Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,182)

Search Parameters:
Keywords = D2 inhibitors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 12972 KiB  
Article
Polynitrogen Bicyclic and Tricyclic Compounds as PDE4 Inhibitors
by Claudia Vergelli, Agostino Cilibrizzi, Gabriella Guerrini, Fabrizio Melani, Marta Menicatti, Gianluca Bartolucci, Maria Paola Giovannoni and Letizia Crocetti
Appl. Sci. 2025, 15(15), 8678; https://doi.org/10.3390/app15158678 (registering DOI) - 5 Aug 2025
Abstract
We report here two new series of designed PDE4 inhibitors, the first one showing the quinoline scaffold recently investigated by us through a fragment-based drug design strategy, and the second consisting of pyrazolo [1′,5′:1,6]pyrimido[4,5-d]pyridazine derivatives. Both the new series were subjected [...] Read more.
We report here two new series of designed PDE4 inhibitors, the first one showing the quinoline scaffold recently investigated by us through a fragment-based drug design strategy, and the second consisting of pyrazolo [1′,5′:1,6]pyrimido[4,5-d]pyridazine derivatives. Both the new series were subjected to biological studies to assess their inhibitory effect on PDE4 enzymes, supported by molecular modelling experiments, to rationalize the different activities recorded in the in vitro tests. Interesting results were achieved for two compounds belonging to the tricyclic series, namely 10a and 10e, exhibiting IC50 = 62 and 175.5 nM, respectively. These results could represent the starting point for further studies with the aim of developing new and effective PDE4 inhibitors for biomedical investigations. Full article
(This article belongs to the Special Issue Research on Organic and Medicinal Chemistry)
Show Figures

Figure 1

31 pages, 13626 KiB  
Article
Epigenomics Nutritional Insights of Crocus sativus L.: Computational Analysis of Bioactive Molecules Targeting DNA Methyltransferases and Histone Deacetylases
by Alessia Piergentili, Paolo Roberto Saraceni, Olivia Costantina Demurtas, Barbara Benassi and Caterina Arcangeli
Int. J. Mol. Sci. 2025, 26(15), 7575; https://doi.org/10.3390/ijms26157575 - 5 Aug 2025
Abstract
Saffron (Crocus sativus L.) contains bioactive compounds with potential health benefits, including modulation of protein function and gene expression. However, their ability to tune the epigenetic machine remains poorly understood. This study employs molecular docking (AutoDock Vina 1.4), dynamics simulations, and MM/PBSA [...] Read more.
Saffron (Crocus sativus L.) contains bioactive compounds with potential health benefits, including modulation of protein function and gene expression. However, their ability to tune the epigenetic machine remains poorly understood. This study employs molecular docking (AutoDock Vina 1.4), dynamics simulations, and MM/PBSA calculations to investigate the interactions between four saffron-derived molecules—crocetin, beta-D-glucosyl trans-crocetin, picrocrocin and safranal—and four epigenetic enzymes—DNMT1, DNMT3a, HDAC2, and SIRT1. Our in silico screening identifies beta-D-glucosyl trans-crocetin, one of the saffron’s crocins, as a potential DNMT1 inhibitor. Along with crocetin, it also shows the ability to inhibit HDAC2 and activate SIRT1. Picrocrocin displays a resveratrol-like ability to activate SIRT1. None of the saffron-derived compounds effectively bind or inhibit DNMT3a. Among the tested molecules, safranal shows no interaction with the selected epigenetic targets. These findings highlight saffron’s nutriepigenomic potential and emphasize the need for functional validation within relevant in vitro and in vivo experimental methodologies. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

23 pages, 3521 KiB  
Article
Efficacy of NAMPT Inhibitors in Pancreatic Cancer After Stratification by MAP17 (PDZK1IP1) Levels
by Eva M. Verdugo-Sivianes, Julia Martínez-Pérez, Lola E Navas, Carmen Sáez and Amancio Carnero
Cancers 2025, 17(15), 2575; https://doi.org/10.3390/cancers17152575 - 5 Aug 2025
Abstract
Background/Objectives: Pancreatic cancer (PC) is the seventh leading cause of cancer-related deaths worldwide, with its incidence rising each year. Despite its relatively low incidence, the aggressiveness of pancreatic cancer results in high mortality, with only 12% of patients surviving five years post-diagnosis. [...] Read more.
Background/Objectives: Pancreatic cancer (PC) is the seventh leading cause of cancer-related deaths worldwide, with its incidence rising each year. Despite its relatively low incidence, the aggressiveness of pancreatic cancer results in high mortality, with only 12% of patients surviving five years post-diagnosis. Surgical resection remains the only potentially curative treatment, but the tumor is often diagnosed at an advanced stage. The goal of this work is to identify vulnerabilities that can affect the efficacy of treatments and improve the efficacy of therapy. Methods: MAP17 overexpression in pancreatic cancer cell lines, RT-qPCR analysis, xenografts, in vitro and in vivo treatments, analysis of data from pancreatic tumors in transcriptomic patient databases. Results: We studied the prognostic and predictive value of MAP17 (PDZK1IP1) expression in pancreatic cancer, and we found that high MAP17 mRNA expression was associated with poor prognosis. In addition, single-cell analysis revealed that high MAP17 expression was present only in tumor cells. We investigated whether the response to various antitumor agents depended on MAP17 expression. In 2D culture, MAP17-expressing pancreatic cancer cells responded better to gemcitabine and 5-fluorouracil. However, in vivo xenograft tumors with MAP17 expression showed resistance to all treatments. Additionally, MAP17-expressing cells had a high NAD pool, which seems to be effectively depleted in vivo by NAMPT inhibitors, the primary enzyme for NAD biosynthesis. Conclusions: Our findings suggest that MAP17 expression could enhance the prognostic stratification of pancreatic cancer patients. Moreover, the coadministration of NAMPT inhibitors with current treatments may sensitize tumors with high MAP17 expression to chemotherapy and improve the efficacy of chemotherapy. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

