCan On REceive) system also features light weight and low cost, making it an important choice for spaceborne HRWS SAR. This paper firstly proposes an advanced Full-chain Real-time Internal Calibration (FRIC) scheme, where the calibration path covers the entire receive chain from the antenna feed port to the input port of the Analog-to-Digital Converter (ADC) and achieves high-precision internal calibration concurrently with data acquisition. Secondly, based on the L-band reflector antenna DBF-SCORE system architecture, the design of radio frequency (RF) front end, namely the Transmit-Receive-Calibration Module (TRCM), is carried out. We propose the implementation of azimuth encoding modulation of the calibration signal through periodic switch control within the TRCM. Subsequently, the calibration signal is extracted using waveform diversity technology and its Signal-to-Noise Ratio (SNR) is improved through azimuth coherent integration technology. In addition, a ground verification system is established using the TRCM to evaluate the comprehensive performance of transmitting, receiving, and real-time internal calibration. Experimental results verify the effectiveness of the FRIC scheme and provide valuable insights for future spaceborne DBF SAR systems. Full article
(This article belongs to the Section Satellite Missions for Earth and Planetary Exploration)
Show Figures

Figure 1

24 pages, 21508 KB  
Article
A Multiple-Input Multiple-Output Synthetic Aperture Radar Echo Separation and Range Ambiguity Suppression Processing Framework for High-Resolution Wide-Swath Imaging
by Haonan Zhao, Zhimin Zhang, Zhen Chen, Huaitao Fan, Zongsen Lv and Jianzhong Bi
Remote Sens. 2025, 17(4), 609; https://doi.org/10.3390/rs17040609 - 11 Feb 2025
Cited by 1 | Viewed by 716
Abstract
Multiple-input multiple-output (MIMO) synthetic aperture radar (SAR) is a promising scheme for high-resolution wide-swath (HRWS) imaging. After echo separation processing, a MIMO-SAR system can provide many equivalent phase centers (EPCs) in azimuth. However, EPC duplication occurs for traditional monostatic systems with uniform antenna [...] Read more.
Multiple-input multiple-output (MIMO) synthetic aperture radar (SAR) is a promising scheme for high-resolution wide-swath (HRWS) imaging. After echo separation processing, a MIMO-SAR system can provide many equivalent phase centers (EPCs) in azimuth. However, EPC duplication occurs for traditional monostatic systems with uniform antenna arrays, leading to system resource waste. Moreover, range ambiguity suppression is a necessary process for wide-swath SAR systems. In this paper, a novel MIMO-SAR echo separation and range ambiguity suppression processing framework is proposed for HRWS imaging. A set of transmission delays is introduced to the transmit channels to displace the repetitive EPCs. The transmission delays can also be used to flexibly control the performance of echo separation. A wide-null beamformer is employed to accomplish echo separation and ambiguity suppression simultaneously. The proposed framework is designed for real-time processing and therefore does not require frequency-domain operations. Finally, the proposed framework is verified through point target and distributed scene simulation experiments. Full article
(This article belongs to the Special Issue SAR-Based Signal Processing and Target Recognition (Second Edition))
Show Figures

