Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (372)

Search Parameters:
Keywords = Density-based Spatial Clustering of Applications with Noise

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2515 KB  
Article
Fishing Ground Identification and Activity Analysis Based on AIS Data
by Anila Duka, Weiwei Tian, Houxiang Zhang, Pero Vidan and Guoyuan Li
Future Transp. 2026, 6(1), 34; https://doi.org/10.3390/futuretransp6010034 - 2 Feb 2026
Viewed by 40
Abstract
The sustainable management of marine resources requires accurate knowledge of fishing activity patterns and their interaction with coastal infrastructure. Intelligent Transportation Systems (ITS) are increasingly applied in the maritime domain, where data-driven approaches enhance safety, efficiency, and sustainability. In this context, Automatic Identification [...] Read more.
The sustainable management of marine resources requires accurate knowledge of fishing activity patterns and their interaction with coastal infrastructure. Intelligent Transportation Systems (ITS) are increasingly applied in the maritime domain, where data-driven approaches enhance safety, efficiency, and sustainability. In this context, Automatic Identification System (AIS) data provide valuable insights into vessel behavior and fisheries management. This study employs the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm to identify fishing grounds, and a density map-based approach to recognize port locations. By integrating AIS data with machine learning techniques, the study detects and analyzes fishing vessel activities, providing deeper insights into behaviors such as fishing ground visit times, durations, and transitions between fishing grounds and ports. A case study in the Aalesund area of Norway demonstrates that DBSCAN effectively reveals fishing activity patterns relevant to regulatory oversight and spatial planning, while density mapping accurately identifies fishing ports. The findings highlight the potential of AIS-based analytics and clustering methods within maritime ITS frameworks to enhance situational awareness, support compliance with fisheries regulations, and contribute to sustainable marine resource management. Using 2023 AIS data from the Aalesund region, 6 recurrent fishing grounds and 15 port locations are identified, and size-stratified visit frequency and residence-time distributions are quantified together with monthly seasonality in ground usage. Full article
Show Figures

Figure 1

39 pages, 3530 KB  
Article
AI-Based Embedded Framework for Cyber-Attack Detection Through Signal Processing and Anomaly Analysis
by Sebastian-Alexandru Drǎguşin, Robert-Nicolae Boştinaru, Nicu Bizon and Gabriel-Vasile Iana
Appl. Sci. 2026, 16(3), 1416; https://doi.org/10.3390/app16031416 - 30 Jan 2026
Viewed by 126
Abstract
This paper proposes an applied framework for cyberattack and anomaly detection in resource-constrained embedded/IoT environments by combining signal-processing feature construction with supervised and unsupervised AI (Artificial Intelligence) models. The workflow covers dataset preparation and normalization, correlation-driven feature analysis, and compact representations via PCA [...] Read more.
This paper proposes an applied framework for cyberattack and anomaly detection in resource-constrained embedded/IoT environments by combining signal-processing feature construction with supervised and unsupervised AI (Artificial Intelligence) models. The workflow covers dataset preparation and normalization, correlation-driven feature analysis, and compact representations via PCA (Principal Component Analysis), followed by classification and anomaly scoring. In addition to the original UNSW-NB15 (University of New South Wales—Network-Based Dataset 2015) traffic features, Fourier-domain descriptors, wavelet-domain descriptors, and Kalman-based smoothing/innovation features are considered to improve robustness under variability and measurement noise. Detection performance is assessed using classical and ensemble learning methods (SVM (Support Vector Machines), RF (Random Forest), XGBoost (Extreme Gradient Boosting), LightGBM (Light Gradient Boosting Machine)), unsupervised baselines (K-Means and DBSCAN (Density-Based Spatial Clustering of Applications with Noise)), and DL (Deep-Learning) anomaly detectors based on Autoencoder reconstruction and GAN (Generative Adversarial Network)-based scoring. Experimental results on UNSW-NB15 indicate that ensemble-based models provide the strongest overall detection performance, while the signal-processing augmentation and PCA-based compactness support efficient deployment in embedded contexts. The findings confirm that integrating lightweight signal processing with AI-driven models enables effective and adaptable identification of malicious network traffic supporting deployment-oriented embedded cybersecurity and motivating future real-time validation on edge hardware. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

