Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (137)

Search Parameters:
Keywords = DLC C

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 10877 KB  
Article
Period-Tuned a-C/a-C:H Multilayer DLC Coating for Tribocorrosion Protection of HSLA-100 Steel
by Tong Jin, Ji-An Feng, Yan Huang, Zhenghua Wu, Xinyi Guo, Kailin Zhu, Wei Dai, Yansheng Yin and Hao Wu
Nanomaterials 2025, 15(22), 1704; https://doi.org/10.3390/nano15221704 - 11 Nov 2025
Abstract
By alternately depositing hydrogen-free amorphous carbon (a-C) and hydrogenated amorphous carbon (a-C:H) nanolayers on HSLA-100 steel through arc-ion plating, multilayer diamond-like carbon (DLC) architectures were engineered, with the modulation period adjusted from 1 to 10 cycles. SEM and Raman spectroscopy served as the [...] Read more.
By alternately depositing hydrogen-free amorphous carbon (a-C) and hydrogenated amorphous carbon (a-C:H) nanolayers on HSLA-100 steel through arc-ion plating, multilayer diamond-like carbon (DLC) architectures were engineered, with the modulation period adjusted from 1 to 10 cycles. SEM and Raman spectroscopy served as the analytical tools for characterizing the microstructure. For assessing key functional behaviors, nanoindentation was used to test mechanical properties, dry-sliding tribometry and in-situ tribocorrosion tests targeted tribological and tribocorrosion performance, and polarization tests focused on corrosion resistance. Introducing C2H2 increased the sp3 fraction and hardness relative to pure a-C. The ten-period film (S5) yielded the highest H/E (0.0767) and H3/E2 (0.171), reflecting the best hardness–toughness synergy. All coatings lowered the dry friction coefficient to 0.08–0.10 and cut wear by more than 1 order of magnitude versus the substrate; the ten-period film (S5) showed the minimum dry wear rate (1.39 × 10−7 mm3·N−1·m−1) and tribocorrosion wear rate (4.53 × 10−7 mm3·N−1·m−1) in 3.5 wt% NaCl. The superior performance is due to interlayer interfaces that dissipate stresses, arrest crack propagation, and block electrolyte ingress through defects. These findings indicate that the rational stacking of a-C/a-C:H significantly improves the tribological and tribocorrosion resistance of HSLA-100, providing a reliable protective approach for components used in marine services. Full article
(This article belongs to the Special Issue Nano Surface Engineering: 2nd Edition)
Show Figures

Figure 1

7 pages, 1163 KB  
Proceeding Paper
Daimler-Benz Adhesion Test on Case-Hardened and DLC Coated Parts
by György Pócsik, Ferenc Oláh, Mihály Réger and Richárd Horváth
Eng. Proc. 2025, 113(1), 11; https://doi.org/10.3390/engproc2025113011 - 28 Oct 2025
Viewed by 302
Abstract
This study examines a duplex surface treatment combining case-hardening and Physical Vapor Deposition (PVD) techniques, widely used to enhance mechanical strength and surface durability of components under high wear conditions. Despite industrial relevance, understanding of the interaction between case-hardened substrates and Diamond-Like Carbon [...] Read more.
This study examines a duplex surface treatment combining case-hardening and Physical Vapor Deposition (PVD) techniques, widely used to enhance mechanical strength and surface durability of components under high wear conditions. Despite industrial relevance, understanding of the interaction between case-hardened substrates and Diamond-Like Carbon (DLC) coatings remains limited. Using the Daimler-Benz Rockwell-C adhesion test, this research evaluates duplex-treated system performance, focusing on adhesion characteristics and mutual behavior between the support layer and DLC topcoat. The experimental approach assesses coating adhesion and substrate influence on coating integrity. Through systematic analysis, the study aims to optimize surface engineering practices for enhanced reliability and wear resistance. Full article
Show Figures

