Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (253)

Search Parameters:
Keywords = Cramér–Rao lower bounds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4921 KB  
Article
A Non-Reconstruction Multi-Coset Sampling-Based Algorithm for Frequency Estimation with FMCW Lidar
by Jianxin Gai, Bo Liu and Zhongle Gao
Electronics 2026, 15(1), 122; https://doi.org/10.3390/electronics15010122 - 26 Dec 2025
Viewed by 168
Abstract
Frequency-Modulated Continuous Wave (FMCW) lidar for long-distance measurements face challenges in signal acquisition and frequency estimation due to the high sampling rates required, leading to increased processing load, cost, and power consumption. Although sub-Nyquist sampling can alleviate the burden of high sampling rates, [...] Read more.
Frequency-Modulated Continuous Wave (FMCW) lidar for long-distance measurements face challenges in signal acquisition and frequency estimation due to the high sampling rates required, leading to increased processing load, cost, and power consumption. Although sub-Nyquist sampling can alleviate the burden of high sampling rates, it requires a complex reconstruction process that degrades real-time performance. In this study, we propose a frequency estimation algorithm based on multi-coset sampling (MCS) that not only reduces the sampling rate but also avoids reconstructing the original signal. This algorithm performs a preliminary frequency estimation by exploiting the relationship among the signal support set, the measured sequences by sampling spectrum, and the original signal spectrum, and then refines the spectrum to obtain an accurate frequency estimate. Since the algorithm relies solely on the sampled sequences for estimation, frequency ambiguity may occur during the calculation. We analyze the causes of ambiguity and propose a support set determination method to eliminate this issue. Simulation results demonstrate that the proposed algorithm attains the Cramér–Rao lower bound (CRLB) at low signal-to-noise ratios. It achieves a 10-fold improvement over Nyquist method and a 35 dB SNR reduction compared with the original MCS, while maintaining stable performance down to −20 dB. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

21 pages, 9487 KB  
Article
Low-Cost Real-Time Remote Sensing and Geolocation of Moving Targets via Monocular Bearing-Only Micro UAVs
by Peng Sun, Shiji Tong, Kaiyu Qin, Zhenbing Luo, Boxian Lin and Mengji Shi
Remote Sens. 2025, 17(23), 3836; https://doi.org/10.3390/rs17233836 - 27 Nov 2025
Viewed by 476
Abstract
Low-cost and real-time remote sensing of moving targets is increasingly required in civilian applications. Micro unmanned aerial vehicles (UAVs) provide a promising platform for such missions because of their small size and flexible deployment, but they are constrained by payload capacity and energy [...] Read more.
Low-cost and real-time remote sensing of moving targets is increasingly required in civilian applications. Micro unmanned aerial vehicles (UAVs) provide a promising platform for such missions because of their small size and flexible deployment, but they are constrained by payload capacity and energy budget. Consequently, they typically carry lightweight monocular cameras only. These cameras cannot directly measure distance and suffer from scale ambiguity, which makes accurate geolocation difficult. This paper tackles geolocation and short-term trajectory prediction of moving targets over uneven terrain using bearing-only measurements from a monocular camera. We present a two-stage estimation framework in which a pseudo-linear Kalman filter (PLKF) provides real-time state estimates, while a sliding-window nonlinear least-squares (NLS) back end refines them. Future target positions are obtained by extrapolating the estimated trajectory. To improve localization accuracy, we analyze the relationship between the UAV path and the Cramér–Rao lower bound (CRLB) using the Fisher Information Matrix (FIM) and derive an observability-enhanced trajectory planning method. Real-flight experiments validate the framework, showing that accurate geolocation can be achieved in real time using only low-cost monocular bearing measurements. Full article
Show Figures