33 pages, 640 KiB  
Review
Future Pharmacotherapy for Bipolar Disorders: Emerging Trends and Personalized Approaches
by Giuseppe Marano, Francesco Maria Lisci, Gianluca Boggio, Ester Maria Marzo, Francesca Abate, Greta Sfratta, Gianandrea Traversi, Osvaldo Mazza, Roberto Pola, Gabriele Sani, Eleonora Gaetani and Marianna Mazza
Future Pharmacol. 2025, 5(3), 42; https://doi.org/10.3390/futurepharmacol5030042 - 4 Aug 2025
Abstract
Background: Bipolar disorder (BD) is a chronic and disabling psychiatric condition characterized by recurring episodes of mania, hypomania, and depression. Despite the availability of mood stabilizers, antipsychotics, and antidepressants, long-term management remains challenging due to incomplete symptom control, adverse effects, and high relapse [...] Read more.
Background: Bipolar disorder (BD) is a chronic and disabling psychiatric condition characterized by recurring episodes of mania, hypomania, and depression. Despite the availability of mood stabilizers, antipsychotics, and antidepressants, long-term management remains challenging due to incomplete symptom control, adverse effects, and high relapse rates. Methods: This paper is a narrative review aimed at synthesizing emerging trends and future directions in the pharmacological treatment of BD. Results: Future pharmacotherapy for BD is likely to shift toward precision medicine, leveraging advances in genetics, biomarkers, and neuroimaging to guide personalized treatment strategies. Novel drug development will also target previously underexplored mechanisms, such as inflammation, mitochondrial dysfunction, circadian rhythm disturbances, and glutamatergic dysregulation. Physiological endophenotypes, such as immune-metabolic profiles, circadian rhythms, and stress reactivity, are emerging as promising translational tools for tailoring treatment and reducing associated somatic comorbidity and mortality. Recognition of the heterogeneous longitudinal trajectories of BD, including chronic mixed states, long depressive episodes, or intermittent manic phases, has underscored the value of clinical staging models to inform both pharmacological strategies and biomarker research. Disrupted circadian rhythms and associated chronotypes further support the development of individualized chronotherapeutic interventions. Emerging chronotherapeutic approaches based on individual biological rhythms, along with innovative monitoring strategies such as saliva-based lithium sensors, are reshaping the future landscape. Anti-inflammatory agents, neurosteroids, and compounds modulating oxidative stress are emerging as promising candidates. Additionally, medications targeting specific biological pathways implicated in bipolar pathophysiology, such as N-methyl-D-aspartate (NMDA) receptor modulators, phosphodiesterase inhibitors, and neuropeptides, are under investigation. Conclusions: Advances in pharmacogenomics will enable clinicians to predict individual responses and tolerability, minimizing trial-and-error prescribing. The future landscape may also incorporate digital therapeutics, combining pharmacotherapy with remote monitoring and data-driven adjustments. Ultimately, integrating innovative drug therapies with personalized approaches has the potential to enhance efficacy, reduce adverse effects, and improve long-term outcomes for individuals with bipolar disorder, ushering in a new era of precision psychiatry. Full article
Show Figures

