Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = Cr-free catalysts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 5748 KiB  
Article
Theoretical Study of Ni- and Cu-Doped Molybdenum Ditelluride Electrocatalysts for Carbon Dioxide Reduction to Formic Acid and Carbon Monoxide
by Bin Zhao, Junyou Wang, Rui Wan and Zhongyao Li
Catalysts 2025, 15(4), 377; https://doi.org/10.3390/catal15040377 - 12 Apr 2025
Viewed by 648
Abstract
Under mild conditions, the effective conversion of carbon dioxide (CO2) into formic acid (HCOOH) and carbon monoxide (CO) represents a promising avenue for mitigating greenhouse gas emissions and addressing energy crises. In this work, we analyzed the electro-catalytic activities of six [...] Read more.
Under mild conditions, the effective conversion of carbon dioxide (CO2) into formic acid (HCOOH) and carbon monoxide (CO) represents a promising avenue for mitigating greenhouse gas emissions and addressing energy crises. In this work, we analyzed the electro-catalytic activities of six metals (Ti, Fe, Ni, Cu, Zn, and Cr) anchored on monolayer molybdenum telluride (TM@MoTe2) for the CO2 reduction reaction (CO2RR) from CO2 to HCOOH and CO. Compared to the reversible hydrogen electrode, the limiting potential for HCOOH production on Ni@MoTe2 is only about −0.38 V, and it is only about −0.20 V for the CO production on Cu@MoTe2. The limiting potential is concerned with the free energies of *OCHO and *COOH. Both the CO2RRs suppress the competing hydrogen evolution reaction (HER) and exhibit good selectivity for the desired reaction products. These features enable the efficient conversion of CO2 into HCOOH on Ni@MoTe2 or CO on Cu@MoTe2. Our calculations could provide valuable insights for the design and synthesis of high-performance catalysts based on MoTe2. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Graphical abstract

14 pages, 2081 KiB  
Article
Theoretical Investigation of Single-Atom Catalysts for Hydrogen Evolution Reaction Based on Two-Dimensional Tetragonal V2C2 and V3C3
by Bo Xue, Qingfeng Zeng, Shuyin Yu and Kehe Su
Materials 2025, 18(5), 931; https://doi.org/10.3390/ma18050931 - 20 Feb 2025
Viewed by 481
Abstract
Developing stable and effective catalysts for the hydrogen evolution reaction (HER) has been a long-standing pursuit. In this work, we propose a series of single-atom catalysts (SACs) by importing transition-metal atoms into the carbon and vanadium vacancies of tetragonal V2C2 [...] Read more.
Developing stable and effective catalysts for the hydrogen evolution reaction (HER) has been a long-standing pursuit. In this work, we propose a series of single-atom catalysts (SACs) by importing transition-metal atoms into the carbon and vanadium vacancies of tetragonal V2C2 and V3C3 slabs, where the transition-metal atoms refer to Ti, V, Cr, Mn, Fe, Co, Ni, and Cu. By means of first-principles computations, the possibility of applying these SACs in HER catalysis was investigated. All the SACs are conductive, which is favorable to charge transfer during HER. The Gibbs free energy change (ΔGH*) during hydrogen adsorption was adopted to assess their catalytic ability. For the V2C2-based SACs with V, Cr, Mn, Fe, Ni, and Cu located at the carbon vacancy, excellent HER catalytic performance was achieved, with a |ΔGH*| smaller than 0.2 eV. Among the V3C3-based SACs, apart from the SAC with Mn located at the carbon vacancy, all the SACs can act as outstanding HER catalysts. According to the ΔGH*, these excellent V2C2- and V3C3-based SACs are comparable to the best-known Pt-based HER catalysts. However, it should be noted that the V2C2 and V3C3 slabs have not been successfully synthesized in the laboratory, leading to a pure investigation without practical application in this work. Full article
(This article belongs to the Special Issue Advances in Multicomponent Catalytic Materials)
Show Figures

