Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = DOTA-Gd complex

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4959 KiB  
Article
Exploring the Impact of Irradiation on Glioblastoma Blood-Brain-Barrier Permeability: Insights from Dynamic-Contrast-Enhanced-MRI and Histological Analysis
by Jérôme Conq, Nicolas Joudiou, Véronique Préat and Bernard Gallez
Biomedicines 2024, 12(5), 1091; https://doi.org/10.3390/biomedicines12051091 - 14 May 2024
Cited by 2 | Viewed by 1680
Abstract
(1) Background: Glioblastoma (GB) presents a formidable challenge in neuro-oncology due to its aggressive nature, limited treatment options, and poor prognosis. The blood–brain barrier (BBB) complicates treatment by hindering drug delivery to the tumor site, particularly to the infiltrative cells in the margin [...] Read more.
(1) Background: Glioblastoma (GB) presents a formidable challenge in neuro-oncology due to its aggressive nature, limited treatment options, and poor prognosis. The blood–brain barrier (BBB) complicates treatment by hindering drug delivery to the tumor site, particularly to the infiltrative cells in the margin of the tumor, which are mainly responsible for tumor recurrence. Innovative strategies are therefore needed to enhance drug delivery in the margins of the tumor. This study explores whether irradiation can enhance BBB permeability by assessing hemodynamic changes and the distribution of contrast agents in the core and the margins of GB tumors. (2) Methods: Mice grafted with U-87MG cells were exposed to increasing irradiation doses. The distribution of contrast agents and hemodynamic parameters was evaluated using both non-invasive magnetic resonance imaging (MRI) techniques with gadolinium–DOTA as a contrast agent and invasive histological analysis with Evans blue, a fluorescent vascular leakage marker. Diffusion–MRI was also used to assess cytotoxic effects. (3) Results: The histological study revealed a complex dose-dependent effect of irradiation on BBB integrity, with increased vascular leakage at 5 Gy but reduced leakage at higher doses (10 and 15 Gy). However, there was no significant increase in the diffusion of Gd-DOTA outside the tumor area by MRI. (4) Conclusions: The increase in BBB permeability could be an interesting approach to enhance drug delivery in glioblastoma margins for low irradiation doses. In this model, DCE-MRI analysis was of limited value in assessing the BBB opening in glioblastoma after irradiation. Full article
(This article belongs to the Special Issue Glioblastoma: Current Status and Future Prospects)
Show Figures

Figure 1

24 pages, 5420 KiB  
Article
Gadolinium-Based Magnetic Resonance Theranostic Agent with Gallic Acid as an Anti-Neuroinflammatory and Antioxidant Agent
by Bokyung Sung, Dongwook Hwang, Ahrum Baek, Byeongwoo Yang, Sangyun Lee, Jangwoo Park, Eunji Kim, Minsup Kim, Eunshil Lee and Yongmin Chang
Antioxidants 2024, 13(2), 204; https://doi.org/10.3390/antiox13020204 - 5 Feb 2024
Viewed by 2403
Abstract
Studies in the field have actively pursued the incorporation of diverse biological functionalities into gadolinium-based contrast agents, aiming at the amalgamation of MRI imaging and therapeutic capabilities. In this research, we present the development of Gd-Ga, an anti-neuroinflammatory MR contrast agent strategically designed [...] Read more.
Studies in the field have actively pursued the incorporation of diverse biological functionalities into gadolinium-based contrast agents, aiming at the amalgamation of MRI imaging and therapeutic capabilities. In this research, we present the development of Gd-Ga, an anti-neuroinflammatory MR contrast agent strategically designed to target inflammatory mediators for comprehensive imaging diagnosis and targeted lesion treatment. Gd-Ga is a gadolinium complex composed of 1,4,7-tris(carboxymethylaza)cyclododecane-10-azaacetylamide (DO3A) conjugated with gallic acid (3,4,5-trihydroxybenzoic acid). Upon intravenous administration in LPS-induced mouse models, Gd-Ga demonstrated a remarkable three-fold increase in signal-to-noise (SNR) variation compared to Gd-DOTA, particularly evident in both the cortex and hippocampus 30 min post-MR monitoring. In-depth investigations, both in vitro and in vivo, into the anti-neuroinflammatory properties of Gd-Ga revealed significantly reduced protein expression levels of pro-inflammatory mediators compared to the LPS group. The alignment between in silico predictions and phantom studies indicates that Gd-Ga acts as an anti-neuroinflammatory agent by directly binding to MD2. Additionally, the robust antioxidant activity of Gd-Ga was confirmed by its effective scavenging of NO and ROS. Our collective findings emphasize the immense potential of this theranostic complex, where a polyphenol serves as an anti-inflammatory drug, presenting an exceptionally efficient platform for the diagnosis and treatment of neuroinflammation. Full article
(This article belongs to the Collection Feature Papers in ROS, RNS, RSS)
Show Figures

