Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,146)

Search Parameters:
Keywords = Cytochrome b

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7798 KB  
Article
The Effects of Frondanol, a Non-Polar Extract of the Atlantic Sea Cucumber, in Colon Cancer Cells
by Hardik Ghelani, Hala Altaher, Hadil Sarsour, Marah Tabbal, Sally Badawi, Thomas E. Adrian and Reem K. Jan
Pharmaceuticals 2025, 18(11), 1714; https://doi.org/10.3390/ph18111714 - 11 Nov 2025
Viewed by 212
Abstract
Background: Colorectal cancer (CRC) is the second leading cause of cancer-related mortality worldwide. The search for effective, new antineoplastic drugs with fewer side effects for the treatment of CRC continues, with marine-derived compounds emerging as promising candidates. Objectives: This study investigates the anticancer [...] Read more.
Background: Colorectal cancer (CRC) is the second leading cause of cancer-related mortality worldwide. The search for effective, new antineoplastic drugs with fewer side effects for the treatment of CRC continues, with marine-derived compounds emerging as promising candidates. Objectives: This study investigates the anticancer potential of Frondanol, a nutraceutical derived from the Atlantic Sea cucumber Cucumaria frondosa, known for its potent anti-inflammatory properties. Methods: Two human CRC cell lines, Caco-2 and HT-29, were used to test the effects of Frondanol using various in vitro approaches. Results: Frondanol significantly inhibited cell viability in a dose- and time-dependent manner. At a 1:10,000 dilution, viability decreased to around 30% in Caco-2 and 20% in HT-29 after 24 h, dropping to nearly 5% at 48 h. Furthermore, a clonogenic assay showed around 50% reduction in colony formation in both cell lines. Flow cytometry-based Annexin V staining revealed that Frondanol increased early apoptosis to ~5.2% in Caco-2 and ~9.4% in HT-29 cells, while cell cycle analysis showed accumulation of the sub G0 (apoptotic) phase increasing from 1.5% to 14.7% (Caco-2) and from 1.9% to 23.8% (HT-29). At the molecular level, Frondanol treatment significantly decreased anti-apoptotic protein B-cell lymphoma (Bcl)-2 expression while increasing the expression of the proapoptotic protein Bcl-2-associated X-protein. Additionally, Frondanol markedly induced cytochrome c release from the mitochondria and activated caspase-9, caspase-7, and caspase-3 after treatment, alongside cleavage of the caspase-3 substrate poly (ADP-ribose) polymerase. Frondanol inhibited 5-lipoxygenase activity, further contributing to its anticancer effects. Conclusions: In conclusion, Frondanol inhibits CRC cell proliferation and induces apoptosis through the mitochondrial pathway in vitro, suggesting that it is a potential nutraceutical for the prevention of human colorectal cancer or a valuable source of anticancer compounds. Full article
Show Figures

Graphical abstract

23 pages, 3564 KB  
Article
Honokiol Inhibits Colorectal Cancer Cell Growth: Involvement of Hsp27 as a Molecular Target
by Youngbin Kim, Hyeon Du Jang, Da Hyeon An, Hyun Seo Lee, Hong-Gyum Kim and Sun Eun Choi
Curr. Issues Mol. Biol. 2025, 47(11), 921; https://doi.org/10.3390/cimb47110921 - 5 Nov 2025
Viewed by 305
Abstract
Background/Objectives: Honokiol (HK), a bioactive phenolic compound, exhibits significant anti-cancer properties. This study aimed to investigate the anti-cancer effects of HK in colorectal cancer (CRC) cells by focusing on its direct interaction with heat shock protein 27 (Hsp27) as a molecular target, and [...] Read more.
Background/Objectives: Honokiol (HK), a bioactive phenolic compound, exhibits significant anti-cancer properties. This study aimed to investigate the anti-cancer effects of HK in colorectal cancer (CRC) cells by focusing on its direct interaction with heat shock protein 27 (Hsp27) as a molecular target, and to elucidate the underlying mechanisms involved. Methods: HK was isolated via silica/ODS chromatography. Anchorage-independent growth of CRC cells was quantified using a soft agar assay with increasing HK concentrations. Apoptosis and cell cycle were analyzed by flow cytometry, and cell viability by MTS assay. Hsp27 binding to HK was validated by pull-down assay with HK-conjugated Sepharose 4B beads. Hsp27 knockdown was performed using lentiviral shRNA in CRC cells. Molecular docking of HK-Hsp27 interaction employed Schrödinger Suite 2016. Protein expressions, including chaperone and apoptotic proteins, were evaluated by Western blotting. Results: HK dose-dependently suppressed anchorage-independent growth of CRC cells and induced G0/G1 arrest. It triggered apoptosis through cytochrome c release, PARP cleavage, and Bcl-2 downregulation. HK directly bound to the α-crystallin domain of Hsp27 at Asn102 and His103 residues, confirmed by computational molecular docking and site-directed mutagenesis. Hsp27 knockdown in CRC cells dramatically reduced anchorage-independent growth. HK markedly decreased Hsp27 protein levels while having less effect on other heat shock proteins in CRC cells. Conclusions: HK exerts anti-cancer effects in CRC cells, associated with Hsp27 inhibition, resulting in suppressed cell growth and increased apoptosis. This interaction between HK and Hsp27 may support a mechanistic foundation supporting the potential utility of HK as a natural therapeutic agent for CRC. Full article
Show Figures