Figure 1

32 pages, 13267 KB  
Article
Theoretical Proof and Implementation of Digital Beam Control and Beamforming Algorithm for Low Earth Orbit Satellite Broadcast Signal Reception Processing Terminal
by Haoran Shen, Jian Li, Xiaozhi Li, Ruiqi Cheng, Kexin Hao and Ziwei Wang
Electronics 2025, 14(3), 440; https://doi.org/10.3390/electronics14030440 - 22 Jan 2025
Viewed by 2089
Abstract
Compared to analog beamforming, digital beamforming offers better self-calibration and lower sidelobe performance, which has a profound impact on improving low Earth orbit receiver performance. The Digital Beamforming (DBF) module in the low Earth orbit satellite broadcast signal reception terminal can use digital [...] Read more.
Compared to analog beamforming, digital beamforming offers better self-calibration and lower sidelobe performance, which has a profound impact on improving low Earth orbit receiver performance. The Digital Beamforming (DBF) module in the low Earth orbit satellite broadcast signal reception terminal can use digital phase shifting to compensate for the phase differences caused by path and spatial distance variations due to inconsistent Radio Frequency (RF) channel delays. This compensation ensures in-phase summation, thereby achieving maximum energy reception in the desired direction. Although DBF has gained widespread attention in the radar field due to its unique functions and advantages, its application is limited by beamforming accuracy and gain. Therefore, with the development of DBF technology, how to improve its accuracy and gain has also attracted extensive attention both domestically and internationally. To address this issue, this paper proposes a beamforming method based on a cap-shaped array for low Earth orbit satellite broadcast signal reception and processing terminals. The method combines prior information and spatial domain search for beam control, and employs a lookup table for beam synthesis. It derives formulas for the Signal-to-Noise Ratio, noise figure, processing flow of the beamforming network, and the determination of beamforming weights for the spherical antenna array. The paper presents a beam control approach that combines prior information with spatial domain search, along with an implementation process for beam synthesis using a lookup table. It also details the corresponding Field-Programmable Gate Array (FPGA) implementation process. Finally, the beamforming algorithm is experimentally validated, and error analysis is conducted. The experimental results show that the measured beamforming sensitivity at all incident angles is below −133 dBm and the G/T values are all greater than −9 dB/K, the beam uniformity at three operating frequencies is less than 3°, and the measured errors in pitch and azimuth angles are both below 2°. The beam pointing error is also below 2°. Full article
Show Figures

Figure 1

30 pages, 5053 KB  
Review
The Latest Developments in Spaceborne High-Resolution Wide-Swath SAR Systems and Imaging Methods
by Ruizhen Song, Wei Wang and Weidong Yu
Sensors 2024, 24(18), 5978; https://doi.org/10.3390/s24185978 - 14 Sep 2024
Cited by 2 | Viewed by 2572
Abstract
Azimuth resolution and swath width are two crucial parameters in spaceborne synthetic aperture radar (SAR) systems. However, it is difficult for conventional spaceborne SAR to simultaneously achieve high-resolution wide-swath (HRWS) due to the minimum antenna area constraint. To mitigate this limitation, some representative [...] Read more.
Azimuth resolution and swath width are two crucial parameters in spaceborne synthetic aperture radar (SAR) systems. However, it is difficult for conventional spaceborne SAR to simultaneously achieve high-resolution wide-swath (HRWS) due to the minimum antenna area constraint. To mitigate this limitation, some representative HRWS SAR imaging techniques have been investigated, e.g., the azimuth multichannel technique, digital beamforming (DBF) technique, and pulse repetition interval (PRI) variation technique. This paper focus on a comprehensive review of the three techniques with respect to their latest developments. First, some key parameters of HRWS SAR are presented and analyzed to help the reader establish the general concept of SAR. Second, three techniques are introduced in detail, roughly following a simple-to-complex approach, i.e., start with the basic concept, then move to the core principles and classic technical details, and finally report the technical challenges and corresponding solutions. Third, some in-depth insights on the comparison among the three techniques are given. The purpose of this paper is to provide a review and brief perspective on the development of HRWS SAR. Full article
(This article belongs to the Special Issue Radar Imaging, Communications and Sensing)
Show Figures

Figure 1

21 pages, 4324 KB  
Article
A Space–Time Coding Array Sidelobe Optimization Method Combining Array Element Spatial Coding and Mismatched Filtering
by Shenjing Wang, Feng He and Zhen Dong
Remote Sens. 2024, 16(17), 3322; https://doi.org/10.3390/rs16173322 - 7 Sep 2024
Cited by 2 | Viewed by 1287
Abstract
Digital array radar (DAR) can fully realize digitalization at both the transmitting and receiving ends. However, the development of freedom at the transmitting end is far from mature. So, the new concept of multi-dimensional waveform coding array has appeared, which can optimize the [...] Read more.
Digital array radar (DAR) can fully realize digitalization at both the transmitting and receiving ends. However, the development of freedom at the transmitting end is far from mature. So, the new concept of multi-dimensional waveform coding array has appeared, which can optimize the transmitting resources in space–time/frequency waveform or another dimension. Space–time coding array (STCA) is a typical kind of multi-dimensional waveform coding array, which can make full use of the high degree of freedom at the transmitting end. It realizes emission diversity by introducing a small time delay between different transmission array elements. In this paper, an optimization method for STCA, which combines the array spatial coding at the transmitting end and mismatched filter design at the receiving end, is proposed. This method aims to solve the sidelobe problems of STCA: the inherent resonance phenomenon and the resolution loss problem. The experimental verification and quantitative comparative analysis prove the effectiveness of the proposed method. The resolution is restored to the ideal level under the premise of maintaining the beam-scanning ability and ultra-low sidelobe, and the resonance phenomenon caused by spectrum discontinuity is eliminated simultaneously. Full article
(This article belongs to the Special Issue Advances in Remote Sensing, Radar Techniques, and Their Applications)
Show Figures