Figure 1

13 pages, 1264 KiB  
Article
Stability of the Macrocyclic Gd-DOTA Contrast Agent (DOTAREM) under Different Estuarine Environmental Conditions
by Ana Guerreiro and Pedro Brito
Oceans 2023, 4(4), 381-393; https://doi.org/10.3390/oceans4040026 - 28 Nov 2023
Cited by 2 | Viewed by 1756
Abstract
Gadolinium-based contrast agents (GBCA) are complexes, highly stable in vivo, used in magnetic resonance imaging (MRI), administered in patients and then eliminated via the renal system, passing through wastewater treatment plants (WWTP) before being discarded in the receiving medium, without apparent removal. In [...] Read more.
Gadolinium-based contrast agents (GBCA) are complexes, highly stable in vivo, used in magnetic resonance imaging (MRI), administered in patients and then eliminated via the renal system, passing through wastewater treatment plants (WWTP) before being discarded in the receiving medium, without apparent removal. In this study, it was examined whether different exposure periods to several environmental parameters (solar radiation, different salinities, temperatures and pH) will influence the stability of these complexes, namely, the Gd-DOTA. Gd-DOTA solutions were processed in a seaFAST-pico saline matrix pre-concentration and elimination system, and Gd concentrations were determined using ICP-MS. The results showed that the complex remained stable in fresh, brackish and saline water environments, even when exposed to extreme temperatures (40 °C) or slightly acidic to basic conditions (6–10), for an exposure period of 96 h. A small increase in the free Gd concentration was observed after 18 days when exposed to pH < 4, in all tested salinities (0, 18 and 36 PSU), with a degradation increase of up to 29%, after 5 weeks of exposure in freshwater. When exposed to direct solar radiation, a low Gd-DOTA degradation (4%) was observed after 24 h at salinity 18 PSU and remained constant until the end of the exposure period (96 h), while the remaining salinities showed negligible values. Full article
Show Figures

Figure 1

4 pages, 765 KiB  
Proceeding Paper
Bimodal Nanoprobes Containing AgInSe2 Hydrophilic Quantum Dots and Paramagnetic Chelates for Diagnostic Magnetic Resonance Imaging
by Rebeca Muniz de Melo, Gabriela Marques de Albuquerque, Goreti Pereira and Giovannia Araujo de Lima Pereira
Eng. Proc. 2023, 56(1), 6; https://doi.org/10.3390/ASEC2023-15272 - 26 Oct 2023
Cited by 2 | Viewed by 795
Abstract
The development of bimodal systems with signals for two diagnostic techniques has been increasing. Magnetic resonance imaging (MRI) is a non-invasive technique that distinguishes pathological tissues from healthy ones. To improve the images’ contrast, nanoparticulate contrast agents (CAs) have been developed, allowing for [...] Read more.
The development of bimodal systems with signals for two diagnostic techniques has been increasing. Magnetic resonance imaging (MRI) is a non-invasive technique that distinguishes pathological tissues from healthy ones. To improve the images’ contrast, nanoparticulate contrast agents (CAs) have been developed, allowing for the attachment of several CA molecules in one nanoparticle. In this work, we associated AgInSe2 quantum dots (QDs) with gadolinium complexes, obtaining nanoprobes for MRI and optical imaging. The nanosystems showed good optical properties and values of relaxivity superior to the CAs used clinically. Thus, these nanoprobes have the potential to be used as CAs for MRI and optical imaging. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