Figure 1

21 pages, 991 KB  
Article
Hybrid Cramér-Rao Bound for Quantum Bayes Point Estimation with Nuisance Parameters
by Jianchao Zhang and Jun Suzuki
Entropy 2025, 27(12), 1184; https://doi.org/10.3390/e27121184 - 21 Nov 2025
Viewed by 415
Abstract
We develop a hybrid framework for quantum parameter estimation in the presence of nuisance parameters. In this scheme, the parameters of interest are treated as fixed non-random parameters while nuisance parameters are integrated out with respect to a prior (random parameters). Within this [...] Read more.
We develop a hybrid framework for quantum parameter estimation in the presence of nuisance parameters. In this scheme, the parameters of interest are treated as fixed non-random parameters while nuisance parameters are integrated out with respect to a prior (random parameters). Within this setting, we introduce the hybrid partial quantum Fisher information matrix (hpQFIM), defined by prior-averaging the nuisance block of the QFIM and taking a Schur complement, and derive a corresponding Cramér–Rao-type lower bound on the hybrid risk. We establish the structural properties of the hpQFIM, including inequalities that bracket it between computationally tractable approximations, as well as limiting behaviors under extreme priors. Operationally, the hybrid approach improves over pure point estimation since the optimal measurement for the parameters of interest depends only on the prior distribution of the nuisance, rather than on its unknown value. We illustrate the framework with analytically solvable qubit models and numerical examples, clarifying how partial prior information on nuisance variables can be systematically exploited in quantum metrology. Full article
(This article belongs to the Special Issue Quantum Measurements and Quantum Metrology)
Show Figures

Figure 1

10 pages, 514 KB  
Communication
Bayesian FDOA-Only Localization Under Correlated Measurement Noise: A Low-Complexity Gaussian Conditional-Based Approach
by Wenjun Zhang, Xi Li, Yi Liu, Le Yang and Fucheng Guo
Electronics 2025, 14(22), 4364; https://doi.org/10.3390/electronics14224364 - 7 Nov 2025
Viewed by 327
Abstract
This paper presents the Gaussian conditional method (GCM) for the problem of frequency difference of arrival (FDOA)-only source localization under correlated noise. GCM identifies the source position through approximating its posterior distribution using a Gaussian mixture model (GMM) and applying successive conditioning to [...] Read more.
This paper presents the Gaussian conditional method (GCM) for the problem of frequency difference of arrival (FDOA)-only source localization under correlated noise. GCM identifies the source position through approximating its posterior distribution using a Gaussian mixture model (GMM) and applying successive conditioning to the measurement likelihood. The algorithm development leverages the fact that FDOA measurements follow a multivariate Gaussian distribution with a non-diagonal covariance. Simulation results demonstrate that GCM can achieve the Cramér–Rao lower bound (CRLB) under moderate noise levels, while having lower computational complexity than baseline techniques including the recently developed Gaussian division method (GDM). The proposed algorithm is particularly effective for passively locating narrowband sources, where the time difference of arrival (TDOA) measurements become unreliable, and it can operate without the need for accurate initialization. Full article
Show Figures

Figure 1

28 pages, 879 KB  
Article
Performance Bounds of Ranging Precision in SPAD-Based dToF LiDAR
by Hao Wu, Yingyu Wang, Shiyi Sun, Lijie Zhao, Limin Tong, Linjie Shen and Jiang Zhu
Sensors 2025, 25(19), 6184; https://doi.org/10.3390/s25196184 - 6 Oct 2025
Viewed by 1167
Abstract
LiDAR with direct time-of-flight (dToF) technology based on single-photon avalanche diode detectors (SPADs) has been widely adopted in various applications. However, a comprehensive theoretical understanding of its fundamental ranging performance bounds—particularly the degradation caused by pile-up effects due to system dead time and [...] Read more.
LiDAR with direct time-of-flight (dToF) technology based on single-photon avalanche diode detectors (SPADs) has been widely adopted in various applications. However, a comprehensive theoretical understanding of its fundamental ranging performance bounds—particularly the degradation caused by pile-up effects due to system dead time and the potential benefits of photon-number-resolving detectors—remains incomplete and has not been systematically established in prior work. In this work, we present the first theoretical derivation of the Cramér–Rao lower bound (CRLB) for dToF systems explicitly accounting for dead time effects, generalize the analysis to SPADs with photon-number-resolving capabilities, and further validate the results through Monte Carlo simulations and maximum likelihood estimation. Our analysis reveals that pile-up not only reduces the information contained within individual ToF but also introduces a previously overlooked statistical coupling between distance and photon flux rate, further degrading ranging precision. The derived CRLB enables the determination of the optimal optical photon flux, laser pulse width (with FWHM of 0.56τ), and ToF quantization resolution that yield the best achievable ranging precision, showing that an optimal precision of approximately 0.53τ/N remains theoretically achievable, where τ is TDC resolution and N is the number of laser pulses. The analysis further quantifies the limited performance improvement enabled by increased photon-number resolution, which exhibits rapidly diminishing returns. Overall, these findings establish a unified theoretical framework for understanding the fundamental limits of SPAD-based dToF LiDAR, filling a gap left by earlier studies and providing concrete design guidelines for the selection of optimal operating points. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