Figure 1

15 pages, 10415 KB  
Article
Genetic Identity of the Red-legged Partridge (Alectoris rufa, Phasianidae) from the Island of Madeira
by Monica Guerrini, Hans-Martin Berg, Sylke Frahnert, Manuel Biscoito and Filippo Barbanera
Birds 2025, 6(4), 59; https://doi.org/10.3390/birds6040059 - 5 Nov 2025
Viewed by 362
Abstract
The Red-legged Partridge (Alectoris rufa, Phasianidae) is a non-migrant gamebird endemic to southwestern Europe that was introduced into Mediterranean and Atlantic islands in historical times. This is the case for Madeira, Portugal, where a population morphologically assigned to A. r. hispanica [...] Read more.
The Red-legged Partridge (Alectoris rufa, Phasianidae) is a non-migrant gamebird endemic to southwestern Europe that was introduced into Mediterranean and Atlantic islands in historical times. This is the case for Madeira, Portugal, where a population morphologically assigned to A. r. hispanica has been present since the XV century. We assessed its genetic identity using 2248 (Cytochrome-b, Cyt-b + Control Region, CR) and 297 bp-long (CR) mitochondrial DNA sequences obtained from modern and archival (1900–1964, including Caccabis rufa maderensis syntypes) partridges, respectively. These sequences were compared against an already published dataset covering the entire Iberian A. rufa range. We found that all the haplotypes of modern birds from Madeira were private to this island. The putative subspecies was confirmed, and northern Portugal with northwestern Spain turned out to host the closest mainland populations. This result was in line with the origin of the first human settlers of Madeira from, among other historical provinces, Douro Litoral and Minho, the latter neighboring Galicia. Despite relatively recent A. rufa importations from continental Europe, we did not find any significant change over time in the haplotypic pattern of Madeiran partridges as well as any evidence for maternal introgression from species such as the congeneric Chukar Partridge (A. chukar). Studies relying on genome-wide markers and including the only captive-bred population of Madeira are needed to gain more comprehensive information for the management of the local A. rufa. Full article
Show Figures

Graphical abstract

22 pages, 22159 KB  
Article
Phylogeographic Insights into Pipistrellus Species from Türkiye: Diversity, Divergence, and Regional Lineage Structure
by Emin Seyfi, Şafak Bulut and Gül Olgun Karacan
Biology 2025, 14(11), 1549; https://doi.org/10.3390/biology14111549 - 4 Nov 2025
Viewed by 293
Abstract
This study investigates the phylogenetic relationships, genetic diversity, and biogeographic structure of Pipistrellus species in Türkiye using mitochondrial cytochrome b (Cytb) sequences from 156 specimens collected across 26 localities. Our primary aim was to clarify taxonomic boundaries of morphologically cryptic species [...] Read more.
This study investigates the phylogenetic relationships, genetic diversity, and biogeographic structure of Pipistrellus species in Türkiye using mitochondrial cytochrome b (Cytb) sequences from 156 specimens collected across 26 localities. Our primary aim was to clarify taxonomic boundaries of morphologically cryptic species and elucidate the evolutionary role of Anatolia in the Western Palearctic. Analyses strongly confirmed that molecular data are mandatory for defining taxonomic boundaries. Crucially, all individuals morphologically identified as P. pygmaeus were genetically determined to be P. pipistrellus, highlighting the inadequacy of external traits for cryptic species. We resolved deep intraspecific divergence across the genus. In P. pipistrellus, two major lineages (Eastern and Western) were identified, partially separated by the Anatolian Diagonal. Their co-occurrence in multiple localities confirms Anatolia’s function as a secondary contact zone. Similarly, P. kuhlii populations represent a transition zone where two distinct lineages, one of Asiatic origin (P. k. lepidus) and one Mediterranean-Levantine (P. k. kuhlii), meet. Furthermore, while P. nathusii is largely associated with migratory European lineages; a genetically distinct, potentially resident lineage was revealed in southwestern Anatolia. Divergence time estimations indicate that this diversification was shaped by major climatic events from the Miocene to the Pleistocene. This study demonstrates that Anatolia is more than just a geographic bridge; it is a dynamic center of evolution, functioning critically as both a glacial refugium and a secondary contact zone for Palearctic bat fauna. Full article
(This article belongs to the Section Zoology)
Show Figures