Graphical abstract

23 pages, 8720 KB  
Article
Mitigation of Suppressive Interference in AMPC SAR Based on Digital Beamforming
by Zhipeng Xiao, Feng He, Zaoyu Sun and Zehua Zhang
Remote Sens. 2024, 16(15), 2812; https://doi.org/10.3390/rs16152812 - 31 Jul 2024
Viewed by 1267
Abstract
Multichannel Synthetic Aperture Radar (MC-SAR) systems, such as Azimuth Multi-Phase Centre (AMPC) SAR, provide an effective solution for achieving high-resolution wide-swath (HRWS) imaging by reducing the pulse repetition frequency (PRF) to increase the swath width. However, in an Electronic Countermeasures (ECM) environment, the [...] Read more.
Multichannel Synthetic Aperture Radar (MC-SAR) systems, such as Azimuth Multi-Phase Centre (AMPC) SAR, provide an effective solution for achieving high-resolution wide-swath (HRWS) imaging by reducing the pulse repetition frequency (PRF) to increase the swath width. However, in an Electronic Countermeasures (ECM) environment, the image quality of multichannel SAR systems can be significantly degraded by electromagnetic interference. Previous research into interference and counter-interference techniques has predominantly focused on single-channel SAR systems, with relatively few studies addressing the specific challenges faced by MC-SAR systems. This paper uses the classical spatial filtering technique of adaptive digital beamforming (DBF). Considering the Doppler ambiguity present in the echoes, two schemes—Interference Reconstruction And Cancellation (IRC) and Channel Grouping Nulling (CGN)—are designed to effectively eliminate suppressive interference. The IRC method eliminates the effects of interference without losing spatial degrees of freedom, ensuring effective suppression of Doppler ambiguity in subsequent processing. This method shows significant advantages under conditions of strong Doppler ambiguity and low jammer-to-signal ratio. Conversely, the CGN method mitigates the effect of interference on multichannel imaging at the expense of degrees of freedom redundant to Doppler ambiguity suppression. It shows remarkable interference suppression performance under weak-Doppler-ambiguity conditions, allowing for better image recovery. Simulations performed on point and distributed targets have validated that the proposed methods can effectively remove interfering signals and achieve high-resolution wide-swath (HRWS) SAR images. Full article
Show Figures

Figure 1

13 pages, 900 KB  
Article
Single-Snapshot Direction of Arrival Estimation for Vehicle-Mounted Millimeter-Wave Radar via Fast Deterministic Maximum Likelihood Algorithm
by Hong Liu, Han Xie, Zhen Wang, Xianling Wang and Donghang Chai
World Electr. Veh. J. 2024, 15(7), 321; https://doi.org/10.3390/wevj15070321 - 20 Jul 2024
Viewed by 1456
Abstract
As one of the fundamental vehicular perception technologies, millimeter-wave radar’s accuracy in angle measurement affects the decision-making and control of vehicles. In order to enhance the accuracy and efficiency of the Direction of Arrival (DoA) estimation of radar systems, a super-resolution angle measurement [...] Read more.
As one of the fundamental vehicular perception technologies, millimeter-wave radar’s accuracy in angle measurement affects the decision-making and control of vehicles. In order to enhance the accuracy and efficiency of the Direction of Arrival (DoA) estimation of radar systems, a super-resolution angle measurement strategy based on the Fast Deterministic Maximum Likelihood (FDML) algorithm is proposed in this paper. This strategy sequentially uses Digital Beamforming (DBF) and Deterministic Maximum Likelihood (DML) in the Field of View (FoV) to perform a rough search and precise search, respectively. In a simulation with a signal-to-noise ratio of 20 dB, FDML can accurately determine the target angle in just 16.8 ms, with a positioning error of less than 0.7010. DBF, the Iterative Adaptive Approach (IAA), DML, Fast Iterative Adaptive Approach (FIAA), and FDML are subjected to simulation with two targets, and their performance is compared in this paper. The results demonstrate that under the same angular resolution, FDML reduces computation time by 99.30% and angle measurement error by 87.17% compared with the angular measurement results of two targets. The FDML algorithm significantly improves computational efficiency while ensuring measurement performance. It provides more reliable technical support for autonomous vehicles and lays a solid foundation for the advancement of autonomous driving technology. Full article
Show Figures