1 pages, 200 KiB  
Abstract
Bimodal Nanoprobes Containing Hydrophilic Quantum Dots and Paramagnetic Chelates
by Rebeca Muniz de Melo, Gabriela Marques Albuquerque, Giovannia Araújo de Lima Pereira and Maria Goreti Carvalho Pereira
Med. Sci. Forum 2022, 14(1), 114; https://doi.org/10.3390/ECMC2022-13307 - 1 Nov 2022
Viewed by 986
Abstract
Currently, there is a growing interest in the development of bimodal systems that have a signal for more than one diagnostic imaging technique, such as magnetic resonance imaging (MRI). MRI is able to distinguish pathological from healthy tissues; however, in some cases, a [...] Read more.
Currently, there is a growing interest in the development of bimodal systems that have a signal for more than one diagnostic imaging technique, such as magnetic resonance imaging (MRI). MRI is able to distinguish pathological from healthy tissues; however, in some cases, a high local concentration of contrast agents (CAs) is necessary to improve the contrast in images. Nanoparticulate CAs are able to concentrate several CA molecules into one nanoparticle, increasing the local concentrations of paramagnetic ions. In this work, we intend to associate AgInSe2 quantum dots (QDs) with gadolinium complexes (DOTA-Gd) to develop bimodal systems. The QDs were prepared in water and the synthesis parameters were optimized. The ligand DOTA was conjugated with cysteamine and complexed with Gd3+. The complex was then conjugated to QDs through the metal–thiol bond, obtaining the bimodal systems. Optical characterization indicated that the QDs remained stable and fluorescent, and an increase in emission intensity after conjugation was observed. The systems were characterized by relaxometry at 20 MHz (0.47 T) and 37 °C, obtaining longitudinal relaxivities by Gd3+ higher than the CAs used clinically. Thus, the prepared nanoprobes showed promising properties for MRI and optical imaging. Full article
(This article belongs to the Proceedings of The 8th International Electronic Conference on Medicinal Chemistry)
26 pages, 30726 KiB  
Article
Complexes of Bifunctional DO3A-N-(α-amino)propinate Ligands with Mg(II), Ca(II), Cu(II), Zn(II), and Lanthanide(III) Ions: Thermodynamic Stability, Formation and Dissociation Kinetics, and Solution Dynamic NMR Studies
by Zoltán Garda, Tamara Kócs, István Bányai, José A. Martins, Ferenc Krisztián Kálmán, Imre Tóth, Carlos F. G. C. Geraldes and Gyula Tircsó
Molecules 2021, 26(16), 4956; https://doi.org/10.3390/molecules26164956 - 16 Aug 2021
Cited by 2 | Viewed by 2953
Abstract
The thermodynamic, kinetic, and structural properties of Ln3+ complexes with the bifunctional DO3A-ACE4− ligand and its amide derivative DO3A-BACE4− (modelling the case where DO3A-ACE4− ligand binds to vector molecules) have been studied in order to confirm the usefulness of [...] Read more.
The thermodynamic, kinetic, and structural properties of Ln3+ complexes with the bifunctional DO3A-ACE4− ligand and its amide derivative DO3A-BACE4− (modelling the case where DO3A-ACE4− ligand binds to vector molecules) have been studied in order to confirm the usefulness of the corresponding Gd3+ complexes as relaxation labels of targeted MRI contrast agents. The stability constants of the Mg2+ and Ca2+ complexes of DO3A-ACE4− and DO3A-BACE4− complexes are lower than for DOTA4− and DO3A3−, while the Zn2+ and Cu2+ complexes have similar and higher stability than for DOTA4− and DO3A3− complexes. The stability constants of the Ln(DO3A-BACE) complexes increase from Ce3+ to Gd3+ but remain practically constant for the late Ln3+ ions (represented by Yb3+). The stability constants of the Ln(DO3A-ACE)4− and Ln(DO3A-BACE)4− complexes are several orders of magnitude lower than those of the corresponding DOTA4− and DO3A3− complexes. The formation rate of Eu(DO3A-ACE) is one order of magnitude slower than for Eu(DOTA), due to the presence of the protonated amine group, which destabilizes the protonated intermediate complex. This protonated group causes the Ln(DO3A-ACE) complexes to dissociate several orders of magnitude faster than Ln(DOTA) and its absence in the Ln(DO3A-BACE) complexes results in inertness similar to Ln(DOTA) (as judged by the rate constants of acid assisted dissociation). The 1H NMR spectra of the diamagnetic Y(DO3A-ACE) and Y(DO3A-BACE) reflect the slow dynamics at low temperatures of the intramolecular isomerization process between the SA pair of enantiomers, R-Λ(λλλλ) and S-Δ(δδδδ). The conformation of the Cα-substituted pendant arm is different in the two complexes, where the bulky substituent is further away from the macrocyclic ring in Y(DO3A-BACE) than the amino group in Y(DO3A-ACE) to minimize steric hindrance. The temperature dependence of the spectra reflects slower ring motions than pendant arms rearrangements in both complexes. Although losing some thermodynamic stability relative to Gd(DOTA), Gd(DO3A-BACE) is still quite inert, indicating the usefulness of the bifunctional DO3A-ACE4− in the design of GBCAs and Ln3+-based tags for protein structural NMR analysis. Full article
(This article belongs to the Special Issue Recent Advances on MRI Contrast Agents)
Show Figures

