Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (237)

Search Parameters:
Keywords = DLC coating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 10667 KiB  
Article
Influence of Nitrogen and Hydrogen Addition on Composition, Morphology, Adhesion, and Wear Resistance of Amorphous Carbon Coatings Produced by RFCVD Method on Surface-Hardened Ultra-Fine Grained Bainitic 30HGSNA Steel
by Karol Wunsch, Tomasz Borowski, Emilia Skołek, Agata Roguska, Rafał Chodun, Michał Urbańczyk, Krzysztof Kulikowski, Maciej Spychalski, Andrzej Wieczorek and Jerzy Robert Sobiecki
Coatings 2025, 15(8), 877; https://doi.org/10.3390/coatings15080877 - 26 Jul 2025
Viewed by 328
Abstract
Ultra-fine-grained bainitic (UFGB) steels offer excellent mechanical properties, which can be further improved by applying diamond-like carbon (DLC) coatings. However, poor adhesion between the coating and substrate remains a key limitation. Since the steel’s microstructure degrades at high temperatures, enhancing adhesion without heating [...] Read more.
Ultra-fine-grained bainitic (UFGB) steels offer excellent mechanical properties, which can be further improved by applying diamond-like carbon (DLC) coatings. However, poor adhesion between the coating and substrate remains a key limitation. Since the steel’s microstructure degrades at high temperatures, enhancing adhesion without heating the substrate is essential. This study investigates surface hardening combined with simultaneous nitrogen and hydrogen doping during the Radio Frequency Chemical Vapor Deposition (RFCVD) process to improve coating performance. Varying gas compositions were tested to assess their effects on coating properties. Nitrogen incorporation decreased hardness from 12 GPa to 9 GPa but improved adhesion, while hydrogen limited damage after coating failure. Optimizing the gas mixture led to enhanced adhesion and wear resistance. Raman and X-ray photoelectron spectroscopy (XPS) analyses confirmed that the optimized coatings had the highest sp3 bond content and elevated nitrogen levels. While both hardness and adhesion contributed to wear resistance, no direct link to coating thickness was found. Overall, co-doping with nitrogen and hydrogen is an effective approach to improve adhesion and wear resistance without requiring high processing temperatures or complex equipment. Full article
(This article belongs to the Special Issue Recent Advances in Surface Functionalisation, 2nd Edition)
Show Figures

Figure 1

14 pages, 7306 KiB  
Article
Influence of Gear Set Loading on Surface Damage Forms for Gear Teeth with DLC Coating
by Edyta Osuch-Słomka, Remigiusz Michalczewski, Anita Mańkowska-Snopczyńska, Michał Gibała, Andrzej N. Wieczorek and Emilia Skołek
Coatings 2025, 15(7), 857; https://doi.org/10.3390/coatings15070857 - 21 Jul 2025
Viewed by 282
Abstract
An analysis of the working surfaces of cylindrical gears after scuffing shock tests allowed for the assessment of the effect of loading conditions on the form of damage to the tooth surfaces. Unlike the method of scuffing under severe conditions, where loading is [...] Read more.
An analysis of the working surfaces of cylindrical gears after scuffing shock tests allowed for the assessment of the effect of loading conditions on the form of damage to the tooth surfaces. Unlike the method of scuffing under severe conditions, where loading is applied gradually, the presented tests employed direct maximum loading—shock loading—without prior lapping of the gears under lower loads. This loading method significantly increases the vulnerability of the analyzed components to scuffing, enabling an evaluation of their limit in terms of operational properties. To identify the changes and the types of the teeth’s working surface damage, the following microscopy techniques were applied: scanning electron microscopy (FE-SEM) with EDS microanalyzer, optical interferential profilometry (WLI), atomic force microscope (AFM), and optical microscopy. The results allowed us to define the characteristic damage mechanisms and assess the efficiency of the applied DLC coatings when it comes to resistance to scuffing in shock scuffing conditions. Tribological tests were performed by means of an FZG T-12U gear test rig in a power circulating system to test cylindrical gear scuffing. The gears were made from 18CrNiMo7-6 steel and 35CrMnSiA nano-bainitic steel and coated with W-DLC/CrN. Full article
Show Figures