25 pages, 5680 KB  
Article
Understanding the Internal Structure of Daily Activity Space from Anchor Regions: Evidence from Long-Time-Series Mobile Signaling Data
by Xueyao Luo, Wenjia Zhang, Yanwei Chai and Jingxue Xie
ISPRS Int. J. Geo-Inf. 2026, 15(2), 56; https://doi.org/10.3390/ijgi15020056 - 26 Jan 2026
Viewed by 176
Abstract
Activity space represents the spatiotemporal interaction between individuals and their environment. While most studies measure potential activity space using short-term data, few have defined or measured its actual internal structure. This study introduces “anchor regions” as the core areas where daily activities are [...] Read more.
Activity space represents the spatiotemporal interaction between individuals and their environment. While most studies measure potential activity space using short-term data, few have defined or measured its actual internal structure. This study introduces “anchor regions” as the core areas where daily activities are concentrated, and conceptualizes the structure of an individual’s activity space by incorporating the concept of regular locations, anchor regions, potential regular activity space, and potential activity space. Using three months of mobile signaling data from 10,848 residents in Shenzhen, we detected anchor regions via a weighted density-based spatial clustering for applications with noise (DBSCAN) method and categorized individuals into six typical activity space structures based on a rule-based taxonomy. We also figured out the intra- and inter-anchor region mobility pattern of each type. Our results show the following: (1) A total of 80% of activities and 87% of time are concentrated in just 26% of locations, forming anchor regions—with 95% of individuals having no more than five such regions. (2) The total area of anchor regions is merely 0.1% of the potential activity space. (3) Six typical structures of activity space are derived with different combinations of several functional anchor regions, including home, weekday anchors, and daily activity anchors. (4) The spatial patterns of the six types are different, while intra-anchor region mobilities dominate daily movement in all six types. This study provides a region-based, instead of a point-based, perspective interpretation of the anchor points theory, helping to better understand the regularities and internal structure of human activity space. Our conceptual framework and methodology have the potential to help urban and transportation planning practice and policy making. Full article
(This article belongs to the Special Issue Spatial Data Science and Knowledge Discovery)
Show Figures

Figure 1

21 pages, 6017 KB  
Article
A New Ship Trajectory Clustering Method Based on PSO-DBSCAN
by Zhengchuan Qin and Tian Chai
J. Mar. Sci. Eng. 2026, 14(2), 214; https://doi.org/10.3390/jmse14020214 - 20 Jan 2026
Viewed by 124
Abstract
With the rapid growth of vessel traffic and the widespread adoption of the Automatic Identification System (AIS) in recent years, analyzing maritime traffic flow characteristics has become an essential component of modern maritime supervision. Clustering analysis is one of the primary data-mining approaches [...] Read more.
With the rapid growth of vessel traffic and the widespread adoption of the Automatic Identification System (AIS) in recent years, analyzing maritime traffic flow characteristics has become an essential component of modern maritime supervision. Clustering analysis is one of the primary data-mining approaches used to extract traffic patterns from AIS data. Addressing the challenge of assigning appropriate weights to the multidimensional features in AIS trajectories, namely latitude and longitude, speed over ground (SOG), and course over ground (COG). This study introduces an adaptive parameter optimization mechanism based on evolutionary algorithms. Specifically, Particle Swarm Optimization (PSO), a representative swarm intelligence algorithm, is employed to automatically search for the optimal feature-distance weights and the core parameters of Density-Based Spatial Clustering of Applications with Noise (DBSCAN), enabling dynamic adjustment of clustering thresholds and global optimization of model performance. By designing a comprehensive clustering evaluation index as the objective function, the proposed method achieves optimal parameter allocation in a multidimensional similarity space, thereby uncovering maritime traffic clusters that may be overlooked when relying on single-dimensional features. The method is validated using AIS trajectory data from the Xiamen Port area, where 15 traffic clusters were successfully identified. Comparative experiments with two other clustering algorithms demonstrate the superior performance of the proposed approach in trajectory pattern analysis, providing valuable reference for maritime regulatory and traffic management applications. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