Figure 1

14 pages, 2709 KB  
Article
Transcriptome Analysis of the Pathogenic Mechanism of the Novel Pathogenic Fungus Bipolaris fujianensis in Chinese Fir (Cunninghamia lanceolata) Shoot Blight
by Bin Lin, Peiwen Yang, Ruifeng Luo, Ying Lu, Zhe Li, Menglan Shang, Wangdong Xu, Zihui Huang, Guanghong Liang and Qinghua Zhang
Biology 2025, 14(11), 1488; https://doi.org/10.3390/biology14111488 - 24 Oct 2025
Viewed by 382
Abstract
Bipolaris fujianensis is a novel pathogenic species causing Chinese fir (Cunninghamia lanceolata) shoot blight (CFSB), first discovered in Nanping City, Fujian Province. However, its molecular pathogenic mechanisms remain largely unknown. Elucidating theses mechanisms has the potential of aiding future developments in [...] Read more.
Bipolaris fujianensis is a novel pathogenic species causing Chinese fir (Cunninghamia lanceolata) shoot blight (CFSB), first discovered in Nanping City, Fujian Province. However, its molecular pathogenic mechanisms remain largely unknown. Elucidating theses mechanisms has the potential of aiding future developments in disease management and resistance breeding in Chinese fir. In this regard, we examined the expression pattern of B. fujianensis grown on PDA (BGPDA), and during infection of Chinese fir at 24 h (BGCF-E), 48 h (BGCF-M), and 5 d (BGCF-L) post inoculation. Comparative transcriptome analysis identified 4133 differentially expressed genes (DEGs), including 1778 upregulated and 2355 downregulated in BGCF compared with BGPDA. During the infection process, Gene ontology (GO) enrichment analysis indicated that transporters and hydrolases in the molecular function categories play essential roles. Kyoto encyclopedia of genes and genomes (KEGG) analyses showed glycolysis/gluconeogenesis, carbon metabolism, and secondary metabolite biosynthesis were the major enriched pathways. Furthermore, this pathogen could produce diterpenoid toxin ophiobolin F, with cytochrome P450 and MFS transport proteins likely involved in its biosynthesis and transport predicted by RT-qPCR. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

20 pages, 963 KB  
Review
Pharmacological Management of Oral and Esophageal Candidiasis: A Clinical Pharmacotherapy Perspective
by Toshinori Hirai and Masanori Nashi
J. Clin. Med. 2025, 14(21), 7537; https://doi.org/10.3390/jcm14217537 - 24 Oct 2025
Viewed by 532
Abstract
Candida spp. are common components of normal microbiota in the oral cavity. However, Candida albicans can be a primary cause of superficial infections in the oral cavity and esophagus, especially in immunocompromised individuals. While these infections are rarely life-threatening, they can significantly impair [...] Read more.
Candida spp. are common components of normal microbiota in the oral cavity. However, Candida albicans can be a primary cause of superficial infections in the oral cavity and esophagus, especially in immunocompromised individuals. While these infections are rarely life-threatening, they can significantly impair quality of life and, in severe cases, progress to hematogenous dissemination. Oral candidiasis often exhibits as pseudomembranous, erythematous (atrophic), chronic hyperplastic, denture stomatitis, or angular cheilitis. Esophageal candidiasis is typically diagnosed by upper endoscopy, which involves histological examination and brushing. Clinical guidelines recommend topical antifungal agents for mild oral candidiasis, and systemic agents for moderate-to-severe disease or when topical therapy fails. However, azole antifungals pose a substantial risk of drug–drug interactions, primarily due to the inhibition of cytochrome P450 enzymes and drug transporters, which dramatically alters the pharmacokinetics of co-administered drugs. Additionally, amphotericin B, a polyene macrolide antibiotic, may cause nephrotoxicity and electrolyte disturbances (e.g., hypokalemia and hypomagnesemia). Moreover, the co-administration of nephrotoxic drugs may augment the toxicity associated with amphotericin B. Therefore, this review aimed to provide a comprehensive overview of the management of oral and esophageal candidiasis from the viewpoint of clinical pharmacology, with a particular focus on drug–drug interactions and adverse effect profiles. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
Show Figures