Figure 1

18 pages, 12442 KiB  
Article
Properties of Diamond-like Coatings in Tribological Systems Lubricated with Ionic Liquid
by Krystyna Radoń-Kobus and Monika Madej
Coatings 2025, 15(7), 799; https://doi.org/10.3390/coatings15070799 - 8 Jul 2025
Viewed by 362
Abstract
The paper shows the effect of using a lubricant in the form of an ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6), on the tribological properties of a hydrogenated diamond-like coating (DLC) doped with tungsten a-C:H:W. The coatings were deposited on 100Cr6 steel by [...] Read more.
The paper shows the effect of using a lubricant in the form of an ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6), on the tribological properties of a hydrogenated diamond-like coating (DLC) doped with tungsten a-C:H:W. The coatings were deposited on 100Cr6 steel by plasma-enhanced chemical vapor deposition PECVD. Tribological tests were carried out on a TRB3 tribometer in a rotary motion in a ball–disc combination. 100Cr6 steel balls were used as a counter-sample. Friction and wear tests were carried out for discs made of 100Cr6 steel and 100Cr6 steel discs with a DLC coating. They were performed under friction conditions with and without lubrication under 10 N and 15 N loads. The ionic liquid BMIM-PF6 was used as a lubricant. Coating thickness was observed on a scanning microscope, and the linear analysis of chemical composition on the cross-section was analyzed using the EDS analyzer. The confocal microscope with an interferometric mode was used for analysis of the geometric structure of the surface before and after the tribological tests. The contact angle of the samples for distilled water, diiodomethane and ionic liquid was tested on an optical tensiometer. The test results showed good cooperation of the DLC coating with the lubricant. It lowered the coefficient of friction in comparison to steel about 20%. This indicates the synergistic nature of the interaction: DLC coating–BMIM-PF6 lubricant–100Cr6 steel. Full article
(This article belongs to the Special Issue Tribological and Mechanical Properties of Coatings)
Show Figures

Figure 1

17 pages, 17488 KiB  
Article
Effect of Diamond-like Carbon Thin-Film Deposition on the Hardness of Pure Titanium Surfaces
by Hideaki Sato, Yutaka Kameyama, Ryota Yoshikawa, Kaito Tabuchi, Chizuko Ogata and Satoshi Komasa
Materials 2025, 18(13), 2992; https://doi.org/10.3390/ma18132992 - 24 Jun 2025
Viewed by 319
Abstract
The purpose of this study was to clarify the physical durability of a diamond-like carbon (DLC) thin film coated on pure titanium. The titanium surface of the abutment does not have sufficient toughness to prevent an increase in surface roughness or damage when [...] Read more.
The purpose of this study was to clarify the physical durability of a diamond-like carbon (DLC) thin film coated on pure titanium. The titanium surface of the abutment does not have sufficient toughness to prevent an increase in surface roughness or damage when the implant is scaled using a professional mechanical implement. The scaling process used for the removal of the dental plaque adhered to the abutment surface could increase the potential for the deposition of oral microorganisms and the accumulation of plaque, which increase the risk of peri-implantitis. A DLC thin film is biocompatible material that is known for its toughness, including extreme hardness, high abrasion resistance, chemical inertness, and high corrosion resistance. Protecting the abutment surface with the application of a DLC might prevent plaque adhesion due to its non-stick property. There was little change in the surface roughness of titanium samples to which DLC surface protection had been applied when the surface of the sample was scratched with a stainless steel scalar more than a thousand times. When cleaning the surface of pure titanium samples, the surface roughness significantly increased. DLC thin films are effective for the prevention the surface roughness of pure titanium implants from being increased when the conventional cleaning of the surface of the implant is performed. Full article
(This article belongs to the Special Issue Materials for Prosthodontics, Implantology, and Digital Dentistry)
Show Figures