Figure 1

24 pages, 3243 KiB  
Article
Design of Experiments Leads to Scalable Analgesic Near-Infrared Fluorescent Coconut Nanoemulsions
by Amit Chandra Das, Gayathri Aparnasai Reddy, Shekh Md. Newaj, Smith Patel, Riddhi Vichare, Lu Liu and Jelena M. Janjic
Pharmaceutics 2025, 17(8), 1010; https://doi.org/10.3390/pharmaceutics17081010 - 1 Aug 2025
Viewed by 196
Abstract
Background: Pain is a complex phenomenon characterized by unpleasant experiences with profound heterogeneity influenced by biological, psychological, and social factors. According to the National Health Interview Survey, 50.2 million U.S. adults (20.5%) experience pain on most days, with the annual cost of prescription [...] Read more.
Background: Pain is a complex phenomenon characterized by unpleasant experiences with profound heterogeneity influenced by biological, psychological, and social factors. According to the National Health Interview Survey, 50.2 million U.S. adults (20.5%) experience pain on most days, with the annual cost of prescription medication for pain reaching approximately USD 17.8 billion. Theranostic pain nanomedicine therefore emerges as an attractive analgesic strategy with the potential for increased efficacy, reduced side-effects, and treatment personalization. Theranostic nanomedicine combines drug delivery and diagnostic features, allowing for real-time monitoring of analgesic efficacy in vivo using molecular imaging. However, clinical translation of these nanomedicines are challenging due to complex manufacturing methodologies, lack of standardized quality control, and potentially high costs. Quality by Design (QbD) can navigate these challenges and lead to the development of an optimal pain nanomedicine. Our lab previously reported a macrophage-targeted perfluorocarbon nanoemulsion (PFC NE) that demonstrated analgesic efficacy across multiple rodent pain models in both sexes. Here, we report PFC-free, biphasic nanoemulsions formulated with a biocompatible and non-immunogenic plant-based coconut oil loaded with a COX-2 inhibitor and a clinical-grade, indocyanine green (ICG) near-infrared fluorescent (NIRF) dye for parenteral theranostic analgesic nanomedicine. Methods: Critical process parameters and material attributes were identified through the FMECA (Failure, Modes, Effects, and Criticality Analysis) method and optimized using a 3 × 2 full-factorial design of experiments. We investigated the impact of the oil-to-surfactant ratio (w/w) with three different surfactant systems on the colloidal properties of NE. Small-scale (100 mL) batches were manufactured using sonication and microfluidization, and the final formulation was scaled up to 500 mL with microfluidization. The colloidal stability of NE was assessed using dynamic light scattering (DLS) and drug quantification was conducted through reverse-phase HPLC. An in vitro drug release study was conducted using the dialysis bag method, accompanied by HPLC quantification. The formulation was further evaluated for cell viability, cellular uptake, and COX-2 inhibition in the RAW 264.7 macrophage cell line. Results: Nanoemulsion droplet size increased with a higher oil-to-surfactant ratio (w/w) but was no significant impact by the type of surfactant system used. Thermal cycling and serum stability studies confirmed NE colloidal stability upon exposure to high and low temperatures and biological fluids. We also demonstrated the necessity of a solubilizer for long-term fluorescence stability of ICG. The nanoemulsion showed no cellular toxicity and effectively inhibited PGE2 in activated macrophages. Conclusions: To our knowledge, this is the first instance of a celecoxib-loaded theranostic platform developed using a plant-derived hydrocarbon oil, applying the QbD approach that demonstrated COX-2 inhibition. Full article
(This article belongs to the Special Issue Quality by Design in Pharmaceutical Manufacturing)
Show Figures