Graphical abstract

13 pages, 2860 KB  
Article
Xanthohumol Triggers Pyroptotic in Prostate Cancer Cells via the Caspase-3/GSDME Signaling Pathway
by Jiayin Sun, Shi Li, Zheng Duan, Hao Yu, Junjie Zhang, Jun Xue and Zhongqing Wei
Int. J. Mol. Sci. 2025, 26(21), 10347; https://doi.org/10.3390/ijms262110347 - 24 Oct 2025
Viewed by 356
Abstract
Xanthohumol (XN), a naturally occurring flavonoid characterized by the presence of prenyl moieties and obtained from hop plants (Humulus lupulus L.), has garnered growing interest in the scientific community owing to its diverse biological activities, including anti-inflammatory, anticancer, and antioxidant effects. However, [...] Read more.
Xanthohumol (XN), a naturally occurring flavonoid characterized by the presence of prenyl moieties and obtained from hop plants (Humulus lupulus L.), has garnered growing interest in the scientific community owing to its diverse biological activities, including anti-inflammatory, anticancer, and antioxidant effects. However, its antitumor mechanisms, especially the inhibitory impact and related molecular pathways in prostate cancer, are not yet fully elucidated. This study investigated the effects of XN on prostate cancer and explored its underlying molecular mechanisms. The antiproliferative effect of XN on prostate cancer cells was assessed using the sulforhodamine B assay. Cellular morphological changes were examined by microscopy. Pyroptosis induction following XN treatment was evaluated via flow cytometry and Western blot analysis. Following treatment with XN, prostate cancer cells exhibited characteristic morphological changes consistent with pyroptosis. Protein analysis revealed that XN triggers pyroptosis primarily via the caspase-3/GSDME. The attenuation of XN-induced, GSDME-dependent pyroptosis by the caspase-3-specific inhibitor Z-DEVD-fmk further supported this mechanism. Furthermore, our results indicate that XN promotes the accumulation of reactive oxygen species (ROS) and reduces mitochondrial membrane potential, thereby activating the mitochondrial intrinsic pathway and leading to cytochrome c release, which subsequently triggers caspase-3 activation and the cleavage of GSDME, and ultimately induces pyroptosis. XN induced pyroptosis in prostate cancer cells through the mitochondrial intrinsic pathway, offering novel strategic insights for the treatment of prostate cancer and the development of innovative therapeutic agents. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

41 pages, 4538 KB  
Article
Polyprenylated Acylphloroglucinols from Hypericum rochelii and Hypericum olympicum—Cytotoxic Effects on Non-Tumorigenic Cell Lines and Antibacterial Potential
by Yana Ilieva, Maya M. Zaharieva, Lyudmila Dimitrova, Mila D. Kaleva, Teodor Marinov, Lili I. Dobreva, Tanya Chan Kim, Zlatina Kokanova-Nedialkova, Iliyan Trayanov, Sofia Titorenkova, Stanislava S. Boyadzhieva, Svetla Danova, Paraskev Nedialkov and Hristo Najdenski
Pharmaceuticals 2025, 18(10), 1591; https://doi.org/10.3390/ph18101591 - 21 Oct 2025
Viewed by 412
Abstract
Objectives: Research on the antimicrobial effect of Hypericum plant constituents is very rarely accompanied by studies of the cytotoxic effect on cell lines. In the current study, besides microbiological tests, an investigation of the cytotoxicity of Hypericum active ingredients on five non-tumorigenic [...] Read more.
Objectives: Research on the antimicrobial effect of Hypericum plant constituents is very rarely accompanied by studies of the cytotoxic effect on cell lines. In the current study, besides microbiological tests, an investigation of the cytotoxicity of Hypericum active ingredients on five non-tumorigenic cell lines, as well as research into the effect on other factors of host homeostasis, was performed. Methods: The main methods applied included an MTT assay, the broth microdilution method (BMD), real-time PCR, live cell imaging with Hoechst dye, Western blot, an enzyme-linked immunosorbent assay (ELISA), and skin irritation test on rabbits. Results: The mean inhibitory concentrations (IC50) of six selected agents—previously phytochemically characterized extracts and compounds—ranged from 0.63 to 48 µg/mL. Due to their strong antimicrobial effect and favorable cytotoxic profile, the extract RochC from Hypericum rochelii and the compound olympiforin B from Hypericum olympicum were selected for subsequent studies at their previously determined minimum inhibitory concentrations (MICs) against Staphylococcus aureus—0.625 and 1 µg/mL, respectively. These doses were lower than their IC50 values and the maximum tolerated concentrations (MTCs), according to ISO 10993-5, Annex C, for fibroblast cells, including a human gingival line. The MIC values of RochC and Olympiforin B against the cariogenic Streptococcus mutans were 6 and 3 µg/mL, respectively, values lower than the IC50 values of the gingival cells. Olympiforin B inhibited the gene expression of the staphylococcal biofilm-related genes icaA and icaD, while RochC induced icaA and had a versatile effect on icaD. The MIC values for lactobacilli strains were higher than for S. aureus. The phytoconstituents did not cause cytopathic effects or apoptosis in CCL-1 fibroblasts at 2 × MIC. However, the agents at 1 × MIC significantly induced Atg5 and Atg7, proteins related to autophagy. Cytochrome P450 was not induced in liver cells, with the exception of a dose of 2 × MIC of RochC. The agents did not irritate rabbit skin in vivo at a dose of even 10 × MIC. Conclusions: The extract and compound have potential for further pharmacological development. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