Figure 1

11 pages, 2225 KiB  
Article
Electrochemical Performance of Diamond-like Carbon (DLC)-Coated Zn Anodes for Application to Aqueous Zinc-Ion Batteries
by Jinyoung Lee, Eunseo Lee and Sungwook Mhin
Batteries 2025, 11(6), 228; https://doi.org/10.3390/batteries11060228 - 12 Jun 2025
Viewed by 504
Abstract
The increasing demand for safe, cost-effective, and sustainable energy storage solutions has spotlighted aqueous zinc-ion batteries (AZIBs) as promising alternatives to lithium-ion systems. However, the practical deployment of AZIBs remains hindered by dendritic growth, hydrogen evolution, and surface corrosion at the zinc metal [...] Read more.
The increasing demand for safe, cost-effective, and sustainable energy storage solutions has spotlighted aqueous zinc-ion batteries (AZIBs) as promising alternatives to lithium-ion systems. However, the practical deployment of AZIBs remains hindered by dendritic growth, hydrogen evolution, and surface corrosion at the zinc metal anode, which severely compromise electrochemical stability. In this study, we propose an interfacial engineering strategy involving ultrathin diamond-like carbon (DLC) coatings applied to Zn anodes. The DLC films serve as conformal, ion-permeable barriers that mitigate parasitic side reactions and facilitate uniform Zn plating/stripping behavior. Materials characterizations of the DLC layer on the Zn anodes revealed the tunability of sp2/sp3 hybridization and surface morphology depending on DLC thickness. Electrochemical impedance spectroscopy demonstrated a significant reduction in interfacial resistance, particularly in the optimally coated sample (DLC2, ~20 nm), which achieved a favorable balance between mechanical integrity and ionic transport. Symmetric-cell tests confirmed enhanced cycling stability over 160 h, while full-cell configurations with an ammonium vanadate nanofiber-based cathode exhibited superior capacity retention over 900 cycles at 2 A g−1. The DLC2-coated Zn anodes demonstrated the most effective performance, attributable to its moderate surface roughness, reduced disorder, and minimized charge-transfer resistance. These results provide insight into the importance of fine-tuning the DLC thickness and carbon bonding structure for suppressing dendrite formation and enhancing electrochemical stability. Full article
Show Figures

Graphical abstract

32 pages, 23138 KiB  
Review
Improving Wear Resistance of DLC-Coated Metal Components During Service: A Review
by Luji Wu, Zhongchao Bai, Qingle Hao and Jiayin Qin
Lubricants 2025, 13(6), 257; https://doi.org/10.3390/lubricants13060257 - 11 Jun 2025
Cited by 1 | Viewed by 1020
Abstract
Diamond-like carbon (DLC) coatings have emerged as a focal point in advanced carbon materials research due to exceptional tribological properties, including ultralow friction coefficient, exceptional wear resistance, ultrahigh hardness, and chemical inertness. Deposition of DLC coatings on metal components represents an innovative solution [...] Read more.
Diamond-like carbon (DLC) coatings have emerged as a focal point in advanced carbon materials research due to exceptional tribological properties, including ultralow friction coefficient, exceptional wear resistance, ultrahigh hardness, and chemical inertness. Deposition of DLC coatings on metal components represents an innovative solution to enhance wear resistance in engineering applications. However, suboptimal adhesion strength between coatings and substrates, coupled with inherent material limitations, critically compromises the tribological performance. This review systematically examines recent advances in improving the wear resistance of DLC-coated metal components. First, the fundamental wear mechanisms governing both metallic substrates and DLC coatings under service conditions are elucidated. Next, three pivotal technologies, substrate material treatment/strengthening, coating structure design, and elemental doping, all demonstrating significant efficacy in wear resistance enhancement, are critically analyzed. Furthermore, a comparative assessment of these techniques reveals the synergistic potential in hybrid approaches. Finally, a concise summary of the outlook is presented. Full article
Show Figures