Figure 1

18 pages, 3116 KB  
Article
A Study on the Structure and Properties of NiCr-DLC Films Prepared by Filtered Cathodic Vacuum Arc Deposition
by Bo Zhang, Lan Zhang, Shuai Wu, Xue Peng, Xiaoping Ouyang, Bin Liao and Xu Zhang
Coatings 2025, 15(10), 1136; https://doi.org/10.3390/coatings15101136 - 1 Oct 2025
Viewed by 408
Abstract
Diamond-like carbon (DLC) films are valued for their high hardness and wear resistance, but their application in harsh environments is limited by high internal stress and poor corrosion resistance. Co-doping with transition metals offers a promising route to overcome these drawbacks by tailoring [...] Read more.
Diamond-like carbon (DLC) films are valued for their high hardness and wear resistance, but their application in harsh environments is limited by high internal stress and poor corrosion resistance. Co-doping with transition metals offers a promising route to overcome these drawbacks by tailoring microstructure and enhancing multifunctional performance. However, the synergistic effects of Ni and Cr co-doping in DLC remain underexplored. In this study, Ni and Cr co-doped DLC (NiCr-DLC) films were fabricated using filtered cathodic vacuum arc deposition (FCVAD). By varying the C2H2 flow rate, the carbon content and microstructure evolved from columnar to fine-grained and compact structures. The optimized film (F55) achieved an ultralow surface roughness (Sa = 0.26 nm), even smoother than the Si substrate. The Ni–Cr co-doping promoted a nanocomposite structure, yielding a maximum hardness of 15.56 GPa and excellent wear resistance (wear rate: 4.45 × 10−7 mm3/N·m). Electrochemical tests revealed significantly improved corrosion resistance compared to AISI 304L stainless steel, with F55 exhibiting the highest corrosion potential, the lowest current density, and the largest impedance modulus. This work demonstrates that Ni-Cr co-doping effectively enhances the mechanical and corrosion properties of DLC films while improving surface quality, providing a viable strategy for developing robust, multifunctional protective coatings for demanding applications in aerospace, automotive, and biomedical systems. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

21 pages, 28838 KB  
Article
Tribological Performance of AlCrN, TiAlN, and Arc-DLC Coatings in Hot Forming of Aluminum Alloy
by Panuwat Soranansri, André Dubois, Philippe Moreau, Tatsuya Funazuka, Kuniaki Dohda and Laurent Dubar
Lubricants 2025, 13(10), 430; https://doi.org/10.3390/lubricants13100430 - 27 Sep 2025
Viewed by 903
Abstract
This study aims to evaluate the tribological performance of commercial PVD coatings in alleviating material transfer under unlubricated contact in the hot forming of aluminum alloy. The commercial PVD coatings included AlCrN, TiAlN, and Arc-DLC coatings, deposited on the forming tool surface. The [...] Read more.
This study aims to evaluate the tribological performance of commercial PVD coatings in alleviating material transfer under unlubricated contact in the hot forming of aluminum alloy. The commercial PVD coatings included AlCrN, TiAlN, and Arc-DLC coatings, deposited on the forming tool surface. The warm and hot upsetting sliding test (WHUST) was used as a friction test in this study to reproduce the severe contact conditions from the hot forming process of AA6082-T6 aluminum alloy. The WHUST was performed at 300 °C, 400 °C, and 500 °C to investigate the effect of temperature on the tribological performance of each coating. The results found that the AlCrN and TiAlN coatings exhibited similar performance. They dominated the initial aluminum transfer by adhesive bonding. In contrast, the Arc-DLC coating mainly caused the initial aluminum transfer by mechanical plowing due to its lower chemical affinity to the aluminum alloy. In addition, the tribological performance of each coating highly depended on the temperature. Higher temperatures resulted in both stronger intermetallic bonding at the interface and lower yield strength of the aluminum alloy. These behaviors led to the variations in the coefficient of friction, the 3D topography and the SEM morphology along the wear track of the specimen, and the thickness of the adhered aluminum layer on the coating surface. In comparison, the Arc-DLC coating provided better tribological performance in mitigating the aluminum transfer than the others. Full article
Show Figures