27 pages, 2554 KB  
Article
Resilient Anomaly Detection in Ocean Drifters with Unsupervised Learning, Deep Learning Models, and Energy-Efficient Recovery
by Claire Angelina Guo, Jiachi Zhao and Eugene Pinsky
Oceans 2026, 7(1), 5; https://doi.org/10.3390/oceans7010005 - 6 Jan 2026
Viewed by 427
Abstract
Changes in climate and ocean pollution has prioritized monitoring of ocean surface behavior. Ocean drifters, which are floating sensors that record position and velocity, help track ocean dynamics. However, environmental events such as oil spills can cause abnormal behavior, making anomaly detection critical. [...] Read more.
Changes in climate and ocean pollution has prioritized monitoring of ocean surface behavior. Ocean drifters, which are floating sensors that record position and velocity, help track ocean dynamics. However, environmental events such as oil spills can cause abnormal behavior, making anomaly detection critical. Unsupervised learning, combined with deep learning and advanced data handling, is used to detect unusual behavior more accurately on the NOAA Global Drifter Program dataset, focusing on regions of the West Coast and the Mexican Gulf, for time periods spanning 2010 and 2024. Using Density-Based Spatial Clustering of Applications with Noise (DBSCAN), pseudo-labels of anomalies are generated to train both a one-dimensional Convolutional Neural Network (CNN) and a Long Short-Term Memory (LSTM) network. The results of the two models are then compared with bootstrapping with block shuffling, as well as 10 trials with bar chart summaries. The results show nuance, with models outperforming the other in different contexts. Between the four spatiotemporal domains, a difference in the increasing rate of anomalies is found, showing the relevance of the suggested pipeline. Beyond detection, data reliability and efficiency are addressed: a RAID-inspired recovery method reconstructs missing data, while delta encoding and gzip compression cut storage and transmission costs. This framework enhances anomaly detection, ensures reliable recovery, and reduces energy consumption, thereby providing a sustainable system for timely environmental monitoring. Full article
Show Figures

Figure 1

16 pages, 2031 KB  
Article
Cooperative 4D Trajectory Prediction and Conflict Detection in Integrated Airspace
by Xin Ma, Linxin Zheng, Jiajun Zhao and Yuxin Wu
Algorithms 2026, 19(1), 32; https://doi.org/10.3390/a19010032 - 1 Jan 2026
Viewed by 237
Abstract
In order to effectively ensure the flight safety of unmanned aerial vehicles (UAVs) and effectively deal with the risk of integrated airspace operation, this study carried out a series of key technology exploration and verification. In terms of data processing, Density-based spatial clustering [...] Read more.
In order to effectively ensure the flight safety of unmanned aerial vehicles (UAVs) and effectively deal with the risk of integrated airspace operation, this study carried out a series of key technology exploration and verification. In terms of data processing, Density-based spatial clustering of applications with noise (DBSCAN) clustering method is used to preprocess the characteristics of UAV automatic dependent surveillance–broadcast (ADS-B) data, effectively purify the data from the source, eliminate the noise and outliers of track data in spatial dimension and spatial-temporal dimension, significantly improve the data quality and standardize the data characteristics, and lay a reliable and high-quality data foundation for subsequent trajectory analysis and prediction. In terms of trajectory prediction, the convolutional neural networks-bidirectional gated recurrent unit (CNN-BiGRU) trajectory prediction model is innovatively constructed, and the integrated intelligent calculation of ‘prediction-judgment’ is successfully realized. The output of the model can accurately and prospectively judge the conflict situation and conflict degree between any two trajectories, and provide core and direct technical support for trajectory conflict warning. In the aspect of conflict detection, the performance of the model and the effect of conflict detection are fully verified by simulation experiments. By comparing the predicted data of the model with the real track data, it is confirmed that the CNN-BiGRU prediction model has high accuracy and reliability in calculating the distance between aircraft. At the same time, the preset conflict detection method is used for further verification. The results show that there is no conflict risk between the UAV and the manned aircraft in integrated airspace during the full 800 s of terminal area flight. In summary, the trajectory prediction model and conflict detection method proposed in this study provide a key technical guarantee for the construction of an active and accurate integrated airspace security management and control system, and have important application value and reference significance for improving airspace management efficiency and preventing flight conflicts. Full article
Show Figures