Figure 1

14 pages, 5195 KiB  
Article
Towards Enhanced MRI Performance of Tumor-Specific Dimeric Phenylboronic Contrast Agents
by Jonathan Martinelli, Lorenzo Tei, Simonetta Geninatti Crich, Diego Alberti and Kristina Djanashvili
Molecules 2021, 26(6), 1730; https://doi.org/10.3390/molecules26061730 - 19 Mar 2021
Cited by 6 | Viewed by 2963
Abstract
It is known that phenylboronic acid (PBA) can target tumor tissues by binding to sialic acid, a substrate overexpressed by cancer cells. This capability has previously been explored in the design of targeting diagnostic probes such as Gd- and 68Ga-DOTA-EN-PBA, two contrast [...] Read more.
It is known that phenylboronic acid (PBA) can target tumor tissues by binding to sialic acid, a substrate overexpressed by cancer cells. This capability has previously been explored in the design of targeting diagnostic probes such as Gd- and 68Ga-DOTA-EN-PBA, two contrast agents for magnetic resonance imaging (MRI) and positron emission tomography (PET), respectively, whose potential has already been demonstrated through in vivo experiments. In addition to its high resolution, the intrinsic low sensitivity of MRI stimulates the search for more effective contrast agents, which, in the case of small-molecular probes, basically narrows down to either increased tumbling time of the entire molecule or elevated local concentration of the paramagnetic ions, both strategies resulting in enhanced relaxivity, and consequently, a higher MRI contrast. The latter strategy can be achieved by the design of multimeric GdIII complexes. Based on the monomeric PBA-containing probes described recently, herein, we report the synthesis and characterization of the dimeric analogues (GdIII-DOTA-EN)2-PBA and (GdIII-DOTA-EN)2F2PBA. The presence of two Gd ions in one molecule clearly contributes to the improved biological performance, as demonstrated by the relaxometric study and cell-binding investigations. Full article
(This article belongs to the Special Issue Synthesis and Application of Organoboron Derivatives)
Show Figures