Figure 1

19 pages, 15821 KB  
Article
A Novel Multi-Beam SAR Two-Dimensional Ambiguity Suppression Method Based on Azimuth Phase Coding
by Yihao Xu, Fubo Zhang, Wenjie Li, Yangliang Wan, Longyong Chen and Tao Jiang
Remote Sens. 2024, 16(13), 2298; https://doi.org/10.3390/rs16132298 - 24 Jun 2024
Viewed by 1223
Abstract
In order to address the problems of range ambiguity and azimuth ambiguity in the wide-swath imaging of synthetic aperture radar (SAR), this paper proposes a multi-beam SAR two-dimensional ambiguity suppression method based on azimuth phase coding (APC). The scheme employs an elevation simultaneous [...] Read more.
In order to address the problems of range ambiguity and azimuth ambiguity in the wide-swath imaging of synthetic aperture radar (SAR), this paper proposes a multi-beam SAR two-dimensional ambiguity suppression method based on azimuth phase coding (APC). The scheme employs an elevation simultaneous multi-beam transmission system with azimuth under-sampling, transmitting different APC waveforms to various range-ambiguous sub-regions. After receiving the echoes, the azimuth digital beamforming (DBF) is used to separate the APC waveform echoes with multi-order Doppler ambiguity, achieving azimuth reconstruction and range ambiguity suppression simultaneously. Finally, the elevation nulling DBF is used to further suppress range ambiguity and obtain the SAR wide-swath image. The superiority of this scheme is reflected in the following aspects: the azimuth DBF simultaneously suppresses azimuth and range ambiguity, the influence of height fluctuations on the ability to suppress range ambiguity is weakened, the use of elevation nulling DBF further enhances the level of range ambiguity suppression, and different range sub-regions can adopt different range resolutions and working modes. The feasibility of this scheme is verified through theoretical analysis and simulation. Full article
(This article belongs to the Special Issue Advances in Synthetic Aperture Radar Data Processing and Application)
Show Figures

Figure 1

18 pages, 9781 KB  
Article
A Novel Intrapulse Beamsteering SAR Imaging Mode Based on OFDM-Chirp Signals
by Shenjing Wang, Feng He and Zhen Dong
Remote Sens. 2024, 16(1), 126; https://doi.org/10.3390/rs16010126 - 28 Dec 2023
Cited by 4 | Viewed by 1292
Abstract
The multiple-input multiple-output synthetic aperture radar (MIMO SAR) system has developed rapidly since its discovery. At the same time, the low-disturbance and high-gain requirements of the MIMO system are continuing to increase. Through the application of digital beamforming (DBF) techniques, the multidimensional waveform [...] Read more.
The multiple-input multiple-output synthetic aperture radar (MIMO SAR) system has developed rapidly since its discovery. At the same time, the low-disturbance and high-gain requirements of the MIMO system are continuing to increase. Through the application of digital beamforming (DBF) techniques, the multidimensional waveform encoding (MWE) technique can play a key role in MIMO systems, which can greatly improve the system’s performance, especially the multi-mission capability of radar. Intrapulse beamsteering in elevation is a typical form of multi-dimensional waveform encoding which can greatly improve the transmitting efficiency and multi-mission performance of radar. However, because of the high sensitivity of the DBF technique to height, there is significant deterioration in performance in the presence of terrain undulations. The OFDM (Orthogonal Frequency Division Multiplexing) technique is widely used in communication. Due to the similarity of radar and communication systems and the great waveform diversity of OFDM signals, the OFDM radar has recently begun to emerge as a new radar system, simultaneously, the orthogonality of OFDM signals is in the time and frequency domains, and is not affected by terrain undulation. So, this paper proposes a novel radar mode combining intrapulse beamsteering in elevation and OFDM-Chirp signals, that is, the combination of “beam orthogonality” and “waveform orthogonality”, which can greatly improve the performance and fault tolerance to interference signals. In this manuscript, the system working mode and signal processing flow are introduced in detail, and simulations for both point targets and distributed targets are carried out to verify the feasibility of the proposed mode. Simultaneously, a comparison experiment is carried out, which shows the high level of fault tolerance to terrain undulation and the high potential of the proposed radar mode in Earth observation. Full article
(This article belongs to the Special Issue Radar and Sonar Imaging and Processing IV)
Show Figures