Figure 1

20 pages, 4309 KB  
Article
Targetless Radar–Camera Calibration via Trajectory Alignment
by Ozan Durmaz and Hakan Cevikalp
Sensors 2025, 25(24), 7574; https://doi.org/10.3390/s25247574 - 13 Dec 2025
Viewed by 797
Abstract
Accurate extrinsic calibration between radar and camera sensors is essential for reliable multi-modal perception in robotics and autonomous navigation. Traditional calibration methods often rely on artificial targets such as checkerboards or corner reflectors, which can be impractical in dynamic or large-scale environments. This [...] Read more.
Accurate extrinsic calibration between radar and camera sensors is essential for reliable multi-modal perception in robotics and autonomous navigation. Traditional calibration methods often rely on artificial targets such as checkerboards or corner reflectors, which can be impractical in dynamic or large-scale environments. This study presents a fully targetless calibration framework that estimates the rigid spatial transformation between radar and camera coordinate frames by aligning their observed trajectories of a moving object. The proposed method integrates You Only Look Once version 5 (YOLOv5)-based 3D object localization for the camera stream with Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and Random Sample Consensus (RANSAC) filtering for sparse and noisy radar measurements. A passive temporal synchronization technique, based on Root Mean Square Error (RMSE) minimization, corrects timestamp offsets without requiring hardware triggers. Rigid transformation parameters are computed using Kabsch and Umeyama algorithms, ensuring robust alignment even under millimeter-wave (mmWave) radar sparsity and measurement bias. The framework is experimentally validated in an indoor OptiTrack-equipped laboratory using a Skydio 2 drone as the dynamic target. Results demonstrate sub-degree rotational accuracy and decimeter-level translational error (approximately 0.12–0.27 m depending on the metric), with successful generalization to unseen motion trajectories. The findings highlight the method’s applicability for real-world autonomous systems requiring practical, markerless multi-sensor calibration. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

29 pages, 3021 KB  
Article
Fog-Aware Hierarchical Autoencoder with Density-Based Clustering for AI-Driven Threat Detection in Smart Farming IoT Systems
by Manikandan Thirumalaisamy, Sumendra Yogarayan, Md Shohel Sayeed, Siti Fatimah Abdul Razak and Ramesh Shunmugam
Future Internet 2025, 17(12), 567; https://doi.org/10.3390/fi17120567 - 10 Dec 2025
Viewed by 392
Abstract
Smart farming relies heavily on IoT automation and data-driven decision making, but this growing connectivity also increases exposure to cyberattacks. Flow-based unsupervised intrusion detection is a privacy-preserving alternative to signature and payload inspection, yet it still faces three challenges: loss of subtle anomaly [...] Read more.
Smart farming relies heavily on IoT automation and data-driven decision making, but this growing connectivity also increases exposure to cyberattacks. Flow-based unsupervised intrusion detection is a privacy-preserving alternative to signature and payload inspection, yet it still faces three challenges: loss of subtle anomaly cues during Autoencoder (AE) compression, instability of fixed reconstruction-error thresholds, and performance degradation of clustering in noisy high-dimensional spaces. To address these issues, we propose a fog-aware two-stage hierarchical AE with latent-space gating, followed by Density-Based Spatial Clustering of Applications with Noise (DBSCAN) for attack categorization. A shallow AE compresses the input into a compact 21-dimensional latent space, reducing computational demand for fog-node deployment. A deep AE then computes reconstruction-error scores to isolate malicious behavior while denoising latent features. Only high-error latent vectors are forwarded to DBSCAN, which improves cluster separability, reduces noise sensitivity, and avoids predefined cluster counts or labels. The framework is evaluated on two benchmark datasets. On CIC IoT-DIAD 2024, it achieves 98.99% accuracy, 0.9897 F1-score, 0.895 Adjusted Rand Index (ARI), and 0.019 Davies–Bouldin Index (DBI). To examine generalizability beyond smart farming traffic, we also evaluate the framework on the CSE-CIC-IDS2018 benchmark, where it achieves 99.33% accuracy, 0.9928 F1-score, 0.9013 ARI, and 0.0174 DBI. These results confirm that the proposed model can reliably detect and categorize major cyberattack families across distinct IoT threat landscapes while remaining compatible with resource-constrained fog computing environments. Full article
(This article belongs to the Special Issue Clustered Federated Learning for Networks)
Show Figures