Figure 1

13 pages, 1888 KiB  
Article
Gd3+ Complexes Conjugated to Cyclodextrins: Hydroxyl Functions Influence the Relaxation Properties
by Anais Biscotti, François Estour, Berthe-Sandra Sembo-Backonly, Sébastien Balieu, Michaël Bosco, Cécile Barbot, Agnès Pallier, Éva Tóth, Célia S. Bonnet and Géraldine Gouhier
Processes 2021, 9(2), 269; https://doi.org/10.3390/pr9020269 - 30 Jan 2021
Cited by 1 | Viewed by 2637
Abstract
In the search for improvement in the properties of gadolinium-based contrast agents, cyclodextrins (CDs) are interesting hydrophilic scaffolds with high molecular weight. The impact of the hydrophilicity of these systems on the MRI efficacy has been studied using five β-CDs substituted with DOTA [...] Read more.
In the search for improvement in the properties of gadolinium-based contrast agents, cyclodextrins (CDs) are interesting hydrophilic scaffolds with high molecular weight. The impact of the hydrophilicity of these systems on the MRI efficacy has been studied using five β-CDs substituted with DOTA or TTHA ligands which, respectively, allow for one (q = 1) or no water molecule (q = 0) in the inner coordination sphere of the Gd3+ ion. Original synthetic pathways were developed to immobilize the ligands at C-6 position of various hydroxylated and permethylated β-CDs via an amide bond. To describe the influence of alcohol and ether oxide functions of the CD macrocycle on the relaxation properties of the Gd3+ complexes, 1H Nuclear Magnetic Relaxation Dispersion (NMRD) profiles, and 17O transverse relaxation rates have been measured at various temperatures. The differences observed between the hydroxylated and permethylated β-CDs bearing non-hydrated GdTTHA complexes can be rationalized by a second sphere contribution to the relaxivity in the case of the hydroxylated derivatives, induced by hydrogen-bound water molecules around the hydroxyl groups. In contrast, for the DOTA analogs the exchange rate of the water molecule directly coordinated to the Gd3+ is clearly influenced by the number of hydroxyl groups present on the CD, which in turn influences the relaxivity and gives rise to a very complex behavior of these hydrophilic systems. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Graphical abstract

17 pages, 2942 KiB  
Article
Gadolinium Complexes as Contrast Agent for Cellular NMR Spectroscopy
by Nat Sakol, Ayako Egawa and Toshimichi Fujiwara
Int. J. Mol. Sci. 2020, 21(11), 4042; https://doi.org/10.3390/ijms21114042 - 5 Jun 2020
Cited by 14 | Viewed by 3955
Abstract
Aqua Gd3+ and Gd-DOTA (gadolinium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacete) complexes were studied as a contrast agent in cellular NMR (nuclear magnetic resonance) spectroscopy for distinguishing between intracellular and extracellular spaces. The contrast agents for this purpose should provide strong paramagnetic relaxation enhancement and localize in the [...] Read more.
Aqua Gd3+ and Gd-DOTA (gadolinium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacete) complexes were studied as a contrast agent in cellular NMR (nuclear magnetic resonance) spectroscopy for distinguishing between intracellular and extracellular spaces. The contrast agents for this purpose should provide strong paramagnetic relaxation enhancement and localize in the extracellular space without disturbing biological functions. Cell membrane permeability to Gd complexes was evaluated from the concentrations of gadolinium complexes in the inside and outside of E. coli cells measured by the 1H-NMR relaxation. The site-specific binding of the complexes to E. coli cells was also analyzed by high-resolution solid-state 13C-NMR. The aqua Gd3+ complex did not enhance T1 relaxation in proportion to the amount of added Gd3+. This Gd3+ concentration dependence and the 13C-NMR indicated that its strong cytotoxicity should be due to the binding of the paramagnetic ions to cellular components especially at the lipid membranes. In contrast, Gd-DOTA stayed in the solution states and enhanced relaxation in proportion to the added amount. This agent exhibited strong T1 contrast between the intra- and extracellular spaces by a factor of ten at high concentrations under which the cells were viable over a long experimental time of days. These properties make Gd-DOTA suitable for selectively contrasting the living cellular space in NMR spectroscopy primarily owing to its weak interaction with cellular components. Full article
Show Figures