Figure 1

17 pages, 6951 KB  
Article
Tribological Properties of DLC Coatings in Model-Based and Real-Life Tests
by Katarzyna Piotrowska, Monika Madej and Krystian Milewski
Materials 2025, 18(18), 4251; https://doi.org/10.3390/ma18184251 - 11 Sep 2025
Viewed by 663
Abstract
Machinery for internal transport in open-pit mines experiences excessive wear. Belt conveyors used for transporting aggregates are a type of equipment in which bearings are especially prone to failure. Considering the significant financial impact of equipment downtime, ensuring the high reliability of machinery [...] Read more.
Machinery for internal transport in open-pit mines experiences excessive wear. Belt conveyors used for transporting aggregates are a type of equipment in which bearings are especially prone to failure. Considering the significant financial impact of equipment downtime, ensuring the high reliability of machinery in this sector is paramount. Consequently, the design of tribological interfaces should prioritize maximizing their reliability and minimizing the frequency of malfunctions. This article presents a comparative analysis of 100Cr6 steel and a-C:H type diamond-like carbon (DLC) coatings applied using chemical vapor deposition (PACVD) on bearing components in belt conveyors. Model-based tribological tests were conducted on these materials in both laboratory and real-life settings, evaluating friction and wear under dry friction and under Renolit UNI 3 grease-lubricated conditions, the latter being the operational lubricant for these bearings. Full article
Show Figures

Figure 1

16 pages, 3291 KB  
Article
Aging-Induced Microstructural Transformations and Performance Enhancement of Cr/DLC Coatings on ECAP-7075 Aluminum Alloy
by Yuqi Wang, Tao He, Xiangyang Du, Artem Okulov, Alexey Vereschaka, Jian Li, Yang Ding, Kang Chen and Peiyu He
Coatings 2025, 15(9), 1017; https://doi.org/10.3390/coatings15091017 - 1 Sep 2025
Viewed by 972
Abstract
This study systematically investigates the effects of aging treatment (AT) on the microstructure and properties of Cr/DLC coatings deposited via cathodic arc ion plating onto the surface of ECAP-7075 aluminum alloy. Utilizing a comprehensive approach combining performance tests (nanoindentation, nanoscratch testing, dynamic polarization [...] Read more.
This study systematically investigates the effects of aging treatment (AT) on the microstructure and properties of Cr/DLC coatings deposited via cathodic arc ion plating onto the surface of ECAP-7075 aluminum alloy. Utilizing a comprehensive approach combining performance tests (nanoindentation, nanoscratch testing, dynamic polarization analysis) with characterization tests (scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy), the synergistic effects of equal channel angular pressing (ECAP) and aging treatment(AT) were elucidated. The results demonstrate that the combined ECAP and AT significantly enhance the coating’s performance. Specifically, AT promotes the precipitation of η’ phase within the 7075 aluminum alloy substrate, increases the size of Cr7C3 crystallites in the Cr-based interlayer, improves the crystallinity of the Cr7C3 phase on the (060) or (242) crystal planes, and elevates the sp3-C/sp2-C ratio in the diamond-like carbon(DLC) top layer, leading to partial healing of defects and a denser overall coating structure. These microstructural transformations, induced by AT, result in substantial improvements in the mechanical properties (hardness reaching 5.2 GPa, bond strength achieving 15.1 N) and corrosion resistance (corrosion potential increasing to -0.698 V) of the Cr/DLC-coated ECAP-7075 aluminum alloy. This enhanced combination of properties makes these coatings particularly well-suited for high-performance aerospace components requiring both wear resistance and corrosion protection in demanding environments. Full article
(This article belongs to the Special Issue Innovative Coatings for Corrosion Protection of Alloy Surfaces)
Show Figures