Figure 1

17 pages, 3294 KB  
Article
Detecting 3D Anomalies in Soil Water from Saline-Alkali Land of Yellow River Delta Using Sampling Data
by Zhoushun Han, Xin Fu, Haoran Zhang, Yang Li, Lehang Tang, Hengcai Zhang and Zhenghe Xu
Hydrology 2025, 12(12), 318; https://doi.org/10.3390/hydrology12120318 - 1 Dec 2025
Viewed by 429
Abstract
Understanding soil water in the saline-alkali lands is crucial for sustainable agriculture and ecological restoration. Existing studies have largely focused on macroscopic distribution and associated interpolation techniques, which complicates the precise identification of localized anomalous regions. To address this limitation, this study proposes [...] Read more.
Understanding soil water in the saline-alkali lands is crucial for sustainable agriculture and ecological restoration. Existing studies have largely focused on macroscopic distribution and associated interpolation techniques, which complicates the precise identification of localized anomalous regions. To address this limitation, this study proposes a novel three-dimensional detection method for localized soil water anomalies (3D-SWLA). Utilizing soil water sampling data, a comprehensive three-dimensional soil water cube is constructed through 3D Empirical Bayesian Kriging (3D EBK). We introduce the Soil Water Local Anomaly Index (SWLAI) and apply a second-order difference method to effectively identify and filter anomalous voxels. Then, the 3D Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm is utilized to cluster Soil Water Anomalous Voxels (SWAVs), thereby delineating three-dimensional Local Anomalous Soil Water Areas (LASWAs) with precision and robustness. A series of experiments were conducted in Kenli to validate the proposed methodology. The results reveal that 3D-SWLA successfully identified a total of 8 Local Anomalous Soil Water Areas (LASWAs), four of which—classified as large-scale anomalies (area > 1.0 km2)—are predominantly concentrated in the northeastern coastal zone and the southern salt fields. The largest among them, LASWA-1, spans 1.8 km2 with a vertical depth ranging from 0 to 35 cm and an average soil water content of 0.36. Another significant anomaly, LASWA-8, covers 1.5 km2, extends to a depth of 0–60 cm, and exhibits a higher average water content of 0.42, reflecting distinct hydrological dynamics in these regions. Additionally, 4 smaller LASWAs (area < 1.0 km2) are spatially distributed along the northeastern irrigation channels, indicating localized moisture accumulation likely influenced by agricultural water management. Full article
Show Figures