Graphical abstract

10 pages, 3561 KB  
Communication
An Innovative Design of Isoflux Scanning Digital Phased Array Based on Completely Shared Subarray Architecture for Geostationary Satellites
by Muren Cai, Wentao Li, Xiaowei Shi, Qiaoshan Zhang, Heng Liu and Yan Li
Electronics 2023, 12(18), 3850; https://doi.org/10.3390/electronics12183850 - 12 Sep 2023
Cited by 5 | Viewed by 1701
Abstract
In this paper, we propose an innovative spaceborne isoflux scanning digital phased array (ISDPA) design with two-stage digital beamforming (DBF) for geostationary satellites. To achieve isoflux scanning, a novel technique is presented to obtain an isoflux beam for the ISDPA equivalent element using [...] Read more.
In this paper, we propose an innovative spaceborne isoflux scanning digital phased array (ISDPA) design with two-stage digital beamforming (DBF) for geostationary satellites. To achieve isoflux scanning, a novel technique is presented to obtain an isoflux beam for the ISDPA equivalent element using a DBF completely shared subarray architecture and the differential evolution (DE) algorithm. By reutilizing the radiating elements of adjacent subarrays, the radiation aperture and element number are augmented, enhancing the degrees of optimization freedom. To validate the proposed design, a linear ISDPA with 16 DBF completely shared subarrays is optimized and analyzed using two sets of excitation coefficients in different DBF stages. The numerical results demonstrate that the proposed ISDPA can adaptively compensate for space loss variations during beam scanning for geostationary communications with low sidelobes better than −20 dB. Full article
(This article belongs to the Special Issue Applications of Array Antenna in Modern Wireless Systems)
Show Figures

Figure 1

21 pages, 7485 KB  
Article
A Signal Model Based on the Space–Time Coding Array and a Novel Imaging Method Based on the Hybrid Correlation Algorithm for F-SCAN SAR
by Yuqing Liu, Pengbo Wang, Zhirong Men, Yanan Guo, Tao He, Rui Bao and Lei Cui
Remote Sens. 2023, 15(17), 4276; https://doi.org/10.3390/rs15174276 - 31 Aug 2023
Cited by 1 | Viewed by 1764
Abstract
The F-SCAN principle is a better alternative to the scan-on-receive technique (SCORE) based on digital beamforming (DBF), which can avoid low gain caused by a conventional broad beam in the case of a wide swath. In F-SCAN SAR, a pencil beam scans the [...] Read more.
The F-SCAN principle is a better alternative to the scan-on-receive technique (SCORE) based on digital beamforming (DBF), which can avoid low gain caused by a conventional broad beam in the case of a wide swath. In F-SCAN SAR, a pencil beam scans the entire target area from far to near, providing high energy independent of the position and ensuring a low range ambiguity-to-signal ratio (RASR). Moreover, echo compression can be achieved via appropriate system parameter configuration, significantly shortening the receive window and reducing the amount of data. A wider range swath can, therefore, be achieved. However, for this novel F-SCAN SAR working mode, signal modeling and imaging processing are key issues that needed to be addressed. In this paper, the far-field synthetic antenna pattern of the space–time coding array (STCA) is first derived and analyzed, based on which the signal modeling of the F-SCAN SAR is carried out. Then, according to the signal model and echo characteristics, a novel imaging processing method based on the hybrid correlation algorithm is presented for the F-SCAN SAR. First, the dechirp operation is performed to compensate for the quadratic phase of the range time. The range compressed result is obtained after a range Fourier transform, where different range targets are successfully separated and range aliasing is avoided. Then, the modified azimuth reference function is correlated with the echo at each range cell to complete range cell migration correction (RCMC) and azimuth compensation. The received signal parameters and the Doppler parameters of each range cell are derived to update the azimuth reference function. Finally, accurate focused results are obtained in the range-frequency, azimuth-time domain. The simulation results indicate that the signal model based on the STCA can satisfy the requirements of the F-SCAN principle, and the proposed imaging algorithm can complete the precise focusing processing of the F-SCAN SAR echo. Full article
Show Figures