Figure 1

14 pages, 10136 KB  
Article
The Influence of Plasma-Carburizing Temperature on the Microstructure and Properties of DLC/Carbonitride Wear-Resistant and Friction-Reducing Functional Layer
by Jiawei Yao, Yiming Ma, Peiwu Cong, Fuyao Yan, Wenlin Lu, Yanxiang Zhang, Mufu Yan and Jingbo Ma
Coatings 2025, 15(8), 966; https://doi.org/10.3390/coatings15080966 - 19 Aug 2025
Viewed by 537
Abstract
M50 steel is widely used in the manufacturing of high-end bearing components for aero-engine shafts, where an excellent surface performance is required to withstand harsh service conditions. In this study, plasma carburizing at different temperatures varying from 410 to 570 °C was performed [...] Read more.
M50 steel is widely used in the manufacturing of high-end bearing components for aero-engine shafts, where an excellent surface performance is required to withstand harsh service conditions. In this study, plasma carburizing at different temperatures varying from 410 to 570 °C was performed on pre-nitrided M50 steel to investigate the influence of the temperature on the structural evolution and mechanical behavior of the self-lubricating functional layer. The microstructure, phase composition, hardness, and wear resistance of the carburized samples were fully characterized using scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Raman spectroscopy, a nano-indenter, and other analytical techniques. The carbon-rich film with nano-domains contains a significant amount of sp3 bonds at low carburizing temperatures, exhibiting a Diamond-like carbon (DLC) film character. With the rise in the carburizing temperature, the initially distinct interface between the carbon-rich film and the compound layer gradually disappears as the nitrides are progressively replaced by carbides; the sp3 bond of the film is decreased, which reduces the hardness and wear resistance. Samples carburized at 490 °C with a homogeneous surface layer consisting of DLC film and a compound layer showed a low friction coefficient (about 0.22) and a 60% reduction in the wear rate compared with the nitrided specimen. The formation of a surface carbon-enriched layer also plays a role in avoiding oxidative wear. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Graphical abstract

17 pages, 2533 KB  
Article
Novel Coating Approaches for Polyethylene Biliary Stents to Reduce Microbial Adhesion, Prevent Biofilm Formation, and Prolong Stent Patency
by Laura Wagner, Philipp Stolte, Stephan Heller, Dina Schippers, Dominik Pförringer, Jutta Tübel, Roland M. Schmid, Rainer Burgkart, Jochen Schneider and Andreas Karl-Werner Obermeier
Biomedicines 2025, 13(8), 1950; https://doi.org/10.3390/biomedicines13081950 - 9 Aug 2025
Viewed by 1039
Abstract
Background: Occlusion of plastic biliary stents is a common complication in biliary drainage, often requiring exchange procedures every 2–4 months due to microbial colonization and sludge formation. This study aimed to evaluate diamond-like carbon (DLC) coatings, with and without silver nanoparticle additives, [...] Read more.
Background: Occlusion of plastic biliary stents is a common complication in biliary drainage, often requiring exchange procedures every 2–4 months due to microbial colonization and sludge formation. This study aimed to evaluate diamond-like carbon (DLC) coatings, with and without silver nanoparticle additives, for preventing stent occlusion. Methods: Polyethylene (PE) stents were coated with DLC using PlasmaImpax for DLC-1 and pulsed laser deposition for DLC-2. Silver ions (Ag) were incorporated into the DLC-2 coatings. To simulate in vivo conditions, a co-culture of Enterococcus faecalis (E. faecalis), Escherichia coli (E. coli), and Candida albicans (C. albicans) was used for microbial colonization. Standardized human bile simulated physiological conditions. Adhesion tests, weight measurements, and scanning electron microscopy (SEM) quantified bacterial adherence to stents. Results: DLC-1 coatings demonstrated higher bacterial growth than uncoated PE stents with E. faecalis (adhesion assay difference: 0.6 log [p = 0.19] and 0.1 log [p = 0.75] in rounds 1 and 2, respectively). In the bile incubation model, DLC-1 did not significantly reduce bacterial counts at 5 days (0.4 log [p = 0.06]) or 14 days (0.2 log [p = 0.44]). DLC-2 showed no significant reduction either. DLC-2-Ag significantly reduced bacterial adhesion (5 days: −0.3 log [p = 0.00]; 14 days: −0.4 log [p = 0.16]) and exhibited inhibition zones against E. faecalis (2.3 mm), E. coli (2.1 mm), and C. albicans (0.6 mm). SEM revealed cracks and flaking in the coating. Conclusions: DLC coatings alone did not prevent microbial adhesion. Tendencies of anti-adhesive properties were seen with Ag-doped DLC coatings, which were attributed to the antibacterial effects of Ag. Optimization of the DLC-coating process is needed to improve stent performance. Future studies with larger samples sizes are needed to confirm the observed trends. Full article
(This article belongs to the Special Issue State-of-the-Art Hepatic and Gastrointestinal Diseases in Germany)
Show Figures