Graphical abstract

19 pages, 397 KiB  
Review
Effects of Blood-Glucose Lowering Therapies on Body Composition and Muscle Outcomes in Type 2 Diabetes: A Narrative Review
by Ioana Bujdei-Tebeică, Doina Andrada Mihai, Anca Mihaela Pantea-Stoian, Simona Diana Ștefan, Claudiu Stoicescu and Cristian Serafinceanu
Medicina 2025, 61(8), 1399; https://doi.org/10.3390/medicina61081399 - 1 Aug 2025
Viewed by 196
Abstract
Background and Objectives: The management of type 2 diabetes (T2D) extends beyond glycemic control, requiring a more global strategy that includes optimization of body composition, even more so in the context of sarcopenia and visceral adiposity, as they contribute to poor outcomes. [...] Read more.
Background and Objectives: The management of type 2 diabetes (T2D) extends beyond glycemic control, requiring a more global strategy that includes optimization of body composition, even more so in the context of sarcopenia and visceral adiposity, as they contribute to poor outcomes. Past reviews have typically been focused on weight reduction or glycemic effectiveness, with limited inclusion of new therapies’ effects on muscle and fat distribution. In addition, the emergence of incretin-based therapies and dual agonists such as tirzepatide requires an updated synthesis of their impacts on body composition. This review attempts to bridge the gap by taking a systematic approach to how current blood-glucose lowering therapies affect lean body mass, fat mass, and the risk of sarcopenia in T2D patients. Materials and Methods: Between January 2015 and March 2025, we conducted a narrative review by searching the PubMed, Scopus, and Web of Science databases for English-language articles. The keywords were combinations of the following: “type 2 diabetes,” “lean body mass,” “fat mass,” “body composition,” “sarcopenia,” “GLP-1 receptor agonists,” “SGLT2 inhibitors,” “tirzepatide,” and “antidiabetic pharmacotherapy.” Reference lists were searched manually as well. The highest precedence was assigned to studies that aimed at adult type 2 diabetic subjects and reported body composition results. Inclusion criteria for studies were: (1) type 2 diabetic mellitus adult patients and (2) reporting measures of body composition (e.g., lean body mass, fat mass, or muscle function). We prioritized randomized controlled trials and large observational studies and excluded mixed diabetic populations, non-pharmacological interventions only, and poor reporting of body composition. Results: Metformin was widely found to be weight-neutral with minimal effects on muscle mass. Insulin therapy, being an anabolic hormone, often leads to fat mass accumulation and increases the risk of sarcopenic obesity. Incretin-based therapies induced substantial weight loss, mostly from fat mass. Notable results were observed in studies with tirzepatide, demonstrating superior reduction not only in fat mass, but also in visceral fat. Sodium-glucose cotransporter 2 inhibitors (SGLT2 inhibitors) promote fat loss but are associated with a small yet significant decrease in lean muscle mass. Conclusions: Blood-glucose lowering therapies demonstrated clinically relevant effects on body composition. Treatment should be personalized, balancing glycemic control, cardiovascular, and renal benefits, together with optimal impact on muscle mass along with glycemic, cardiovascular, and renal benefits. Full article
(This article belongs to the Section Endocrinology)
25 pages, 7784 KiB  
Article
Diversity in the Common Fold: Structural Insights into Class D β-Lactamases from Gram-Negative Pathogens
by Clyde A. Smith and Anastasiya Stasyuk
Pathogens 2025, 14(8), 761; https://doi.org/10.3390/pathogens14080761 - 1 Aug 2025
Viewed by 187
Abstract
Class D β-lactamases (DBLs) represent a major threat to antibiotic efficacy by hydrolyzing β-lactam drugs, including last-resort carbapenems, thereby driving antimicrobial resistance in Gram-negative bacteria. The enzymes share a structurally conserved two-domain α/β architecture with seven active-site motifs and three flexible extended loops [...] Read more.
Class D β-lactamases (DBLs) represent a major threat to antibiotic efficacy by hydrolyzing β-lactam drugs, including last-resort carbapenems, thereby driving antimicrobial resistance in Gram-negative bacteria. The enzymes share a structurally conserved two-domain α/β architecture with seven active-site motifs and three flexible extended loops (the P-loop, Ω-loop, and newly designated B-loop) that surround the active site. While each of these loops is known to influence enzyme function, their coordinated roles have not been fully elucidated. To investigate the significance of their interplay, we compared the sequences and crystal structures of 40 DBLs from clinically relevant Gram-negative pathogens and performed molecular dynamics simulations on selected representatives. Combined structural and dynamical analyses revealed a strong correlation between B-loop architecture and carbapenemase activity in the pathogens Klebsiella and Acinetobacter, particularly regarding loop length and spatial organization. These findings emphasize the B-loop’s critical contribution, in concert with the P- and Ω-loops, in tuning active site versatility, substrate recognition, catalytic activity, and structural stability. A deeper understanding of how these motifs and loops govern DBL function may inform the development of novel antibiotics and inhibitors targeting this class of enzymes. Full article
Show Figures

Figure 1

38 pages, 2158 KiB  
Review
Epigenetic Modulation and Bone Metastasis: Evolving Therapeutic Strategies
by Mahmoud Zhra, Jasmine Hanafy Holail and Khalid S. Mohammad
Pharmaceuticals 2025, 18(8), 1140; https://doi.org/10.3390/ph18081140 - 31 Jul 2025
Viewed by 470
Abstract
Bone metastasis remains a significant cause of morbidity and diminished quality of life in patients with advanced breast, prostate, and lung cancers. Emerging research highlights the pivotal role of reversible epigenetic alterations, including DNA methylation, histone modifications, chromatin remodeling complex dysregulation, and non-coding [...] Read more.
Bone metastasis remains a significant cause of morbidity and diminished quality of life in patients with advanced breast, prostate, and lung cancers. Emerging research highlights the pivotal role of reversible epigenetic alterations, including DNA methylation, histone modifications, chromatin remodeling complex dysregulation, and non-coding RNA networks, in orchestrating each phase of skeletal colonization. Site-specific promoter hypermethylation of tumor suppressor genes such as HIN-1 and RASSF1A, alongside global DNA hypomethylation that activates metastasis-associated genes, contributes to cancer cell plasticity and facilitates epithelial-to-mesenchymal transition (EMT). Key histone modifiers, including KLF5, EZH2, and the demethylases KDM4/6, regulate osteoclastogenic signaling pathways and the transition between metastatic dormancy and reactivation. Simultaneously, SWI/SNF chromatin remodelers such as BRG1 and BRM reconfigure enhancer–promoter interactions that promote bone tropism. Non-coding RNAs, including miRNAs, lncRNAs, and circRNAs (e.g., miR-34a, NORAD, circIKBKB), circulate via exosomes to modulate the RANKL/OPG axis, thereby conditioning the bone microenvironment and fostering the formation of a pre-metastatic niche. These mechanistic insights have accelerated the development of epigenetic therapies. DNA methyltransferase inhibitors (e.g., decitabine, guadecitabine) have shown promise in attenuating osteoclast differentiation, while histone deacetylase inhibitors display context-dependent effects on tumor progression and bone remodeling. Inhibitors targeting EZH2, BET proteins, and KDM1A are now advancing through early-phase clinical trials, often in combination with bisphosphonates or immune checkpoint inhibitors. Moreover, novel approaches such as CRISPR/dCas9-based epigenome editing and RNA-targeted therapies offer locus-specific reprogramming potential. Together, these advances position epigenetic modulation as a promising axis in precision oncology aimed at interrupting the pathological crosstalk between tumor cells and the bone microenvironment. This review synthesizes current mechanistic understanding, evaluates the therapeutic landscape, and outlines the translational challenges ahead in leveraging epigenetic science to prevent and treat bone metastases. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