Graphical abstract

19 pages, 17824 KB  
Article
Fast Adaptive Beamforming for Weather Observations with Convolutional Neural Networks
by Yoon-SL Kim, David Schvartzman, Tian-You Yu and Robert D. Palmer
Remote Sens. 2023, 15(17), 4129; https://doi.org/10.3390/rs15174129 - 23 Aug 2023
Cited by 6 | Viewed by 2591
Abstract
Polarimetric phased array radar (PAR) can achieve high temporal resolutions for improved meteorological observations with digital beamforming (DBF). The Fourier method performs DBF deterministically, and produces antenna radiation patterns with fixed sidelobe levels and angular resolution by pre-computing the beamforming weights based on [...] Read more.
Polarimetric phased array radar (PAR) can achieve high temporal resolutions for improved meteorological observations with digital beamforming (DBF). The Fourier method performs DBF deterministically, and produces antenna radiation patterns with fixed sidelobe levels and angular resolution by pre-computing the beamforming weights based on the geometry of receivers. In contrast, the Capon method performs DBF adaptively in response to the changing environment by computing the beamforming weights from the received signals at multiple channels. However, it becomes computationally expensive as the number of receivers grows. This paper presents computationally efficient adaptive beamforming with an application of convolutional neural networks, named ABCNN. ABCNN is trained with the phase and amplitude of complex-valued time-series IQ signals and the Capon beamforming weights as input and output. ABCNN is tested and evaluated using simulated time-series data from both point targets and weather scatterers for a planar of fully digital PAR architecture. The preliminary results show that ABCNN lowers computation time by a factor of three, compared to the Capon method, for a phased array antenna with 1024 elements, while mitigating the contamination from sidelobes by placing nulls at the location of the clutter. Furthermore, ABCNN produces antenna patterns similar to those from the Capon method, which shows that it has successfully learned the data. Full article
Show Figures

Figure 1

19 pages, 7165 KB  
Article
A New Concept of Contiguous-Swath SAR Imaging with High Resolution: Strip-Spot SAR
by Furkan Korkmaz and Michail Antoniou
Sensors 2022, 22(23), 9153; https://doi.org/10.3390/s22239153 - 25 Nov 2022
Cited by 4 | Viewed by 2377
Abstract
The study offers a Synthetic Aperture Radar (SAR) imaging concept called Strip-Spot SAR, which uses linear Multiple-Input Multiple-Output (MIMO) radar arrays, which are becoming increasingly attractive for short-range sensing in a variety of growing application sectors. The concept specifically employs Digital Beam-Forming (DBF) [...] Read more.
The study offers a Synthetic Aperture Radar (SAR) imaging concept called Strip-Spot SAR, which uses linear Multiple-Input Multiple-Output (MIMO) radar arrays, which are becoming increasingly attractive for short-range sensing in a variety of growing application sectors. The concept specifically employs Digital Beam-Forming (DBF) techniques, which are enabled in such systems to give contiguous azimuth imaging, as in Stripmap SAR, but with the fine spatial resolution of a Spotlight SAR. Its fundamental concepts are analytically derived and experimentally validated under laboratory conditions using calibrated and real targets. Finally, the performance and limitations of the concept are investigated. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

Back to TopTop