Figure 1

16 pages, 2994 KB  
Article
Structural Insights and Calcium-Switching Mechanism of Fasciola hepatica Calcium-Binding Protein FhCaBP4
by Byeongmin Shin, Seonha Park, Ingyo Park, Hongchul Shin, Kyuhyeon Bang, Sulhee Kim and Kwang Yeon Hwang
Int. J. Mol. Sci. 2025, 26(15), 7584; https://doi.org/10.3390/ijms26157584 - 5 Aug 2025
Viewed by 619
Abstract
Fasciola hepatica remains a global health and economic concern, and treatment still relies heavily on triclabendazole. At the parasite–host interface, F. hepatica calcium-binding proteins (FhCaBPs) have a unique EF-hand/DLC-like domain fusion found only in trematodes. This makes it a parasite-specific target for small [...] Read more.
Fasciola hepatica remains a global health and economic concern, and treatment still relies heavily on triclabendazole. At the parasite–host interface, F. hepatica calcium-binding proteins (FhCaBPs) have a unique EF-hand/DLC-like domain fusion found only in trematodes. This makes it a parasite-specific target for small compounds and vaccinations. To enable novel therapeutic strategies, we report the first elevated-resolution structure of a full-length FhCaBP4. The apo structure was determined at 1.93 Å resolution, revealing a homodimer architecture that integrates an N-terminal, calmodulin-like, EF-hand pair with a C-terminal dynein light chain (DLC)-like domain. Structure-guided in silico mutagenesis identified a flexible, 16-residue β4–β5 loop (LTGSYWMKFSHEPFMS) with an FSHEPF core that demonstrates greater energetic variability than its FhCaBP2 counterpart, likely explaining the distinct ligand-binding profiles of these paralogs. Molecular dynamics simulations and AlphaFold3 modeling suggest that EF-hand 2 acts as the primary calcium-binding site, with calcium coordination inducing partial rigidification and modest expansion of the protein structure. Microscale thermophoresis confirmed calcium as the major ligand, while calmodulin antagonists bound with lower affinity and praziquantel demonstrated no interaction. Thermal shift assays revealed calcium-dependent stabilization and a merger of biphasic unfolding transitions. These results suggest that FhCaBP4 functions as a calcium-responsive signaling hub, with an allosterically coupled EF-hand–DLC interface that could serve as a structurally tractable platform for drug targeting in trematodes. Full article
(This article belongs to the Special Issue Calcium Homeostasis of Cells in Health and Disease: Third Edition)
Show Figures