15 pages, 280 KiB  
Article
Evaluation of Bone Mineral Density and Related Factors in Romanian HIV-Positive Patients Undergoing Antiretroviral Therapy
by Ioana-Melinda Luput-Andrica, Adelina-Raluca Marinescu, Talida Georgiana Cut, Alexandra Herlo, Lucian-Flavius Herlo, Andra-Elena Saizu, Ruxandra Laza, Anca Lustrea, Andreea-Cristina Floruncut, Adina Chisalita, Narcisa Nicolescu, Cristian Iulian Oancea, Diana Manolescu, Romanita Jumanca, Daniela-Ica Rosoha and Voichita Elena Lazureanu
Microorganisms 2025, 13(8), 1768; https://doi.org/10.3390/microorganisms13081768 - 29 Jul 2025
Viewed by 231
Abstract
Human Immunodeficiency Virus (HIV) infection remains a major global health issue, with effective antiretroviral therapy (ART) extending life expectancy but also increasing age-related issues like osteopenia and osteoporosis. This cross-sectional study examines bone mineral density (BMD) and related risk factors in Romanian HIV-positive [...] Read more.
Human Immunodeficiency Virus (HIV) infection remains a major global health issue, with effective antiretroviral therapy (ART) extending life expectancy but also increasing age-related issues like osteopenia and osteoporosis. This cross-sectional study examines bone mineral density (BMD) and related risk factors in Romanian HIV-positive patients, emphasizing regional and therapy influences. The patients varying in HIV infection duration underwent DXA scanning to measure BMD in the lumbar spine, femoral neck, and total femur. A high prevalence of low BMD, especially in the lumbar spine, was identified along with significant associations between reduced BMD and factors such as smoking, alcohol use, vitamin D deficiency and serum phosphorus levels. ART like Protease Inhibitors and Nucleoside Reverse Transcriptase Inhibitors were linked to increased bone loss, emphasizing the multifactorial nature of osteoporosis in HIV-infected individuals and underscore the importance of regular BMD assessments, lifestyle adjustments, and careful management of antiretroviral therapy to minimize fracture risk and enhance overall health and quality of life. Full article
(This article belongs to the Special Issue Infectious Disease Surveillance in Romania)
19 pages, 4063 KiB  
Article
Exposure to Mitochondrial Toxins: An In Vitro Study of Energy Depletion and Oxidative Stress in Driving Dopaminergic Neuronal Death in MN9D Cells
by Oluwatosin Adefunke Adetuyi and Kandatege Wimalasena
Toxics 2025, 13(8), 637; https://doi.org/10.3390/toxics13080637 - 29 Jul 2025
Viewed by 258
Abstract
Mitochondrial dysfunction is a key contributor to neurodegeneration, particularly in Parkinson’s disease (PD), where dopaminergic neurons being highly metabolically active are vulnerable to oxidative stress and bioenergetic failure. In this study, we investigate the effects of rotenone, a Complex I inhibitor, and antimycin [...] Read more.
Mitochondrial dysfunction is a key contributor to neurodegeneration, particularly in Parkinson’s disease (PD), where dopaminergic neurons being highly metabolically active are vulnerable to oxidative stress and bioenergetic failure. In this study, we investigate the effects of rotenone, a Complex I inhibitor, and antimycin A, a Complex III inhibitor, on mitochondrial function in MN9D dopaminergic neuronal cells. Cells were treated with rotenone (1.5 µM) or antimycin A (10 µM) for one hour, and key biochemical parameters were assessed, including ATP levels, reactive oxygen species (ROS) production, dopamine metabolism, and neuromelanin formation. Our results indicate significant ATP depletion and ROS accumulation following treatment with both inhibitors, with antimycin A inducing a more pronounced oxidative stress response. Dysregulation of dopamine biosynthesis differed mechanistically from vesicular monoamine transporter (VMAT2) inhibition by tetrabenazine, suggesting alternative pathways of catecholamine disruption. Additionally, oxidative stress led to increased neuromelanin accumulation, indicating a possible adaptive response to mitochondrial dysfunction. These findings provide insights into the cellular mechanisms underlying dopaminergic neurotoxicity and highlight mitochondrial electron transport chain inhibition as a key driver of PD pathogenesis. Future research should explore therapeutic strategies aimed at enhancing mitochondrial function to mitigate neurodegenerative progression. Full article
Show Figures