Figure 1

24 pages, 7424 KB  
Article
Sustainability-Oriented Ultra-Short-Term Wind Farm Cluster Power Prediction Based on an Improved TCN–BiGRU Hybrid Model
by Ruifeng Gao, Zhanqiang Zhang, Keqilao Meng, Yingqi Gao and Wenyu Liu
Sustainability 2025, 17(23), 10719; https://doi.org/10.3390/su172310719 - 30 Nov 2025
Viewed by 328
Abstract
With the large-scale integration of wind power into the grid, the accuracy of wind farm cluster power prediction has become a key factor for the sustainability of modern power systems. Reliable ultra-short-term forecasts support the secure dispatch of high-penetration renewable energy, reduce wind [...] Read more.
With the large-scale integration of wind power into the grid, the accuracy of wind farm cluster power prediction has become a key factor for the sustainability of modern power systems. Reliable ultra-short-term forecasts support the secure dispatch of high-penetration renewable energy, reduce wind curtailment, and improve the low-carbon and economical operation of power systems. Aiming at the problem of significant differences in wind turbine characteristics, this paper proposes a prediction method based on an improved density-based spatial clustering of applications with noise (DBSCAN) and a hybrid deep learning model. First, the wind speed signal is decomposed at multiple scales using successive variational modal decomposition (SVMD) to reduce non-stationarity. Subsequently, the DBSCAN parameters are optimized by the fruit fly optimization algorithm (FOA), and dimensionality reduction is performed by principal component analysis (PCA) to achieve efficient clustering of wind turbines. Next, the representative turbines with the highest correlation are selected in each cluster to reduce computational complexity. Finally, the SVMD-TCN-BiGRU-MSA-GJO hybrid model is constructed, and long-term dependence is extracted using a temporal convolutional network (TCN); the temporal features are captured by bidirectional gated recurrent units (BiGRUs); the feature weights are optimized by a multi-head self-attention mechanism (MSA), and the hyper-parameters are, in turn, optimized by golden jackal optimization (GJO). The experimental results show that this method reduces the MAE, RMSE, and MAPE by 14.02%, 12.9%, and 13.84%, respectively, and improves R2 by 3.9% on average compared with the traditional model, which significantly improves prediction accuracy and stability. These improvements enable more accurate scheduling of wind power, lower reserve requirements, and enhanced stability and sustainability of power system operation under high renewable penetration. Full article
Show Figures

Figure 1

26 pages, 10538 KB  
Article
An Improved Change Detection Method for Time-Series Soil Moisture Retrieval in Semi-Arid Area
by Jing Zhang and Liangliang Tao
Remote Sens. 2025, 17(23), 3874; https://doi.org/10.3390/rs17233874 - 29 Nov 2025
Viewed by 416
Abstract
Although surface soil moisture (SSM) is particularly important in crop yield prediction, irrigation scheduling optimization, and runoff generation mechanisms, accurate monitoring of time-series SSM is still challenging for agricultural and hydrological research. This study presented an improved approach integrating Sentinel-1 C-band SAR and [...] Read more.
Although surface soil moisture (SSM) is particularly important in crop yield prediction, irrigation scheduling optimization, and runoff generation mechanisms, accurate monitoring of time-series SSM is still challenging for agricultural and hydrological research. This study presented an improved approach integrating Sentinel-1 C-band SAR and MODIS optical data (2019–2020) to estimate surface soil moisture. To address vegetation effects, we developed a piecewise function using fractional vegetation coverage (FVC) to correct soil moisture and backscatter extrema and established the normalized difference enhanced vegetation index (NDEVI) to characterize backscatter-vegetation relationships across various land covers. Furthermore, the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm identified anomalous surface changes, enabling segmentation of long-term series into invariant periods that satisfy the change detection method assumptions. Validation in the Shandian River Basin demonstrated significant improvement over traditional methods, achieving determination coefficients (R2) of 0.844 and root mean square errors (RMSE) of 0.030 m3/m3. The method effectively captured soil moisture dynamics from precipitation and irrigation events, providing reliable monitoring in heterogeneous landscapes. This integrated approach offers a robust technical framework for multi-source remote sensing of soil moisture in semi-arid areas, enhancing capability for agricultural water resource management. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Graphical abstract