Figure 1

15 pages, 5168 KB  
Article
Effects of Pulse Ion Source Arc Voltage on the Structure and Friction Properties of Ta-C Thin Films on NBR Surface
by Sen Feng, Wenzhuang Lu, Fei Guo, Can Wang and Liang Zou
Coatings 2025, 15(7), 809; https://doi.org/10.3390/coatings15070809 - 10 Jul 2025
Viewed by 611
Abstract
Nitrile rubber (NBR) is prone to adhesion and hysteresis deformation when in contact with hard materials, leading to wear failure. To mitigate this issue, the deposition of diamond-like carbon (DLC) films onto the rubber surface is a commonly employed method. By utilizing pulsed [...] Read more.
Nitrile rubber (NBR) is prone to adhesion and hysteresis deformation when in contact with hard materials, leading to wear failure. To mitigate this issue, the deposition of diamond-like carbon (DLC) films onto the rubber surface is a commonly employed method. By utilizing pulsed arc ion plating technology and adjusting the arc voltage of the pulsed arc ion source, tetrahedral amorphous carbon (ta-C) films with varying sp3 content were prepared on the surface of NBR. The effects of arc voltage on the structural composition and friction performance of NBR/ta-C materials were examined. A scanning electron microscopy analysis revealed that the ta-C film applied to the surface of NBR was uniform and dense, exhibiting typical network crack characteristics. The results of Raman spectroscopy and X-ray photoelectron spectroscopy indicated that as the arc voltage increased, the sp3 content in the film initially rose before declining, reaching a maximum of 72.28% at 300 V. Mechanical tests demonstrated that the bonding strength and friction performance of the film are primarily influenced by the percentage of sp3 content. Notably, the ta-C film with lower sp3 content demonstrates enhanced wear resistance. At 200 V, the sp3 content of the film is 58.16%, resulting in optimal friction performance characterized by a stable friction coefficient of 0.38 and minimal wear weight loss. This performance is attributed to the protective qualities of the ta-C film and the formation of a graphitized transfer film. These results provide valuable insights for the design and development of wear-resistant rubber materials. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

18 pages, 12442 KB  
Article
Properties of Diamond-like Coatings in Tribological Systems Lubricated with Ionic Liquid
by Krystyna Radoń-Kobus and Monika Madej
Coatings 2025, 15(7), 799; https://doi.org/10.3390/coatings15070799 - 8 Jul 2025
Cited by 1 | Viewed by 617
Abstract
The paper shows the effect of using a lubricant in the form of an ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6), on the tribological properties of a hydrogenated diamond-like coating (DLC) doped with tungsten a-C:H:W. The coatings were deposited on 100Cr6 steel by [...] Read more.
The paper shows the effect of using a lubricant in the form of an ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6), on the tribological properties of a hydrogenated diamond-like coating (DLC) doped with tungsten a-C:H:W. The coatings were deposited on 100Cr6 steel by plasma-enhanced chemical vapor deposition PECVD. Tribological tests were carried out on a TRB3 tribometer in a rotary motion in a ball–disc combination. 100Cr6 steel balls were used as a counter-sample. Friction and wear tests were carried out for discs made of 100Cr6 steel and 100Cr6 steel discs with a DLC coating. They were performed under friction conditions with and without lubrication under 10 N and 15 N loads. The ionic liquid BMIM-PF6 was used as a lubricant. Coating thickness was observed on a scanning microscope, and the linear analysis of chemical composition on the cross-section was analyzed using the EDS analyzer. The confocal microscope with an interferometric mode was used for analysis of the geometric structure of the surface before and after the tribological tests. The contact angle of the samples for distilled water, diiodomethane and ionic liquid was tested on an optical tensiometer. The test results showed good cooperation of the DLC coating with the lubricant. It lowered the coefficient of friction in comparison to steel about 20%. This indicates the synergistic nature of the interaction: DLC coating–BMIM-PF6 lubricant–100Cr6 steel. Full article
(This article belongs to the Special Issue Tribological and Mechanical Properties of Coatings)
Show Figures