Graphical abstract

26 pages, 10645 KiB  
Article
Classical Paal-Knorr Cyclization for Synthesis of Pyrrole-Based Aryl Hydrazones and In Vitro/In Vivo Evaluation on Pharmacological Models of Parkinson’s Disease
by Maya Georgieva, Martin Sharkov, Emilio Mateev, Diana Tzankova, Georgi Popov, Vasil Manov, Alexander Zlatkov, Rumyana Simeonova and Magdalena Kondeva-Burdina
Molecules 2025, 30(15), 3154; https://doi.org/10.3390/molecules30153154 - 28 Jul 2025
Viewed by 215
Abstract
Some studies performed in our laboratory on pyrrole and its derivatives pointed towards the enrichment of the evaluations of these promising chemical structures for the potential treatment of neurodegenerative conditions in general and Parkinson’s disease in particular. A classical Paal-Knorr cyclization approach is [...] Read more.
Some studies performed in our laboratory on pyrrole and its derivatives pointed towards the enrichment of the evaluations of these promising chemical structures for the potential treatment of neurodegenerative conditions in general and Parkinson’s disease in particular. A classical Paal-Knorr cyclization approach is applied to synthesize the basic hydrazine used for the formation of the designed series of hydrazones (15a15g). The potential neurotoxic and neuroprotective effects of the newly synthesized derivatives were investigated in vitro using different models of induced oxidative stress at three subcellular levels (rat brain synaptosomes, mitochondria, and microsomes). The results identified as the least neurotoxic molecules, 15a, 15d, and 15f applied at a concentration of 100 µM to the isolated fractions. In addition, the highest statistically significant neuroprotection was observed for 15a and 15d at a concentration of 100 µM using three different injury models on subcellular fractions, including 6-hydroxydopamine in rat brain synaptosomes, tert-butyl hydroperoxide in brain mitochondria, and non-enzyme-induced lipid peroxidation in brain microsomes. The hMAOA/MAOB inhibitory activity of the new compounds was studied at a concentration of 1 µM. The lack of a statistically significant hMAOA inhibitory effect was observed for all tested compounds, except for 15f, which showed 40% inhibitory activity. The most prominent statistically significant hMAOB inhibitory effect was determined for 15a, 15d, and 15f, comparable to that of selegiline. The corresponding selectivity index defined 15f as a non-selective MAO inhibitor and all other new hydrazones as selective hMAOB inhibitors, with 15d indicating the highest selectivity index of >471. The most active and least toxic representative (15d) was evaluated in vivo on Rotenone based model of Parkinson’s disease. The results revealed no microscopically visible alterations in the ganglion and glial cells in the animals treated with rotenone in combination with 15d. Full article
(This article belongs to the Special Issue Small-Molecule Targeted Drugs)
Show Figures

Figure 1

23 pages, 1789 KiB  
Review
Multi-Enzyme Synergy and Allosteric Regulation in the Shikimate Pathway: Biocatalytic Platforms for Industrial Applications
by Sara Khan and David D. Boehr
Catalysts 2025, 15(8), 718; https://doi.org/10.3390/catal15080718 - 28 Jul 2025
Viewed by 405
Abstract
The shikimate pathway is the fundamental metabolic route for aromatic amino acid biosynthesis in bacteria, plants, and fungi, but is absent in mammals. This review explores how multi-enzyme synergy and allosteric regulation coordinate metabolic flux through this pathway by focusing on three key [...] Read more.
The shikimate pathway is the fundamental metabolic route for aromatic amino acid biosynthesis in bacteria, plants, and fungi, but is absent in mammals. This review explores how multi-enzyme synergy and allosteric regulation coordinate metabolic flux through this pathway by focusing on three key enzymes: 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase, chorismate mutase, and tryptophan synthase. We examine the structural diversity and distribution of these enzymes across evolutionary domains, highlighting conserved catalytic mechanisms alongside species-specific regulatory adaptations. The review covers directed evolution strategies that have transformed naturally regulated enzymes into standalone biocatalysts with enhanced activity and expanded substrate scope, enabling synthesis of non-canonical amino acids and complex organic molecules. Industrial applications demonstrate the pathway’s potential for sustainable production of pharmaceuticals, polymer precursors, and specialty chemicals through engineered microbial platforms. Additionally, we discuss the therapeutic potential of inhibitors targeting pathogenic organisms, particularly their mechanisms of action and antimicrobial efficacy. This comprehensive review establishes the shikimate pathway as a paradigmatic system where understanding allosteric networks enables the rational design of biocatalytic platforms, providing blueprints for biotechnological innovation and demonstrating how evolutionary constraints can be overcome through protein engineering to create superior industrial biocatalysts. Full article
Show Figures