16 pages, 2817 KB  
Article
Expression and Clinical Significance of Cytochrome 1B1 in Bone Sarcomas
by Belal Al-zu’bi, Fatemah OFO Alshammari, Randa AlQaisi, Jaber H. Jaradat, Marwan Herzallah, Mohannad Ja’Awin, Anas O. Satari, Yousef M. Al-saraireh and Mohammad Salem Hareedy
Pharmaceuticals 2025, 18(10), 1559; https://doi.org/10.3390/ph18101559 - 16 Oct 2025
Viewed by 614
Abstract
Background/Objectives: Cytochrome 1B1 (CYP1B1) is overexpressed in several cancers, contributing to carcinogenesis, cancer progression, and chemoresistance. Despite its known oncogenic role, its expression in bone sarcomas remains unknown. Methods: This study assessed CYP1B1 expression in osteosarcoma and chondrosarcoma using immunohistochemistry on tissue microarrays [...] Read more.
Background/Objectives: Cytochrome 1B1 (CYP1B1) is overexpressed in several cancers, contributing to carcinogenesis, cancer progression, and chemoresistance. Despite its known oncogenic role, its expression in bone sarcomas remains unknown. Methods: This study assessed CYP1B1 expression in osteosarcoma and chondrosarcoma using immunohistochemistry on tissue microarrays and analyzed corresponding transcriptomic profiles from public RNA-seq datasets. Associations with clinicopathological features, survival, drug sensitivity, and protein–protein interaction networks were also investigated. Results: CYP1B1 was overexpressed in 72.3% of bone sarcomas (78% of osteosarcomas and 82.1% of chondrosarcomas) and was significantly underexpressed in normal bone (12.5%, p < 0.001). Importantly, high CYP1B1 expression was found in younger patients (≤34 years; p = 0.013), but no other associations with tumor grade, size, or metastasis were observed. The mean survival rate of CYP1B1-positive patients was insignificantly shorter than that of negative patients (58.8 vs. 62.8 months; p = 0.170). Although not confirmed in the multivariate analysis, CYP1B1-positive patients had poorer survival in the univariate analysis, which may reflect tumor aggressiveness rather than prognostic value. Transcriptomic data showed significantly lower CYP1B1 mRNA in osteosarcoma versus normal bone, suggesting post-transcriptional or translational regulation. Drug sensitivity analysis revealed both positive and negative correlations between CYP1B1 expression and response to various compounds in the GDSC dataset, highlighting potential therapeutic implications. Conclusions: Despite low mRNA levels, CYP1B1 protein is consistently and selectively overexpressed in bone sarcomas, particularly in younger patients. While not prognostic, its expression profile warrants further investigation and evaluation as a therapeutic target or diagnostic biomarker, especially in refractory or advanced cases. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