Figure 1

15 pages, 2841 KB  
Article
Evaluation of New Passive Heating Systems for Low-Cost Greenhouses in a Mild-Winter Area
by Santiago Bonachela, María Cruz Sánchez-Guerrero, Juan Carlos López, Evangelina Medrano and Joaquín Hernández
Horticulturae 2025, 11(7), 752; https://doi.org/10.3390/horticulturae11070752 - 1 Jul 2025
Viewed by 558
Abstract
The main objective of this work was to evaluate new variants of passive heating systems used for horticultural crop cycles planted in the cold period in low-cost greenhouses on the Mediterranean Spanish coast (a mild-winter area). The double low cover (DLC) is variant [...] Read more.
The main objective of this work was to evaluate new variants of passive heating systems used for horticultural crop cycles planted in the cold period in low-cost greenhouses on the Mediterranean Spanish coast (a mild-winter area). The double low cover (DLC) is variant of the conventional fixed plastic screen that reduces the air volume and increases the airtightness around crops. Three identical DLCs were installed inside a typical greenhouse, and the microclimate measured in the three DLCs was similar. The DLCs reduced the solar radiation transmissivity coefficient by around 0.05 but increased the mean daily substrate and air temperatures (up to 1.6 and 3.6 °C, respectively). They also modified the air humidity, although this can be modulated by opening the vertical sheets located on the greenhouse aisles (DLC vents). The black plastic mulch forming an air chamber around the substrate bags (BMC), a new mulch variant used in substrate-grown crops, increased the substrate temperature with respect to the conventional black mulch covering the entire ground surface. The combination of BMC plus DLC increased the mean daily substrate temperature by up to 2.9 °C, especially at night. Low tunnels covered with transparent film and with a spun-bonded fabric sheet were also compared, and both materials were efficient heating systems regarding substrate and air temperatures. Low tunnels combined with the DLC substantially increased air humidity, but this can be partially offset by opening the DLC vents. The combination of low tunnels and DLC does not seem recommendable for greenhouse crops planted in winter, since both systems reduce solar radiation transmissivity. Full article
(This article belongs to the Section Protected Culture)
Show Figures

Graphical abstract

15 pages, 2890 KB  
Article
The Interface of Additive Manufactured Tungsten–Diamond Composites
by Xuehao Gao, Dongxu Cheng, Zhe Sun, Yihe Huang, Wentai Ouyang, Cunxiao Lan, Zhaoqing Li and Lin Li
Materials 2025, 18(11), 2574; https://doi.org/10.3390/ma18112574 - 30 May 2025
Viewed by 685
Abstract
Tungsten–diamond metal matrix composites (MMCs) fabricated via L-PBF show potential for applications in nuclear facility shielding, heat sinks, precision cutting/grinding tools, and aerospace hot-end components. In this paper, tungsten (W), diamond (D), and diamond with Ni coating (D-Ni) powders are used to fabricate [...] Read more.
Tungsten–diamond metal matrix composites (MMCs) fabricated via L-PBF show potential for applications in nuclear facility shielding, heat sinks, precision cutting/grinding tools, and aerospace hot-end components. In this paper, tungsten (W), diamond (D), and diamond with Ni coating (D-Ni) powders are used to fabricate W+D and W+(D-Ni) composites by L-PBF technology. The results show that at the interface of the W+D sample, the W powder melts while the D powder remains in a solid state during L-PBF processing, and W and C elements gradually diffuse into each other. Due to the high cooling rate of L-PBF processing, the C phase forms a diamond-like carbon (DLC) phase with an amorphous structure, and the W phase becomes a supersaturated solid solution of the C element. At the interface of the W+(D-Ni) sample, the diffusion capacity of Ni and W elements in the solid state is weaker than in the molten state. C and W elements diffuse into the Ni melt, forming a rich Ni area of the DLC phase, while Ni and W elements diffuse into the solid D powder, forming a lean Ni area of the DLC phase. In the rich Ni area of the DLC phase, Ni segregation leads to the precipitation of nanocrystals (several hundred nanometers), whereas in the lean Ni area of the DLC phase, the diffusion capacity of Ni and W elements in the solid D powder is limited, resulting in nanocrystalline sizes of only about tens of nanometers. During W dendrite growth, the addition of the Ni coating and the expelling of the C phenomenon leads to W grain refinement at the interface, which reduces the number and length of cracks in the W+(D-Ni) sample. This paper contributes to the theoretical development and engineering applications of tungsten–diamond MMCs fabricated by L-PBF. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