Graphical abstract

16 pages, 3978 KiB  
Article
Cepharanthine Promotes Ca2+-Independent Premature Red Blood Cell Death Through Metabolic Insufficiency and p38 MAPK/CK1α/COX/MLKL/PKC/iNOS Signaling
by Shaymah H. Alruwaili, Jawaher Alsughayyir and Mohammad A. Alfhili
Int. J. Mol. Sci. 2025, 26(15), 7250; https://doi.org/10.3390/ijms26157250 - 27 Jul 2025
Viewed by 288
Abstract
Nonspecific toxicity to normal and malignant cells restricts the clinical utility of many anticancer drugs. In particular, anemia in cancer patients develops due to drug-induced toxicity to red blood cells (RBCs). The anticancer alkaloid, cepharanthine (CEP), elicits distinct forms of cell death including [...] Read more.
Nonspecific toxicity to normal and malignant cells restricts the clinical utility of many anticancer drugs. In particular, anemia in cancer patients develops due to drug-induced toxicity to red blood cells (RBCs). The anticancer alkaloid, cepharanthine (CEP), elicits distinct forms of cell death including apoptosis and autophagy, but its cytotoxicity to RBCs has not been investigated. Colorimetric and fluorometric techniques were used to assess eryptosis and hemolysis in control and CEP-treated RBCs. Cells were labeled with Fluo4/AM and annexin-V-FITC to measure Ca2+ and phosphatidylserine (PS) exposure, respectively. Forward scatter (FSC) was detected to estimate cell size, and extracellular hemoglobin along with lactate dehydrogenase and aspartate transaminase activities were assayed to quantify hemolysis. Physiological manipulation of the extracellular milieu and various signaling inhibitors were tested to dissect the underlying mechanisms of CEP-induced RBC death. CEP increased PS exposure and hemolysis indices and decreased FSC in a concentration-dependent manner with prominent membrane blebbing. Although no Ca2+ elevation was detected, chelation of intracellular Ca2+ by BAPTA-AM reduced hemolysis. Whereas SB203580, D4476, acetylsalicylic acid, necrosulfonamide, and melatonin inhibited both PS exposure and hemolysis, staurosporin, L-NAME, ascorbate, caffeine, adenine, and guanosine only prevented hemolysis. Interestingly, sucrose had a unique dual effect by exacerbating PS exposure and reversing hemolysis. Of note, blocking KCl efflux augmented PS exposure while aggravating hemolysis only under Ca2+-depleted conditions. CEP activates Ca2+-independent pathways to promote eryptosis and hemolysis. The complex cytotoxic profile of CEP can be mitigated by targeting the identified modulatory pathways to potentiate its anticancer efficacy. Full article
(This article belongs to the Special Issue Blood Cells in Human Health and Disease)
Show Figures

Figure 1

30 pages, 3715 KiB  
Article
The Inhibitory Effect and Adsorption Properties of Testagen Peptide on Copper Surfaces in Saline Environments: An Experimental and Computational Study
by Aurelian Dobriţescu, Adriana Samide, Nicoleta Cioateră, Oana Camelia Mic, Cătălina Ionescu, Irina Dăbuleanu, Cristian Tigae, Cezar Ionuţ Spînu and Bogdan Oprea
Molecules 2025, 30(15), 3141; https://doi.org/10.3390/molecules30153141 - 26 Jul 2025
Viewed by 449
Abstract
Experimental and theoretical studies were applied to investigate the adsorption properties of testagen (KEDG) peptide on copper surfaces in sodium chloride solution and, implicitly, its inhibition efficiency (IE) on metal corrosion. The tetrapeptide synthesized from the amino acids lysine (Lys), glutamic acid (Glu), [...] Read more.
Experimental and theoretical studies were applied to investigate the adsorption properties of testagen (KEDG) peptide on copper surfaces in sodium chloride solution and, implicitly, its inhibition efficiency (IE) on metal corrosion. The tetrapeptide synthesized from the amino acids lysine (Lys), glutamic acid (Glu), aspartic acid (Asp), and glycine (Gly), named as H-Lys-Glu-Asp-Gly-OH, achieved an inhibition efficiency of around 86% calculated from electrochemical measurements, making KEDG a promising new copper corrosion inhibitor. The experimental data were best fitted to the Freundlich adsorption isotherm. The standard free energy of adsorption (ΔGadso) reached the value of −30.86 kJ mol−1, which revealed a mixed action mechanism of tetrapeptide, namely, chemical and physical spontaneous adsorption. The copper surface characterization was performed using optical microscopy and SEM/EDS analysis. In the KEDG presence, post-corrosion, SEM images showed a network surface morphology including microdeposits with an acicular appearance, and EDS analysis highlighted an upper surface layer consisting of KEDG, sodium chloride, and copper corrosion compounds. The computational study based on DFT and Monte Carlo simulation confirmed the experimental results and concluded that the spontaneous adsorption equilibrium establishment was the consequence of the contribution of noncovalent (electrostatic, van der Waals) interactions and covalent bonds. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