14 pages, 2239 KB  
Article
DNA Barcoding and Analysis of Nutritional Properties as a Tool for Enhancing Traceability of Anchovies (Engraulis encrasicolus L.) Fished in the Italian Southern Adriatic Sea
by Maddalena de Virgilio, Domenico De Paola, Maria Selvaggi, Claudia Carbonara, Marco Ragni, Anna Caputi Jambrenghi, Francesco Giannico, Maria Antonietta Colonna and Simona Tarricone
Genes 2025, 16(10), 1219; https://doi.org/10.3390/genes16101219 - 15 Oct 2025
Viewed by 456
Abstract
Background: Anchovies (Engraulis encrasicolus L.) are a component of the Mediterranean diet and among the most fished species. Despite Italian consumers showing a strong preference and willingness to pay more for locally caught anchovies, cases of mislabeling with non-local or different species [...] Read more.
Background: Anchovies (Engraulis encrasicolus L.) are a component of the Mediterranean diet and among the most fished species. Despite Italian consumers showing a strong preference and willingness to pay more for locally caught anchovies, cases of mislabeling with non-local or different species have been documented. Molecular techniques like DNA barcoding offer reliable species identification, even in processed products, where morphological traits are no longer detectable. This pilot study applied a DNA barcoding technique targeting the mitochondrial cytochrome b gene to authenticate anchovies caught in the Italian Southern Adriatic Sea. Objectives: The study evaluated seasonal variations in the chemical and nutritional composition of anchovies, particularly the fatty acid profiles, highlighting their health benefits. Methods: During 2021, two fish samplings of anchovies were conducted per season from two fishing areas in Southern Adriatic Sea, one sample was used for mitochondrial DNA analyses, the other was used for morphometric measurements, physical, bromatological and chemical analyses. Results: Fish collected in summer showed higher total weight and edible yield relative to those fished in winter (p < 0.05). Anchovies fished in summer contained the highest concentration of proteins (p < 0.05) as compared to those caught during winter and autumn, while, in turn, they showed the highest amount of fat (p < 0.01). Fillets from anchovies fished during spring and summer contained a greater (p < 0.05) concentration of polyunsaturated fatty acids, and n-3 fatty acids than samples collected in autumn and winter. Conclusions: This study paves the way for further investigation to refine and validate the genetic identification and nutritional features of anchovies caught in the Italian Southern Adriatic Sea and marketed to consumers. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

20 pages, 4092 KB  
Article
Development and Application of a CAFLUX HepG2 Reporter Cell Line for Real-Time Monitoring of AhR-Mediated CYP1A1 Gene Expression in Response to Environmental Toxicants and Bioactive Modulators
by Huyen Thi La, Hanh Hong Hoang, Phuc Minh Thi Le, Linh Thuy Nguyen, Da Thi Nguyen, Van Hanh Nguyen, Tam Minh Thi Ha, Long Hoang Nguyen and Dat Tien Nguyen
Int. J. Mol. Sci. 2025, 26(20), 10029; https://doi.org/10.3390/ijms262010029 - 15 Oct 2025
Viewed by 445
Abstract
This study reports the construction and validation of a CAFLUX (Chemically Activated Fluorescent Expression) HepG2 reporter cell line engineered to express a histone H2B–green fluorescent protein (H2B–GFP) fusion protein under the control of a dioxin-responsive cytochrome P450 1A1 (CYP1A1) promoter. A lentiviral construct [...] Read more.
This study reports the construction and validation of a CAFLUX (Chemically Activated Fluorescent Expression) HepG2 reporter cell line engineered to express a histone H2B–green fluorescent protein (H2B–GFP) fusion protein under the control of a dioxin-responsive cytochrome P450 1A1 (CYP1A1) promoter. A lentiviral construct containing a synthetic promoter with multiple dioxin-responsive elements (DREs) upstream of the H2B–EGFP coding sequence was cloned into the pFUGW vector, packaged in human embryonic kidney (HEK) 293FT cells, and used to transduce HepG2 hepatocellular carcinoma cells. Stable clones obtained by limiting dilution were screened for GFP expression in response to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The resulting CAFLUX HepG2 cells exhibited dose-dependent nuclear GFP fluorescence when exposed to aryl hydrocarbon receptor (AhR) agonists, with limits of detection of approximately 0.01 pM for TCDD and 0.1 pM for benzo[a]pyrene (B[a]P), a polycyclic aromatic hydrocarbon (PAH). This reporter activity correlated with endogenous CYP1A1 mRNA expression as determined by quantitative polymerase chain reaction (qPCR), confirming that GFP signals reflected native transcriptional responses. In functional assays, curcumin suppressed GFP expression in a concentration-dependent manner and induced apoptotic morphology at higher doses, while extracellular vesicles (EVs) derived from adipose-derived stem cells (ADSCs) significantly reduced both GFP fluorescence and CYP1A1 mRNA levels, suggesting an inhibitory effect on AhR-driven transcription. The CAFLUX HepG2 reporter system therefore provides a sensitive and reproducible platform for real-time, nuclear-localized monitoring of AhR-mediated gene expression. Its responsiveness to both agonists and antagonists underscores its potential utility in toxicological evaluation, drug discovery, and the investigation of EV-mediated signaling in liver cancer models. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