Figure 1

15 pages, 2890 KiB  
Article
The Interface of Additive Manufactured Tungsten–Diamond Composites
by Xuehao Gao, Dongxu Cheng, Zhe Sun, Yihe Huang, Wentai Ouyang, Cunxiao Lan, Zhaoqing Li and Lin Li
Materials 2025, 18(11), 2574; https://doi.org/10.3390/ma18112574 - 30 May 2025
Viewed by 456
Abstract
Tungsten–diamond metal matrix composites (MMCs) fabricated via L-PBF show potential for applications in nuclear facility shielding, heat sinks, precision cutting/grinding tools, and aerospace hot-end components. In this paper, tungsten (W), diamond (D), and diamond with Ni coating (D-Ni) powders are used to fabricate [...] Read more.
Tungsten–diamond metal matrix composites (MMCs) fabricated via L-PBF show potential for applications in nuclear facility shielding, heat sinks, precision cutting/grinding tools, and aerospace hot-end components. In this paper, tungsten (W), diamond (D), and diamond with Ni coating (D-Ni) powders are used to fabricate W+D and W+(D-Ni) composites by L-PBF technology. The results show that at the interface of the W+D sample, the W powder melts while the D powder remains in a solid state during L-PBF processing, and W and C elements gradually diffuse into each other. Due to the high cooling rate of L-PBF processing, the C phase forms a diamond-like carbon (DLC) phase with an amorphous structure, and the W phase becomes a supersaturated solid solution of the C element. At the interface of the W+(D-Ni) sample, the diffusion capacity of Ni and W elements in the solid state is weaker than in the molten state. C and W elements diffuse into the Ni melt, forming a rich Ni area of the DLC phase, while Ni and W elements diffuse into the solid D powder, forming a lean Ni area of the DLC phase. In the rich Ni area of the DLC phase, Ni segregation leads to the precipitation of nanocrystals (several hundred nanometers), whereas in the lean Ni area of the DLC phase, the diffusion capacity of Ni and W elements in the solid D powder is limited, resulting in nanocrystalline sizes of only about tens of nanometers. During W dendrite growth, the addition of the Ni coating and the expelling of the C phenomenon leads to W grain refinement at the interface, which reduces the number and length of cracks in the W+(D-Ni) sample. This paper contributes to the theoretical development and engineering applications of tungsten–diamond MMCs fabricated by L-PBF. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

18 pages, 7950 KiB  
Article
Combined Effects of DLC Coating and Surface Texturing on Seizure and Friction in Reciprocating Sliding
by Slawomir Wos, Waldemar Koszela, Andrzej Dzierwa and Pawel Pawlus
Lubricants 2025, 13(6), 244; https://doi.org/10.3390/lubricants13060244 - 28 May 2025
Viewed by 706
Abstract
Surface texturing is designed to improve the functional properties of machine elements by generating dimples on the surface contacted. Friction and wear resistance can also be improved by creating diamond-like carbon (DLC) coatings. These two techniques were combined to extend the lifetime of [...] Read more.
Surface texturing is designed to improve the functional properties of machine elements by generating dimples on the surface contacted. Friction and wear resistance can also be improved by creating diamond-like carbon (DLC) coatings. These two techniques were combined to extend the lifetime of the elements and minimise friction in reciprocating conformal sliding contact. This work is functionally important for assemblies operating under high normal loads. Experiments were carried out in initially lubricated reciprocating sliding contact using an Optimol SRV 5 tribotester in the flat-on-flat configuration. The disc samples were untextured, laser textured, and DLC-coated untextured and textured. The combination of DLC coating and surface texturing caused an enhancement of the tribological performance of the sliding pair compared to that of untextured discs with and without DLC coating and textured discs without DLC coating. The DLC coating of the untextured disc caused a growth in the lifetime of a friction pair by a factor of 2.4. Seizure resistance also increased due to surface texturing of the steel disc for pit area ratios of 9 and 13%. Combining surface texturing with pit area ratios of 3 and 9% and DLC coating led to a decrease in the coefficients of friction of sliding pairs compared to only textured and coated discs. The DLC coating caused a decrease in the wear of the disc sample and reduction in wear levels of the counter samples in comparison to those of textured discs without DLC coatings. Full article
(This article belongs to the Special Issue Tribology of Textured Surfaces)
Show Figures