20 pages, 952 KB  
Article
Noise-Robust-Based Clock Parameter Estimation and Low-Overhead Time Synchronization in Time-Sensitive Industrial Internet of Things
by Long Tang, Fangyan Li, Zichao Yu and Haiyong Zeng
Entropy 2025, 27(9), 927; https://doi.org/10.3390/e27090927 - 3 Sep 2025
Viewed by 835
Abstract
Time synchronization is critical for task-oriented and time-sensitive Industrial Internet of Things (IIoT) systems. Nevertheless, achieving high-precision synchronization with low communication overhead remains a key challenge due to the constrained resources of IIoT devices. In this paper, we propose a single-timestamp time synchronization [...] Read more.
Time synchronization is critical for task-oriented and time-sensitive Industrial Internet of Things (IIoT) systems. Nevertheless, achieving high-precision synchronization with low communication overhead remains a key challenge due to the constrained resources of IIoT devices. In this paper, we propose a single-timestamp time synchronization scheme that significantly reduces communication overhead by utilizing the mechanism of AP to periodically collect sensor device data. The reduced communication overhead alleviates network congestion, which is essential for achieving low end-to-end latency in synchronized IIoT networks. Furthermore, to mitigate the impact of random delay noise on clock parameter estimation, we propose a noise-robust-based Maximum Likelihood Estimation (NR-MLE) algorithm that jointly optimizes synchronization accuracy and resilience to random delays. Specifically, we decompose the collected timestamp matrix into two low-rank matrices and use gradient descent to minimize reconstruction error and regularization, approximating the true signal and removing noise. The denoised timestamp matrix is then used to jointly estimate clock skew and offset via MLE, with the corresponding Cramér–Rao Lower Bounds (CRLBs) being derived. The simulation results demonstrate that the NR-MLE algorithm achieves a higher clock parameter estimation accuracy than conventional MLE and exhibits strong robustness against increasing noise levels. Full article
Show Figures

Figure 1

20 pages, 1235 KB  
Article
Variable-Speed UAV Path Optimization Based on the CRLB Criterion for Passive Target Localization
by Lijia Chen, Chengfeng You, Yixin Wang and Xueting Li
Sensors 2025, 25(17), 5297; https://doi.org/10.3390/s25175297 - 26 Aug 2025
Cited by 1 | Viewed by 1149
Abstract
The performance of passive target localization is significantly influenced by the positions of unmanned aerial vehicle swarms (UAVs). In this paper, we investigate the problem of UAV path optimization to enhance the localization accuracy. Firstly, a passive target localization signal model based on [...] Read more.
The performance of passive target localization is significantly influenced by the positions of unmanned aerial vehicle swarms (UAVs). In this paper, we investigate the problem of UAV path optimization to enhance the localization accuracy. Firstly, a passive target localization signal model based on the time difference of arrival (TDOA) algorithm, which is then improved by the Chan method and Taylor series expansion, is established. Secondly, the Cramer–Rao lower bound (CRLB) of the modified TDOA algorithm is derived and adopted as the evaluation criterion to optimize the UAVs’ positions at each time step. Different from the existing works, in this paper, we consider the UAVs to have variable speed; therefore, the feasible region of the UAVs’ positions is changed from a circle into an annular region, which will extend the feasible region, enhancing the localization accuracy while increasing the computation complexity. Thirdly, to improve the efficiency of the UAV path optimization algorithm, the particle swarm optimization (PSO) algorithm is applied to search for the optimal positions of the UAVs for the next time step. Finally, numerical simulations are conducted to verify the validity and effectiveness of the proposals in this paper. Full article
(This article belongs to the Special Issue Radar Target Detection, Imaging and Recognition)
Show Figures