16 pages, 986 KB  
Article
Control of Neopestalotiopsis zimbabwana Using Origanum vulgare L. Essential Oil: Combined In Vitro, In Vivo and In Silico Approaches
by Héctor Gómez-Yáñez, Ramón Marcos Soto-Hernández, Lucero del Mar Ruiz-Posadas, Guadalupe Valdovinos-Ponce, Irving Israel Ruiz-López, Cecilia Beatriz Peña-Valdivia and Guadalupe Mora-Báez
Horticulturae 2025, 11(10), 1232; https://doi.org/10.3390/horticulturae11101232 - 13 Oct 2025
Viewed by 572
Abstract
Neopestalotiopsis zimbabwana is an emerging phytopathogen with multiple hosts. Considering the environmental, toxicological, and resistance issues linked to synthetic fungicides, Origanum vulgare L. essential oil (OEO) was evaluated through in vitro, in vivo, and in silico approaches. The pathogen, isolated from [...] Read more.
Neopestalotiopsis zimbabwana is an emerging phytopathogen with multiple hosts. Considering the environmental, toxicological, and resistance issues linked to synthetic fungicides, Origanum vulgare L. essential oil (OEO) was evaluated through in vitro, in vivo, and in silico approaches. The pathogen, isolated from Watsonia borbonica L., was molecularly identified. Gas chromatography–mass spectrometry (GC–MS) analysis showed hexadecanoic acid (15.98%), dodecanoic acid (15.74%), terpinen-4-ol (11.61%), and thymol (7.65%) as the main components. In vitro assays determined a minimum inhibitory concentration (MIC) of 30% OEO and a minimal fungicidal concentration (MFC) of 60% OEO. Growth chamber trials demonstrated that preventive sprays maintained 0% foliar damage—similar to Captan®—while controls reached ≈98%; suspending applications after week 4 resulted in ≈45% damage by week 8. These results confirm that OEO lacks systemic residual activity, acting only as a protectant within preventive integrated pest management (IPM) schemes. Docking to cytochrome b (protein data bank, PDB: 5TL8) indicated strong binding of α-farnesene (−7.638 kcal·mol−1), isoterpinolene (−6.944), and α-terpineol (−6.918), suggesting disruption of mitochondrial respiration via Complex III. OEO represents a promising eco-friendly alternative for managing N. zimbabwana under controlled conditions and reducing reliance on synthetic fungicides. Full article
Show Figures

Figure 1

35 pages, 2444 KB  
Review
The Photosynthetic Complexes of Thylakoid Membranes of Photoautotrophs and a Quartet of Their Polar Lipids
by Anatoly Zhukov and Vadim Volkov
Int. J. Mol. Sci. 2025, 26(20), 9869; https://doi.org/10.3390/ijms26209869 - 10 Oct 2025
Viewed by 1008
Abstract
The important function of polar lipids in the biochemical chains of photosynthesis, the outstanding biochemical process on our planet, has been mentioned in many publications. Over the last several years, apart from the known function of lipids in creating a matrix for photosynthetic [...] Read more.
The important function of polar lipids in the biochemical chains of photosynthesis, the outstanding biochemical process on our planet, has been mentioned in many publications. Over the last several years, apart from the known function of lipids in creating a matrix for photosynthetic complexes, most attention has been paid to the role of lipids in building up and functioning of the photosynthetic complexes. The lipid molecules are found inside the complexes of photosystem II (PSII), photosystem I (PSI), and cytochrome b6f (Cyt b6f) together with other cofactors that accompany proteins and chlorophyll molecules. Super complexes PSII-light-harvesting complex II (PSII-LHCII) and PSI-light-harvesting complex I (PSI-LHCI) also include lipid molecules; part of the lipid molecules is located at the borders between the separate monomers of the complexes. Our interest is in the exact localization of lipid molecules inside the monomers: what are the protein subunits with the lipid molecules in between and how do the lipids contact directly with the amino acids of the proteins? The photosystems include very few classes of all the polar lipids, three groups of glyceroglycolipids, and one group of glycerophospholipids make up the quartet of polar lipids. What are the reasons they have been selected for the role? There are no doubts that the polar heads and the fatty acids chains of these lipids are taking part in the processes of photosynthesis. However, what are the distinct roles for each of them? The advantages and disadvantages of the head groups of lipids from thylakoid membranes and those lipids that for various reasons could not take their place are discussed. Attention is focused on those bound fatty acids that predominate or are characteristic for each class of thylakoid lipids. Emphasis is also placed on the content of each of the four lipids in all photosynthetic complexes, as well as on contacts of head groups and acyl chains of lipids with specific proteins, transmembrane chains, and their amino acids. This article is devoted to the search for answers to the questions posed. Full article
Show Figures