19 pages, 2253 KB  
Article
A Domain-Adversarial Mechanism and Invariant Spatiotemporal Feature Extraction Based Distributed PV Forecasting Method for EV Cluster Baseline Load Estimation
by Zhiyu Zhao, Qiran Li, Bo Bo, Po Yang, Xuemei Li, Zhenghao Wu, Ge Wang and Hui Ren
Electronics 2025, 14(23), 4709; https://doi.org/10.3390/electronics14234709 - 29 Nov 2025
Viewed by 294
Abstract
Against the backdrop of high-penetration distributed photovoltaic (DPV) integration into distribution networks, the limited measurability of small-scale DPV systems poses significant challenges to accurately estimating the baseline load of electric vehicle (EV) clusters. To address this issue, effective forecasting of DPV power output [...] Read more.
Against the backdrop of high-penetration distributed photovoltaic (DPV) integration into distribution networks, the limited measurability of small-scale DPV systems poses significant challenges to accurately estimating the baseline load of electric vehicle (EV) clusters. To address this issue, effective forecasting of DPV power output becomes essential. This paper proposes a domain-adversarial architecture for ultra-short-term DPV power prediction, designed to support baseline load estimation for EV clusters. The power output of DPV systems is influenced by scattered geographical distribution and abrupt weather changes, leading to complex spatiotemporal distribution shifts. These shifts result in a notable decline in the generalization capability of traditional models that rely on historical statistical patterns. To enhance the robustness of models in complex and dynamic environments, this paper proposes a domain-adversarial architecture for ultra-short-term DPV power forecasting, explicitly designed to address spatiotemporal distribution shifts by extracting spatiotemporal invariant features robust to distribution shifts. First, a Graph Attention Network (GAT) is utilized to capture spatial dependencies among PV stations, characterizing asynchronous power fluctuations caused by factors such as cloud movement. Next, the spatiotemporally fused features generated by the GAT are adaptively partitioned into multiple distribution domains using Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN), providing pseudo-supervised signals for subsequent adversarial learning. Finally, a Temporal Convolutional Network (TCN)-based domain-adversarial mechanism is introduced, where gradient reversal training forces the feature extractor to discard domain-specific characteristics, thereby effectively extracting spatiotemporal invariant features across domains. Experimental results on real-world distributed PV datasets validate the effectiveness of the proposed method in improving prediction accuracy and generalization capability under transitional weather conditions. Full article
Show Figures

Figure 1

28 pages, 2237 KB  
Article
Hybrid Rule-Based Classification and Defect Detection System Using Insert Steel Multi-3D Matching
by Soon Woo Kwon, Hae Gwang Park, Seung Ki Baek and Min Young Kim
Electronics 2025, 14(23), 4701; https://doi.org/10.3390/electronics14234701 - 28 Nov 2025
Viewed by 512
Abstract
This paper presents an integrated three-dimensional (3D) quality inspection system for mold manufacturing that addresses critical industrial constraints, including zero-shot generalization without retraining, complete decision traceability for regulatory compliance, and robustness under severe data shortages (<2% defect rate). Dual optical sensors (Photoneo MotionCam [...] Read more.
This paper presents an integrated three-dimensional (3D) quality inspection system for mold manufacturing that addresses critical industrial constraints, including zero-shot generalization without retraining, complete decision traceability for regulatory compliance, and robustness under severe data shortages (<2% defect rate). Dual optical sensors (Photoneo MotionCam 3D and SICK Ruler) are integrated via affine transformation-based registration, followed by computer-aided design (CAD)-based classification using geometric feature matching to CAD specifications. Unsupervised defect detection combines density-based spatial clustering of applications with noise (DBSCAN) clustering, curvature analysis, and alpha shape boundary estimation to identify surface anomalies without labeled training data. Industrial validation on 38 product classes (3000 samples) yielded 99.00% classification accuracy and 99.12% macroscopic precision, outperforming Point-MAE (93.24%) trained under the same limited-data conditions. The CAD-based architecture enables immediate deployment via CAD reference registration, eliminating the five-day retraining cycle required for deep learning, essential for agile manufacturing. Processing time stability (0.47 s compared to 43.68 s for Point-MAE) ensures predictable production throughput. Defect detection achieved 98.00% accuracy on a synthetic validation dataset (scratches: 97.25% F1; dents: 98.15% F1). Full article
(This article belongs to the Special Issue Artificial Intelligence, Computer Vision and 3D Display)
Show Figures