14 pages, 384 KiB  
Article
Outbreak Caused by VIM-1- and VIM-4-Positive Proteus mirabilis in a Hospital in Zagreb
by Branka Bedenić, Gernot Zarfel, Josefa Luxner, Andrea Grisold, Marina Nađ, Maja Anušić, Vladimira Tičić, Verena Dobretzberger, Ivan Barišić and Jasmina Vraneš
Pathogens 2025, 14(8), 737; https://doi.org/10.3390/pathogens14080737 - 26 Jul 2025
Viewed by 287
Abstract
Background/objectives: Proteus mirabilis is a frequent causative agent of urinary and wound infections in both community and hospital settings. It develops resistance to expanded-spectrum cephalosporins (ESCs) due to the production of extended-spectrum β-lactamases (ESBLs) or plasmid-mediated AmpC β-lactamases (p-AmpCs). Recently, carbapenem-resistant isolates of [...] Read more.
Background/objectives: Proteus mirabilis is a frequent causative agent of urinary and wound infections in both community and hospital settings. It develops resistance to expanded-spectrum cephalosporins (ESCs) due to the production of extended-spectrum β-lactamases (ESBLs) or plasmid-mediated AmpC β-lactamases (p-AmpCs). Recently, carbapenem-resistant isolates of P. mirabilis emerged due to the production of carbapenemases, mostly belonging to Ambler classes B and D. Here, we report an outbreak of infections due to carbapenem-resistant P. mirabilis that were observed in a psychiatric hospital in Zagreb, Croatia. The characteristics of ESBL and carbapenemase-producing P. mirabilis isolates, associated with an outbreak, were analyzed. Materials and methods: The antibiotic susceptibility testing was performed by the disk-diffusion and broth dilution methods. The double-disk synergy test (DDST) and inhibitor-based test with clavulanic and phenylboronic acid were applied to screen for ESBLs and p-AmpCs, respectively. Carbapenemases were screened by the modified Hodge test (MHT), while carbapenem hydrolysis was investigated by the carbapenem inactivation method (CIM) and EDTA-carbapenem-inactivation method (eCIM). The nature of the ESBLs, carbapenemases, and fluoroquinolone-resistance determinants was investigated by PCR. Plasmids were characterized by PCR-based replicon typing (PBRT). Selected isolates were subjected to molecular characterization of the resistome by an Inter-Array Genotyping Kit CarbaResisit and whole-genome sequencing (WGS). Results: In total, 20 isolates were collected and analyzed. All isolates exhibited resistance to amoxicillin alone and when combined with clavulanic acid, cefuroxime, cefotaxime, ceftriaxone, cefepime, imipenem, ceftazidime–avibactam, ceftolozane–tazobactam, gentamicin, amikacin, and ciprofloxacin. There was uniform susceptibility to ertapenem, meropenem, and cefiderocol. The DDST and combined disk test with clavulanic acid were positive, indicating the production of an ESBL. The MHT was negative in all except one isolate, while the CIM showed moderate sensitivity, but only with imipenem as the indicator disk. Furthermore, eCIM tested positive in all of the CIM-positive isolates, consistent with a metallo-β-lactamase (MBL). PCR and sequencing of the selected amplicons identified VIM-1 and VIM-4. The Inter-Array Genotyping Kit CarbaResist and WGS identified β-lactam resistance genes blaVIM, blaCTX-M-15, and blaTEM genes; aminoglycoside resistance genes aac(3)-IId, aph(6)-Id, aph(3″)-Ib, aadA1, armA, and aac(6′)-IIc; as well as resistance genes for sulphonamides sul1 and sul2, trimethoprim dfr1, chloramphenicol cat, and tetracycline tet(J). Conclusions: This study revealed an epidemic spread of carbapenemase-producing P. mirabilis in two wards in a psychiatric hospital. Due to the extensively resistant phenotype (XDR), therapeutic options were limited. This is the first report of carbapenemase-producing P. mirabilis in Croatia. Full article
(This article belongs to the Special Issue Emerging and Neglected Pathogens in the Balkans)
Show Figures

Figure 1

Back to TopTop