Figure 1

19 pages, 4771 KB  
Article
Comparative Analysis of the Tolerance of Young and Old Kidneys to Injury in a Rat Model of Reversible Ureteral Obstruction
by Polina A. Abramicheva, Ilya A. Sokolov, Vasily N. Manskikh, Nadezda V. Andrianova, Dmitry S. Semenovich, Ljubava D. Zorova, Irina B. Pevzner and Egor Y. Plotnikov
Antioxidants 2025, 14(10), 1219; https://doi.org/10.3390/antiox14101219 - 10 Oct 2025
Viewed by 902
Abstract
Obstructive nephropathy is a common clinical condition caused by urinary retention. After urine flow is restored, kidney function is recovered. However, the effectiveness of this process can be influenced by many factors, including the age of the patient. In this study, we analyzed [...] Read more.
Obstructive nephropathy is a common clinical condition caused by urinary retention. After urine flow is restored, kidney function is recovered. However, the effectiveness of this process can be influenced by many factors, including the age of the patient. In this study, we analyzed the following parameters in young and old rats subjected to a 3-day reversible unilateral ureteral obstruction (R-UUO): AKI severity, renal tissue proliferation and histology, inflammatory and fibrosis marker expression, as well as autophagosomal-lysosomal and mitochondrial function. Compared to old rats, young animals exhibited more pronounced renal tissue proliferation and higher expression of profibrotic markers (Col1a1, Fn1, Tgfb1, MMP2), but diminished expression of pro-inflammatory markers (Il1b, Tnfa, Cd32) in response to R-UUO. Additionally, young rats showed more pronounced activity of autophagy, as indicated by increased beclin-1 levels. R-UUO induced severe damage to the mitochondrial respiratory chain in old animals, as indicated by reduced complex I, IV, cytochrome c, VDAC protein levels, and impaired mitochondrial biogenesis (associated with decreased Pgc1a mRNA expression). Thus, we demonstrated that despite restored urine outflow, kidneys exhibited autophagy activation, inflammatory response, and mitochondrial dysfunction after R-UUO. Negative alterations in the kidney were age-dependent indicating necessity for therapeutic strategies optimization for patients of different ages. Full article
Show Figures

Figure 1

22 pages, 4769 KB  
Article
Interactions of Linalool and Linalyl Acetate with Selected Dog Cytochrome P450 (CYP) Proteins Identified by In Silico Drug Discovery Followed by Molecular Docking Analysis
by Raquel Rodrigues Soares-Santos, Arun Kumar Jaiswal, Renata Cristina Mendes Ferreira, Vasco Ariston de Carvalho Azevedo, Flávia Figueira Aburjaile and Benito Soto-Blanco
Pharmaceuticals 2025, 18(10), 1499; https://doi.org/10.3390/ph18101499 - 6 Oct 2025
Cited by 1 | Viewed by 619
Abstract
Background: Cytochrome P450 (CYP450) enzymes play a central role in the metabolism of xenobiotics, including plant-derived compounds such as terpenoids. Objectives: This study aimed to predict the molecular interactions of linalool (LIN) and linalyl acetate (LINAct), major constituents of lavender essential oil, [...] Read more.
Background: Cytochrome P450 (CYP450) enzymes play a central role in the metabolism of xenobiotics, including plant-derived compounds such as terpenoids. Objectives: This study aimed to predict the molecular interactions of linalool (LIN) and linalyl acetate (LINAct), major constituents of lavender essential oil, with the canine CYP2B11, CYP2C21, and CYP2D15 isoforms, using in silico approaches. Methods: Three-dimensional (3D) models of the target enzymes were generated through homology modeling using SWISS-MODEL and validated based on global model quality estimate (GMQE) and QMEAN Z-score metrics. Ligand structures were optimized in the Molecular Operating Environment (MOE), and pharmacophoric features were analyzed. Molecular docking simulations were performed using AutoDock Vina, followed by visualization of interactions in MOE. Results: LIN and LINAct exhibit favorable binding affinities with all three isoforms, suggesting their potential as substrates or modulators. Hydrogen bonding and hydrophobic interactions were the predominant forces stabilizing the ligand–enzyme complexes. Conclusions: These findings provide a computational basis for understanding the hepatic metabolism of LIN and LINAct in dogs, offering preliminary insights into the role of specific CYP isoforms in their biotransformation. Full article
Show Figures

Figure 1

Back to TopTop