Figure 1

18 pages, 5926 KB  
Article
The Extremal Value Analysis of Sea Level in the Gulf of Cádiz and Alborán Sea: A New Methodology and the Resilience of Critical Infrastructures
by José J. Alonso del Rosario, Danping Yin, Juan M. Vidal Pérez, Daniel J. Coronil Huertas, Elizabeth Blázquez Gómez, Santiago Pavón Quintana, Juan J. Muñoz Pérez and Cristina Torrecillas
J. Mar. Sci. Eng. 2025, 13(8), 1567; https://doi.org/10.3390/jmse13081567 - 15 Aug 2025
Viewed by 1060
Abstract
Rising sea levels and increasing storm wave heights are two clear indicators of climate change affecting coastal environments worldwide. Coastal cities and infrastructure are particularly vulnerable to these hazards, highlighting the need for accurate predictions and effective adaptation and resilience strategies to protect [...] Read more.
Rising sea levels and increasing storm wave heights are two clear indicators of climate change affecting coastal environments worldwide. Coastal cities and infrastructure are particularly vulnerable to these hazards, highlighting the need for accurate predictions and effective adaptation and resilience strategies to protect human lives and economic activities. This study focuses on the Andalusia coast of southern Spain, from Cádiz to Almería, analyzing twelve years of sea level and wave height records using an Extreme Value Analysis. A key challenge lies in selecting the most suitable statistical distribution for long-term predictions. To address this, we propose a modified application of the Cramér–Rao Lower Bound and compare it with the Akaike Information Criteria and the Bayesian Information Criteria. Our results indicate that sea level extremes generally follow a Gumbel distribution, while wave height extremes align more closely with the Fisher–Tippett I distribution. Additionally, a high-resolution digital elevation model of the Navantia Puerto Real shipyard, generated with LiDAR scanning, was used to identify flood-prone areas and assess potential operational impacts. This approach allows for the development of practical recommendations for enhancing infrastructure resilience. The main contribution of this work includes the estimation of extreme regimes for sea level and wave stations, a novel and more efficient application of the Cramér–Rao Lower Bound, a comparative analysis with Bayesian criteria, and providing recommendations to improve the resilience of shipyard operations. Full article
(This article belongs to the Special Issue Sea Level Rise and Related Hazards Assessment)
Show Figures