Figure 1

21 pages, 3330 KB  
Article
Fault-Tolerant Hovering Control for an ROV Using a Diagnosis-Based Thrust Reallocation Strategy
by Jung Hyeun Park, Mun-Jik Lee, Min-Gyu Kim, Ji-Hong Li, Dongwook Jung and Hyeung-Sik Choi
J. Mar. Sci. Eng. 2025, 13(12), 2266; https://doi.org/10.3390/jmse13122266 - 28 Nov 2025
Viewed by 323
Abstract
This study proposes an integrated Fault Diagnosis (FDD) and Fault-Tolerant Control (FTC) framework aimed at enhancing the operational stability of Remotely Operated Vehicles (ROVs) by addressing thruster faults that compromise mission safety. The proposed methodology utilizes a data-driven FDD system, based on the [...] Read more.
This study proposes an integrated Fault Diagnosis (FDD) and Fault-Tolerant Control (FTC) framework aimed at enhancing the operational stability of Remotely Operated Vehicles (ROVs) by addressing thruster faults that compromise mission safety. The proposed methodology utilizes a data-driven FDD system, based on the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm, to identify propeller breakage and entanglement faults from thruster current and Revolutions Per Minute (RPM) data. Based on the diagnostic results, an adaptive FTC strategy is activated, applying a ‘Thrust Compensation’ model for breakage faults and an ‘Exclusion and Reallocation’ approach for entanglement faults. The performance of the framework was validated through experiments in an engineering water tank, where results demonstrated a significant improvement in the ROV’s hovering stability and control accuracy under fault conditions. The system successfully restored thrust balance during breakage scenarios and maintained a stable attitude after excluding an entangled thruster. Consequently, the proposed adaptive FDD-FTC framework provides an effective solution for enhancing the operational reliability and safety of ROVs. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

25 pages, 3960 KB  
Article
MCS Assisted Accurate Perception Framework for Urban POI Classification
by Xiaorong Feng, Yuchen Yang, Xudong Zhang, Dongsheng Guo and Guisong Yang
Sensors 2025, 25(23), 7235; https://doi.org/10.3390/s25237235 - 27 Nov 2025
Viewed by 469
Abstract
The classification of urban points of interest (POI) reflects the development of various industries in a city, making their distribution analysis significant. Traditional mapping methods often face inefficiency and high costs, leading to limited data quality and inaccuracies in classification. To address this, [...] Read more.
The classification of urban points of interest (POI) reflects the development of various industries in a city, making their distribution analysis significant. Traditional mapping methods often face inefficiency and high costs, leading to limited data quality and inaccuracies in classification. To address this, a low-cost, high-quality method is essential. Mobile Crowd Sensing (MCS) technology offers an innovative solution for identifying urban POIs. This paper introduces a hybrid MCS perception framework (MCS-APF) that includes a data collection module and a clustering module. The data collection module combines traditional participatory and opportunistic methods, incorporating a new recruitment criterion considering workers’ abilities, reputations, and POI popularity to enhance data quality. The clustering module employs an improved version of the Density-Based Spatial Clustering of Applications with Noise (DBSCAN-H) algorithm using Haversine distance, which effectively analyzes the combined data for accurate POI classification. Experimental results show that POI classifications derived from DBSCAN-H feature significant intra-cluster tightness and inter-cluster separation, outperforming traditional techniques. Overall, MCS-APF provides more accurate, efficient, and cost-effective POI sensing outcomes. Full article
(This article belongs to the Special Issue Advances in Wireless Sensor Networks for Smart City)
Show Figures

Figure 1

Back to TopTop