Figure 1

18 pages, 5787 KiB  
Article
Use of Advanced Piston Ring Coatings on Agricultural Engines
by Xiaochao He, Bang Liu, Eduardo Tomanik, Grzegorz Koszalka and Anna Orlova
Lubricants 2025, 13(6), 239; https://doi.org/10.3390/lubricants13060239 - 26 May 2025
Viewed by 887
Abstract
The use of combustion engines on agricultural vehicles will persist much longer than on-road vehicles. Introducing new technologies in agricultural engines is crucial to mitigating emissions while accounting for customer cost-sensitivity, harsh operation conditions, and typically sub-optimal maintenance. This work describes the use [...] Read more.
The use of combustion engines on agricultural vehicles will persist much longer than on-road vehicles. Introducing new technologies in agricultural engines is crucial to mitigating emissions while accounting for customer cost-sensitivity, harsh operation conditions, and typically sub-optimal maintenance. This work describes the use of CrN and tetrahedral amorphous carbon (ta-C) DLC-coated rings in small agricultural diesel engines. Compared with the gas nitride rings, the CrN and the ta-C DLC coatings exhibited, respectively, 74% and 86% lower wear in rig tests. The DLC also presented a very low coefficient of friction and high resistance to scuffing. A similar wear trend was observed on durability engine tests, where the CrN top ring showed an 80% lower wear rate than the GNS used in a similar engine. Wear on the DLC oil ring was below the measurement capability. Liner radial wear was measured on the piston ring reversal points in four angular positions, and except for one position, was lower than 3 µm. At the end of the test, engine performance and emissions are nearly identical to those at the test’s start, demonstrating that the use of advanced tribological solutions can significantly contribute to emissions mitigation in agricultural engines. Full article
Show Figures

Figure 1

17 pages, 7884 KiB  
Article
The Effect of USRP-Composite DLC Coating on Bearing Fatigue Life
by Longtai Chen, Yanshuang Wang, Shuhui Xu, Mingyu Zhang and Guanghui Zheng
Coatings 2025, 15(5), 616; https://doi.org/10.3390/coatings15050616 - 21 May 2025
Cited by 1 | Viewed by 515
Abstract
Based on rolling contact fatigue life experiments, this study systematically investigates the effect of ultrasonic surface rolling processing (USRP) with a composite diamond-like carbon (DLC) coating on the rolling contact fatigue life of bearings through characterization and analysis. The results show that the [...] Read more.
Based on rolling contact fatigue life experiments, this study systematically investigates the effect of ultrasonic surface rolling processing (USRP) with a composite diamond-like carbon (DLC) coating on the rolling contact fatigue life of bearings through characterization and analysis. The results show that the USRP-composite DLC coating forms a synergistic mechanism between the coating and the substrate on the surface of specimens: the DLC coating resists surface wear with its high hardness and low friction coefficient, while USRP reduces substrate deformation and crack growth by decreasing surface roughness, increasing substrate hardness, and introducing residual compressive stress. Additionally, USRP enhances the adhesion between the coating and the substrate. The average wear volume of the USRP-composite DLC-coated specimens is 3.73 × 1011 μm3, which is 30.95% lower than that of USRP-treated specimens and 85.38% lower than that of untreated specimens. The average fatigue life of the USRP-composite DLC-coated specimens is 6.55 × 106 cycles, which is 94.94% higher than that of USRP-treated specimens and 208.24% higher than that of untreated specimens. Full article
Show Figures