Figure 1

27 pages, 1577 KB  
Article
Near-Field Channel Parameter Estimation and Localization for mmWave Massive MIMO-OFDM ISAC Systems via Tensor Analysis
by Lanxiang Jiang, Jingyi Guan, Jianhe Du, Wei Jiang and Yuan Cheng
Sensors 2025, 25(16), 5050; https://doi.org/10.3390/s25165050 - 14 Aug 2025
Viewed by 1555
Abstract
Integrated Sensing And Communication (ISAC) has been applied to the Internet of Things (IoT) network as a promising 6G technology due to its ability to enhance spectrum utilization and reduce resource consumption, making it ideal for high-precision sensing applications. However, while the introduction [...] Read more.
Integrated Sensing And Communication (ISAC) has been applied to the Internet of Things (IoT) network as a promising 6G technology due to its ability to enhance spectrum utilization and reduce resource consumption, making it ideal for high-precision sensing applications. However, while the introduction of millimeter Wave (mmWave) and massive Multiple-Input Multiple-Output (MIMO) technologies can enhance the performance of ISAC systems, they extend the near-field region, rendering traditional channel parameter estimation algorithms ineffective due to the spherical wavefront channel model. Aiming to address the challenge, we propose a tensor-based channel parameter estimation and localization algorithm for the near-field mmWave massive MIMO-Orthogonal Frequency Division Multiplexing (OFDM) ISAC systems. Firstly, the received signal at the User Terminal (UT) is constructed as a third-order tensor to retain the multi-dimensional features of the data. Then, the proposed tensor-based algorithm achieves the channel parameter estimation and target localization by exploiting the second-order Taylor expansion and intrinsic structure of tensor factor matrices. Furthermore, the Cramér–Rao Bounds (CRBs) of channel parameters and position are derived to establish the lower bound of errors. Simulation results show that the proposed tensor-based algorithm is superior compared to the existing algorithms in terms of channel parameter estimation and localization accuracy in ISAC systems for IoT network, achieving errors that approach the CRBs. Specifically, the proposed algorithm attains a 79.8% improvement in UT positioning accuracy compared to suboptimal methods at SNR = 5 dB. Full article
Show Figures

Figure 1

25 pages, 4682 KB  
Article
Visual Active SLAM Method Considering Measurement and State Uncertainty for Space Exploration
by Yao Zhao, Zhi Xiong, Jingqi Wang, Lin Zhang and Pascual Campoy
Aerospace 2025, 12(7), 642; https://doi.org/10.3390/aerospace12070642 - 20 Jul 2025
Viewed by 1233
Abstract
This paper presents a visual active SLAM method considering measurement and state uncertainty for space exploration in urban search and rescue environments. An uncertainty evaluation method based on the Fisher Information Matrix (FIM) is studied from the perspective of evaluating the localization uncertainty [...] Read more.
This paper presents a visual active SLAM method considering measurement and state uncertainty for space exploration in urban search and rescue environments. An uncertainty evaluation method based on the Fisher Information Matrix (FIM) is studied from the perspective of evaluating the localization uncertainty of SLAM systems. With the aid of the Fisher Information Matrix, the Cramér–Rao Lower Bound (CRLB) of the pose uncertainty in the stereo visual SLAM system is derived to describe the boundary of the pose uncertainty. Optimality criteria are introduced to quantitatively evaluate the localization uncertainty. The odometry information selection method and the local bundle adjustment information selection method based on Fisher Information are proposed to find out the measurements with low uncertainty for localization and mapping in the search and rescue process. By adopting the method above, the computing efficiency of the system is improved while the localization accuracy is equivalent to the classical ORB-SLAM2. Moreover, by the quantified uncertainty of local poses and map points, the generalized unary node and generalized unary edge are defined to improve the computational efficiency in computing local state uncertainty. In addition, an active loop closing planner considering local state uncertainty is proposed to make use of uncertainty in assisting the space exploration and decision-making of MAV, which is beneficial to the improvement of MAV localization performance in search and rescue environments. Simulations and field tests in different challenging scenarios are conducted to verify the effectiveness of the proposed method. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