18 pages, 5787 KB  
Article
Use of Advanced Piston Ring Coatings on Agricultural Engines
by Xiaochao He, Bang Liu, Eduardo Tomanik, Grzegorz Koszalka and Anna Orlova
Lubricants 2025, 13(6), 239; https://doi.org/10.3390/lubricants13060239 - 26 May 2025
Viewed by 1500
Abstract
The use of combustion engines on agricultural vehicles will persist much longer than on-road vehicles. Introducing new technologies in agricultural engines is crucial to mitigating emissions while accounting for customer cost-sensitivity, harsh operation conditions, and typically sub-optimal maintenance. This work describes the use [...] Read more.
The use of combustion engines on agricultural vehicles will persist much longer than on-road vehicles. Introducing new technologies in agricultural engines is crucial to mitigating emissions while accounting for customer cost-sensitivity, harsh operation conditions, and typically sub-optimal maintenance. This work describes the use of CrN and tetrahedral amorphous carbon (ta-C) DLC-coated rings in small agricultural diesel engines. Compared with the gas nitride rings, the CrN and the ta-C DLC coatings exhibited, respectively, 74% and 86% lower wear in rig tests. The DLC also presented a very low coefficient of friction and high resistance to scuffing. A similar wear trend was observed on durability engine tests, where the CrN top ring showed an 80% lower wear rate than the GNS used in a similar engine. Wear on the DLC oil ring was below the measurement capability. Liner radial wear was measured on the piston ring reversal points in four angular positions, and except for one position, was lower than 3 µm. At the end of the test, engine performance and emissions are nearly identical to those at the test’s start, demonstrating that the use of advanced tribological solutions can significantly contribute to emissions mitigation in agricultural engines. Full article
Show Figures

Figure 1

22 pages, 6755 KB  
Article
Structural, Mechanical, and Tribological Properties of Molybdenum-Doped Diamond-like Carbon Films
by Hassan Zhairabany, Hesam Khaksar, Edgars Vanags, Krisjanis Smits, Anatolijs Sarakovskis and Liutauras Marcinauskas
Crystals 2025, 15(5), 463; https://doi.org/10.3390/cryst15050463 - 15 May 2025
Cited by 1 | Viewed by 2853
Abstract
Non-hydrogenated diamond-like carbon (DLC) films and molybdenum-doped diamond-like carbon (Mo-DLC) films were deposited by direct current magnetron sputtering. The formation was carried out on Si (100) wafers. The influence of molybdenum concentration and deposition temperature on the surface morphology, chemical composition, type of [...] Read more.
Non-hydrogenated diamond-like carbon (DLC) films and molybdenum-doped diamond-like carbon (Mo-DLC) films were deposited by direct current magnetron sputtering. The formation was carried out on Si (100) wafers. The influence of molybdenum concentration and deposition temperature on the surface morphology, chemical composition, type of chemical bonds, friction force at nanoscale, and nanohardness of the DLC coatings were investigated by atomic force microscopy (AFM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and nanoindenter, respectively. The concentration of molybdenum in the films varies from 1.2 at.% to 10.3 at.%. The increase in molybdenum content promotes the graphitization of DLC films, lowering the sp3 site fraction and increasing the oxygen content, which contributes to the reduction in nanohardness (by 21%) of the DLC films. The decrease in the synthesis temperature from 235 °C to 180 °C enhanced the oxygen amount up to 20.4 at.%. The sp3 site fraction and nanohardness of the Mo-DLC films were enhanced with the reduction in the deposition temperature. The film deposited at a substrate temperature of 235 °C exhibited the lowest friction coefficient (CoF) of 0.03, where its molybdenum concentration was 1.2 at.%. The decline in the synthesis temperature increased the CoF of the Mo-DLC films up to seven times. Full article
(This article belongs to the Special Issue Advances in Diamond Crystals and Devices)
Show Figures

Figure 1

Back to TopTop