Graphical abstract

15 pages, 2942 KiB  
Article
Peptide-Based Soft Hydrogels Modified with Gadolinium Complexes as MRI Contrast Agents
by Enrico Gallo, Carlo Diaferia, Enza Di Gregorio, Giancarlo Morelli, Eliana Gianolio and Antonella Accardo
Pharmaceuticals 2020, 13(2), 19; https://doi.org/10.3390/ph13020019 - 21 Jan 2020
Cited by 39 | Viewed by 5415
Abstract
Poly-aromatic peptide sequences are able to self-assemble into a variety of supramolecular aggregates such as fibers, hydrogels, and tree-like multi-branched nanostructures. Due to their biocompatible nature, these peptide nanostructures have been proposed for several applications in biology and nanomedicine (tissue engineering, drug delivery, [...] Read more.
Poly-aromatic peptide sequences are able to self-assemble into a variety of supramolecular aggregates such as fibers, hydrogels, and tree-like multi-branched nanostructures. Due to their biocompatible nature, these peptide nanostructures have been proposed for several applications in biology and nanomedicine (tissue engineering, drug delivery, bioimaging, and fabrication of biosensors). Here we report the synthesis, the structural characterization and the relaxometric behavior of two novel supramolecular diagnostic agents for magnetic resonance imaging (MRI) technique. These diagnostic agents are obtained for self-assembly of DTPA(Gd)-PEG8-(FY)3 or DOTA(Gd)-PEG8-(FY)3 peptide conjugates, in which the Gd-complexes are linked at the N-terminus of the PEG8-(FY)3 polymer peptide. This latter was previously found able to form self-supporting and stable soft hydrogels at a concentration of 1.0% wt. Analogously, also DTPA(Gd)-PEG8-(FY)3 and DOTA(Gd)-PEG8-(FY)3 exhibit the trend to gelificate at the same range of concentration. Moreover, the structural characterization points out that peptide (FY)3 moiety keeps its capability to arrange into β-sheet structures with an antiparallel orientation of the β-strands. The high relaxivity value of these nanostructures (~12 mM−1·s−1 at 20 MHz) and the very low in vitro cytotoxicity suggest their potential application as supramolecular diagnostic agents for MRI. Full article
(This article belongs to the Special Issue Metal-Based Drugs: Updates and Perspectives)
Show Figures

Graphical abstract

16 pages, 4825 KiB  
Article
Imaging of Human Insulin Secreting Cells with Gd-DOTA-P88, a Paramagnetic Contrast Agent Targeting the Beta Cell Biomarker FXYD2γa
by Stéphane Demine, Alexander Balhuizen, Vinciane Debaille, Lieke Joosten, Maïté Fereau, Satya Narayana Murthy Chilla, Isabelle Millard, Raphaël Scharfmann, Dominique Egrise, Serge Goldman, Piero Marchetti, Martin Gotthardt, Sophie Laurent, Carmen Burtea and Decio L. Eizirik
Molecules 2018, 23(9), 2100; https://doi.org/10.3390/molecules23092100 - 21 Aug 2018
Cited by 8 | Viewed by 5511
Abstract
Non-invasive imaging and quantification of human beta cell mass remains a major challenge. We performed pre-clinical in vivo validation of a peptide previously discovered by our group, namely, P88 that targets a beta cell specific biomarker, FXYD2γa. We conjugated P88 with DOTA and [...] Read more.
Non-invasive imaging and quantification of human beta cell mass remains a major challenge. We performed pre-clinical in vivo validation of a peptide previously discovered by our group, namely, P88 that targets a beta cell specific biomarker, FXYD2γa. We conjugated P88 with DOTA and then complexed it with GdCl3 to obtain the MRI (magnetic resonance imaging) contrast agent (CA) Gd-DOTA-P88. A scrambled peptide was used as a negative control CA, namely Gd-DOTA-Scramble. The CAs were injected in immunodeficient mice implanted with EndoC-βH1 cells, a human beta cell line that expresses FXYD2γa similarly to primary human beta cells. The xenograft-bearing mice were analyzed by MRI. At the end, the mice were euthanized and the CA biodistribution was evaluated on the excised tissues by measuring the Gd concentration with inductively coupled plasma mass spectrometry (ICP-MS). The MRI and biodistribution studies indicated that Gd-DOTA-P88 accumulates in EndoC-βH1 xenografts above the level observed in the background tissue, and that its uptake is significantly higher than that observed for Gd-DOTA-Scramble. In addition, the Gd-DOTA-P88 showed good xenograft-to-muscle and xenograft-to-liver uptake ratios, two potential sites of human islets transplantation. The CA shows good potential for future use to non-invasively image implanted human beta cells. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

Back to TopTop