Graphical abstract

22 pages, 6755 KiB  
Article
Structural, Mechanical, and Tribological Properties of Molybdenum-Doped Diamond-like Carbon Films
by Hassan Zhairabany, Hesam Khaksar, Edgars Vanags, Krisjanis Smits, Anatolijs Sarakovskis and Liutauras Marcinauskas
Crystals 2025, 15(5), 463; https://doi.org/10.3390/cryst15050463 - 15 May 2025
Viewed by 2505
Abstract
Non-hydrogenated diamond-like carbon (DLC) films and molybdenum-doped diamond-like carbon (Mo-DLC) films were deposited by direct current magnetron sputtering. The formation was carried out on Si (100) wafers. The influence of molybdenum concentration and deposition temperature on the surface morphology, chemical composition, type of [...] Read more.
Non-hydrogenated diamond-like carbon (DLC) films and molybdenum-doped diamond-like carbon (Mo-DLC) films were deposited by direct current magnetron sputtering. The formation was carried out on Si (100) wafers. The influence of molybdenum concentration and deposition temperature on the surface morphology, chemical composition, type of chemical bonds, friction force at nanoscale, and nanohardness of the DLC coatings were investigated by atomic force microscopy (AFM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and nanoindenter, respectively. The concentration of molybdenum in the films varies from 1.2 at.% to 10.3 at.%. The increase in molybdenum content promotes the graphitization of DLC films, lowering the sp3 site fraction and increasing the oxygen content, which contributes to the reduction in nanohardness (by 21%) of the DLC films. The decrease in the synthesis temperature from 235 °C to 180 °C enhanced the oxygen amount up to 20.4 at.%. The sp3 site fraction and nanohardness of the Mo-DLC films were enhanced with the reduction in the deposition temperature. The film deposited at a substrate temperature of 235 °C exhibited the lowest friction coefficient (CoF) of 0.03, where its molybdenum concentration was 1.2 at.%. The decline in the synthesis temperature increased the CoF of the Mo-DLC films up to seven times. Full article
(This article belongs to the Special Issue Advances in Diamond Crystals and Devices)
Show Figures

Figure 1

14 pages, 4838 KiB  
Article
Antibacterial and Film Characteristics of Copper-Doped Diamond-like Carbon Films via Sputtering Using a Mixed Target of Copper and Graphite
by Kazuya Kanasugi, Takayoshi Nakajima and Kenji Hirakuri
Coatings 2025, 15(5), 559; https://doi.org/10.3390/coatings15050559 - 7 May 2025
Viewed by 507
Abstract
Copper-doped diamond-like carbon films (Cu-DLC) are effective antibacterial materials and are fabricated using different techniques. By controlling the ratio of the graphite and diamond structures as well as the hydrogen bonds, the biocompatibility, chemical stability, wear resistance, and high hardness of Cu-DLC can [...] Read more.
Copper-doped diamond-like carbon films (Cu-DLC) are effective antibacterial materials and are fabricated using different techniques. By controlling the ratio of the graphite and diamond structures as well as the hydrogen bonds, the biocompatibility, chemical stability, wear resistance, and high hardness of Cu-DLC can be regulated. In this study, three types of Cu-DLC films were deposited on SUS304 substrates using Ar-sputtering with mixed targets comprising different C/Cu ratios. The films’ structures, surface, and antibacterial properties were investigated using electron probe microanalysis, Raman and X-ray photoelectron spectroscopy, atomic force microscopy, and ball-on-disk tests. The Cu concentration in the Cu-DLC films increased with an increase in its content in the target; however, no significant differences were observed in the Raman spectra. The surface composition, roughness, and dynamic friction coefficients were similar across all Cu-DLC films, which displayed smoothness and friction properties similar to those of standard DLC films without Cu. The antibacterial activity (R value) was evaluated as per ISO 22196. Although DLC films exhibited no antibacterial activity (R < 2), all the prepared Cu-DLC films displayed good antibacterial activity (R ≥ 2). The proposed deposition process facilitated Cu-DLC coating, thus promoting its use in the healthcare fields. Full article
(This article belongs to the Special Issue Electrochemical Properties and Applications of Thin Films)
Show Figures