14 pages, 845 KB  
Article
Cross-Path Planning of UAV Cluster Low-Altitude Flight Based on Inertial Navigation Combined with GPS Localization
by Xiancheng Yang, Ming Zhang, Peihui Yan, Qu Wang, Dongpeng Xie and Yuntian Brian Bai
Electronics 2025, 14(14), 2877; https://doi.org/10.3390/electronics14142877 - 18 Jul 2025
Cited by 1 | Viewed by 1012
Abstract
To address the challenges of complex low-altitude flight environments for UAVs, where numerous obstacles often lead to GPS signal obstruction and multipath effects, this study proposes an integrated inertial navigation and GPS positioning approach for coordinated cross-path planning in drone swarms. The methodology [...] Read more.
To address the challenges of complex low-altitude flight environments for UAVs, where numerous obstacles often lead to GPS signal obstruction and multipath effects, this study proposes an integrated inertial navigation and GPS positioning approach for coordinated cross-path planning in drone swarms. The methodology involves the following: (1) discretizing continuous 3D airspace into grid cells using occupancy grid mapping to construct an environmental model; (2) analyzing dynamic flight characteristics through attitude angle variations in a 3D Cartesian coordinate system; and (3) implementing collaborative state updates and global positioning through fused inertial–GPS navigation. By incorporating Cramér–Rao lower bound optimization, the system achieves effective cross-path planning for drone formations. Experimental results demonstrate a 98.35% mission success rate with inter-drone navigation time differences maintained below 0.5 s, confirming the method’s effectiveness in enabling synchronized swarm operations while maintaining safe distances during cooperative monitoring and low-altitude flight missions. This approach demonstrates significant advantages in coordinated cross-path planning for UAV clusters. Full article
Show Figures

Figure 1

24 pages, 538 KB  
Article
Bias-Reduced Localization for Drone Swarm Based on Sensor Selection
by Bo Wu, Bazhong Shen, Yonggan Zhang, Li Yang and Zhiguo Wang
Sensors 2025, 25(13), 4034; https://doi.org/10.3390/s25134034 - 28 Jun 2025
Cited by 1 | Viewed by 825
Abstract
To address the problem of accurate localization of high-speed drone swarm intrusions, this paper adopts time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements, aiming to improve the performance of estimating the motion state of drone swarms. To this end, [...] Read more.
To address the problem of accurate localization of high-speed drone swarm intrusions, this paper adopts time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements, aiming to improve the performance of estimating the motion state of drone swarms. To this end, a two-step strategy is proposed in this study. Firstly, a small number of sensor nodes with random locations are selected in the wireless sensor network, and the constraint-weighted least squares (CWLS) method is used to obtain the rough position and speed information of the drone swarm. Based on this rough information, the objective function of node optimization is constructed and solved using the randomized semidefinite program (SDP) algorithm proposed in this paper to screen out the sensor nodes with optimal localization performance. Secondly, the sensor nodes screened in the first step are used to re-localize the drone swarm, and the CWLS problem is constructed by combining the TDOA and FDOA measurements, and a deviation elimination scheme is proposed to further improve the localization accuracy of the drone swarm. Simulation results show that the randomized SDP algorithm proposed in this paper has the optimal localization effect, and moreover, the bias reduction scheme proposed in this paper can make the localization error of the drone swarm reach the Cramér–Rao Lower Bound (CRLB) with a low signal-to-noise ratio (SNR). Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

16 pages, 3812 KB  
Article
A Maximum Likelihood Estimation Method for Underwater Radiated Noise Power
by Guoqing Jiang, Mingyang Li, Zhuoran Liu, Linchuan Sun and Qingcui Wang
Appl. Sci. 2025, 15(12), 6692; https://doi.org/10.3390/app15126692 - 14 Jun 2025
Cited by 1 | Viewed by 709
Abstract
Underwater radiated noise power estimation is crucial for the quantitative assessment of noise levels emitted by ships and underwater vehicles. This paper therefore proposes a maximum likelihood estimation method for determining the power of underwater radiated noise. The method establishes the probability density [...] Read more.
Underwater radiated noise power estimation is crucial for the quantitative assessment of noise levels emitted by ships and underwater vehicles. This paper therefore proposes a maximum likelihood estimation method for determining the power of underwater radiated noise. The method establishes the probability density function of the hydrophones array received data and derives the minimum variance unbiased estimation of the power through theoretical analysis under the maximum likelihood criterion. Numerical simulations and experimental data demonstrate that this method can significantly reduce the influence of ambient noise on estimation results and improve the estimation accuracy under low signal-to-noise ratio conditions, outperforming commonly used beamforming-based estimation methods. In addition, the estimation variance achieves the Cramér–Rao lower bound, which is consistent with theoretical derivation. When the source position is unknown, this method can simultaneously localize the sound source and estimate its power by searching for the maximum value within a specified region. Full article
(This article belongs to the Section Marine Science and Engineering)
Show Figures