Figure 1

22 pages, 8377 KiB  
Article
Study on the Corrosion and Wear Mechanism of a Core Friction Pair in Methanol-Fueled Internal Combustion Engines
by Wenjuan Zhang, Hao Gao, Qianting Wang, Dong Liu and Enlai Zhang
Materials 2025, 18(9), 1966; https://doi.org/10.3390/ma18091966 - 25 Apr 2025
Cited by 1 | Viewed by 512
Abstract
With the global shift in energy structure and the advancement of the “double carbon” strategy, methanol has gained attention as a clean low-carbon fuel in the engine sector. However, the corrosion–wear coupling failure caused by acidic byproducts, such as methanoic acid and formaldehyde, [...] Read more.
With the global shift in energy structure and the advancement of the “double carbon” strategy, methanol has gained attention as a clean low-carbon fuel in the engine sector. However, the corrosion–wear coupling failure caused by acidic byproducts, such as methanoic acid and formaldehyde, generated during combustion severely limits the durability of methanol engines. In this study, we employed a systematic approach combining the construction of a corrosion liquid concentration gradient experiment with a full-load and full-speed bench test to elucidate the synergistic corrosion–wear mechanism of core friction pairs (cylinder liner, piston, and piston ring) in methanol-fueled engines. The experiment employed corrosion-resistant gray cast iron (CRGCI), high chromium cast iron (HCCI), and nodular cast iron (NCI) cylinder liners, along with F38MnVS steel and ZL109 aluminum alloy pistons. Piston rings with DLC, PVD, and CKS coatings were also tested. Corrosion kinetic analysis was conducted in a formaldehyde/methanoic acid gradient corrosion solution, with a concentration range of 0.5–2.5% for formaldehyde and 0.01–0.10% for methanoic acid, simulating the combustion products of methanol. The results showed that the corrosion depth of CRGCI was the lowest in low-concentration corrosion solutions, measuring 0.042 and 0.055 μm. The presence of microalloyed Cr/Sn/Cu within its pearlite matrix, along with the directional distribution of flake graphite, effectively inhibited the micro-cell effect. In high-concentration corrosion solutions (#3), HCCI reduced the corrosion depth by 60.7%, resulting in a measurement of 0.232 μm, attributed to the dynamic reconstruction of the Cr2O3-Fe2O3 composite passive film. Conversely, galvanic action between spherical graphite and the surrounding matrix caused significant corrosion in NCI, with a depth reaching 1.241 μm. The DLC piston coating obstructed the permeation pathway of formate ions due to its amorphous carbon structure. In corrosion solution #3, the recorded weight loss was 0.982 mg, which accounted for only 11.7% of the weight loss observed with the CKS piston coating. Following a 1500 h bench test, the combination of the HCCI cylinder liner and DLC-coated piston ring significantly reduced the wear depth. The average wear amounts at the top and bottom dead centers were 5.537 and 1.337 μm, respectively, representing a reduction of 67.7% compared with CRGCI, where the wear amounts were 17.152 and 4.244 μm. This research confirmed that the HCCI ferrite–Cr carbide matrix eliminated electrochemical heterogeneity, while the DLC piston coating inhibited abrasive wear. Together, these components reduced the wear amount at the top dead center on the push side by 80.1%. Furthermore, mismatches between the thermal expansion coefficients of the F38MnVS steel piston (12–14 × 10−6/°C) and gray cast iron (11 × 10−6/°C) resulted in a tolerance exceeding 0.105 mm in the cylinder fitting gap after 3500 h of testing. Notably, the combination of a HCCI matrix and DLC coating successfully maintained the gap within the required range of 50–95 μm. Full article
(This article belongs to the Special Issue Research on Performance Improvement of Advanced Alloys)
Show Figures

Figure 1

11 pages, 4028 KiB  
Article
Impact of Sewing Needle Coating on Needle Heating
by Adnan Mazari and Funda Buyuk Mazari
Coatings 2025, 15(4), 485; https://doi.org/10.3390/coatings15040485 - 19 Apr 2025
Viewed by 547
Abstract
Sewing needle heating is a common problem in the sewing of technical and medical textiles. The hot needle causes burnt spots on fabric, the breakage of thread and weak seam strength. The most economical way of reducing needle heat is to use thread [...] Read more.
Sewing needle heating is a common problem in the sewing of technical and medical textiles. The hot needle causes burnt spots on fabric, the breakage of thread and weak seam strength. The most economical way of reducing needle heat is to use thread lubrication, needle coating or air cooling. Multiple coated needles are commercially available on the market, including those coated with Nickel, Chromium, Ceramic or Titanium Nitride, etc. In this research, the needles are coated with Diamond-Like Carbon (DLC) for improved frictional properties. Commercially available needles are compared with the DLC-coated needles for sewing performance and needle heat. The results shows a significant decrease in needle friction as compared to the classic needle but the commercial needles coated with Titanium Nitride still performed better. Also, the coating of DLC peeled off in a shorter time during high-speed sewing; within 15 cycles of continuous sewing, there was a significant loss of coating near the needle eye. The novel DLC technique can be of future benefit to sewing needles, offering an improved technique and more cost-effective approach. The results for the DLC-coated needles showed a 9–12% reduction in the needle temperature and, overall, a 12–14% rise in the tensile strength of the thread after sewing as compared to sewing by classical needles. Full article
(This article belongs to the Special Issue Sustainable Coatings for Functional Textile and Packaging Materials)
Show Figures

Figure 1

15 pages, 14513 KiB  
Article
Effects of Laser Bionic Textures and Diamond-like Carbon Coatings on Tribological Properties of CuAl10Fe5Ni5 Under Oil Lubrication
by Mengjiao Wang, Mingbo Zhu, Xiangkai Meng and Xudong Peng
Coatings 2025, 15(4), 446; https://doi.org/10.3390/coatings15040446 - 9 Apr 2025
Cited by 1 | Viewed by 617
Abstract
Aluminum bronze (CuAl10Fe5Ni5) is widely utilized in engineering machinery because of its excellent castability and corrosion resistance. However, CuAl10Fe5Ni5 has been unable to meet increasingly demanding working conditions, so researchers have focused on improving its tribological properties. In this study, two bionic textures [...] Read more.
Aluminum bronze (CuAl10Fe5Ni5) is widely utilized in engineering machinery because of its excellent castability and corrosion resistance. However, CuAl10Fe5Ni5 has been unable to meet increasingly demanding working conditions, so researchers have focused on improving its tribological properties. In this study, two bionic textures were designed on a CuAl10Fe5Ni5 surface via laser processing, and diamond-like carbon (DLC) coatings were subsequently deposited on these hexagonal textures. The tribological properties of textured surfaces and DLC coatings in conjunction with textures under various loads were examined through reciprocating friction tests conducted under oil lubrication conditions. The results demonstrate that the textured surface significantly enhances the stability of the CuAl10Fe5Ni5 alloy and effectively reduces friction and wear under various loading conditions. Hexagonal textures exhibit superior anti-friction and wear-resistant compared to other textures. The friction coefficients of the hexagonal textures at higher loads of 15 N and 20 N are 25% and 16% lower than those of the substrate, and the wear rates are 64% and 12% lower, respectively. DLC coatings further improve the tribological properties of CuAl10Fe5Ni5. The friction coefficients of DLC coatings and textured DLC coatings are 25% and 20% lower than those of the substrate, and the wear rates are 95% and 96% lower than those of the substrate, respectively. These results demonstrate that both textures and DLC coatings effectively enhance the tribological properties of CuAl10Fe5Ni5’s surface. The interaction mechanism between textures and DLC coatings can be attributed primarily to secondary lubrication, debris capture by the textures, self-lubricating properties, and increased surface hardness. Full article
Show Figures

Figure 1

Back to TopTop