Figure 1

20 pages, 2178 KB  
Article
Moon Sensor Station to Improve the Performance of Lunar Satellite Navigation Systems
by Mauro Leonardi, Gheorghe Sirbu, Mattia Carosi, Cosimo Stallo and Carmine Di Lauro
Sensors 2025, 25(12), 3675; https://doi.org/10.3390/s25123675 - 12 Jun 2025
Viewed by 1025
Abstract
Today, Moon exploration is driven by the desire to expand the human presence beyond Earth and to use its resources. This requires the development of reliable navigation systems that can provide positioning information accurately and continuously on the lunar surface and orbits. Initiatives [...] Read more.
Today, Moon exploration is driven by the desire to expand the human presence beyond Earth and to use its resources. This requires the development of reliable navigation systems that can provide positioning information accurately and continuously on the lunar surface and orbits. Initiatives such as Moonlight (by ESA) and the Cislunar Autonomous Positioning System project (by NASA) are underway to address this challenge. The aim is to use ranging signals transmitted by satellites, similar to Earth’s GNSS, for lunar user positioning. This paper proposes a solution that involves local sensors deployed on the Moon surface to enhance the performance of the satellite system. These sensors can serve as differential reference stations, correcting satellite pseudorange measurements obtained by lunar surface receivers. The local sensor can also be used as a pseudolite, transmitting satellite-like signals to improve system availability and accuracy in obstructed areas. Additionally, the local sensor can act as an independent beacon that provides range and angle measurements. Higher navigation performance can be achieved by increasing the complexity of the system, depending on the implemented solution. This paper proposes and shows the concept, the intial design, and a preliminary definition of the protocol for the third solution. The three different solutions are compared in terms of position accuracy by exploiting the Cramér–Rao Lower-Bound formulation and Monte Carlo simulations. Finally, possible implementations for future use on the Moon are discussed. Full article
Show Figures

Figure 1

23 pages, 996 KB  
Article
3-D Moving Target Localization in Multistatic HFSWR: Efficient Algorithm and Performance Analysis
by Xun Zhang, Jun Geng, Yunlong Wang and Yijia Guo
Remote Sens. 2025, 17(11), 1938; https://doi.org/10.3390/rs17111938 - 3 Jun 2025
Viewed by 882
Abstract
High-frequency surface wave radar (HFSWR) is unable to measure the target’s altitude information due to its limited antenna aperture in the elevation dimension. This paper focuses on the 3-D localization problem for moving targets within the line of sight (LOS) in multistatic HFSWR. [...] Read more.
High-frequency surface wave radar (HFSWR) is unable to measure the target’s altitude information due to its limited antenna aperture in the elevation dimension. This paper focuses on the 3-D localization problem for moving targets within the line of sight (LOS) in multistatic HFSWR. For this purpose, the 1-D space angle (SA) measurement is introduced into multistatic HFSWR to perform 3-D joint localization together with bistatic range (BR) and bistatic range rate (BRR) measurements. The target’s velocity can also be estimated due to the inclusion of BRR. In multistatic HFSWR, commonly used azimuth measurements offer no information about the target’s altitude. Since SA is associated with the target’s 3-D coordinates, combining SA measurements from multiple receivers can effectively enhance localization accuracy, particularly in altitude estimation. In this paper, we develop a two-stage localization algorithm that first derives a weighted least-squares (WLS) coarse estimate and then performs an algebraic error reduction (ER) procedure to enhance accuracy. Both stages yield closed-form results, thus ensuring overall computational efficiency. Theoretical analysis shows that the proposed WLS-ER algorithm can asymptotically attain the Cramér–Rao lower bound (CRLB) as the measurement noise decreases. Simulation results demonstrate the effectiveness of the proposed WLS-ER algorithm and highlight the contribution of SA measurements to altitude estimation in multistatic HFSWR. Full article
Show Figures

Figure 1

Back to TopTop