Figure 1

11 pages, 1686 KiB  
Article
Theoretical Investigation of Single-Atom Catalysts for Hydrogen Evolution Reaction Based on Two-Dimensional Tetragonal Mo3C2
by Bo Xue, Qingfeng Zeng, Shuyin Yu and Kehe Su
Materials 2024, 17(24), 6134; https://doi.org/10.3390/ma17246134 - 15 Dec 2024
Cited by 1 | Viewed by 828
Abstract
Developing highly efficient and cost-competitive electrocatalysts for the hydrogen evolution reaction (HER), which can be applied to hydrogen production by water splitting, is of great significance in the future of the zero-carbon economy. Here, by means of first-principles calculations, we have scrutinized the [...] Read more.
Developing highly efficient and cost-competitive electrocatalysts for the hydrogen evolution reaction (HER), which can be applied to hydrogen production by water splitting, is of great significance in the future of the zero-carbon economy. Here, by means of first-principles calculations, we have scrutinized the HER catalytic capacity of single-atom catalysts (SACs) by embedding transition-metal atoms in the C and Mo vacancies of a tetragonal Mo3C2 slab, where the transition-metal atoms refer to Ti, V, Cr, Mn, Fe, Co, Ni and Cu. All the Mo3C2-based SACs exhibit excellent electrical conductivity, which is favorable to charge transfer during HER. An effective descriptor, Gibbs free energy difference (ΔGH*) of hydrogen adsorption, is adopted to evaluate catalytic ability. Apart from SACs with Cr, Mn and Fe located at C vacancies, all the other SACs can act as excellent catalysts for HER. Full article
(This article belongs to the Special Issue Advances in Multicomponent Catalytic Materials)
Show Figures

Figure 1

14 pages, 3952 KiB  
Article
Investigating Layered Topological Magnetic Materials as Efficient Electrocatalysts for the Hydrogen Evolution Reaction under High Current Densities
by Sanju Gupta, Hanna Świątek, Mirosław Sawczak, Tomasz Klimczuk and Robert Bogdanowicz
Catalysts 2024, 14(10), 676; https://doi.org/10.3390/catal14100676 - 1 Oct 2024
Cited by 1 | Viewed by 1284
Abstract
Despite considerable progress, high-performing durable catalysts operating under large current densities (i.e., >1000 mA/cm2) are still lacking. To discover platinum group metal-free (PGM-free) electrocatalysts for sustainable energy, our research involves investigating layered topological magnetic materials (semiconducting ferromagnets) as highly efficient electrocatalysts [...] Read more.
Despite considerable progress, high-performing durable catalysts operating under large current densities (i.e., >1000 mA/cm2) are still lacking. To discover platinum group metal-free (PGM-free) electrocatalysts for sustainable energy, our research involves investigating layered topological magnetic materials (semiconducting ferromagnets) as highly efficient electrocatalysts for the hydrogen evolution reaction under high current densities and establishes the novel relations between structure and electrochemical property mechanisms. The materials of interest include transition metal trihalides, i.e., CrCl3, VCl3, and VI3, wherein a structural unit, the layered structure, is formed by Cr (or V) atoms sandwiched between two halides (Cl or I), forming a tri-layer. A few layers of quantum crystals were exfoliated (~50−60 nm), encapsulated with graphene, and electrocatalytic HER tests were conducted in acid (0.5M H2SO4) and alkaline (1M KOH) electrolytes. We find a reasonable HER activity evolved requiring overpotentials in a range of 30–50 mV under 10 mA cm−2 and 400−510 mV (0.5M H2SO4) and 280−500 mV (1M KOH) under −1000 mA cm−2. Likewise, the Tafel slopes range from 27 to 36 mV dec−1 (Volmer–Tafel) and 110 to 190 mV dec−1 (Volmer–Herovsky), implying that these mechanisms work at low and high current densities, respectively. Weak interlayer coupling, spontaneous surface oxidation, the presence of a semi-oxide subsurface (e.g., O–CrCl3), intrinsic Cl (or I) vacancy defects giving rise to in-gap states, electron redistribution (orbital hybridization) affecting the covalency, and sufficiently conductive support interaction lowering the charge transfer resistance endow the optimized adsorption/desorption strength of H* on active sites and favorable electrocatalytic properties. Such behavior is expedited for bi-/tri-layers while exemplifying the critical role of quantum nature electrocatalysts with defect sites for industrial-relevant conditions. Full article
(This article belongs to the Section Catalysis for Sustainable Energy)
Show Figures

Figure 1

10 pages, 2058 KiB  
Article
A WO3–CuCrO2 Tandem Photoelectrochemical Cell for Green Hydrogen Production under Simulated Sunlight
by Ana K. Díaz-García and Roberto Gómez
Molecules 2024, 29(18), 4462; https://doi.org/10.3390/molecules29184462 - 20 Sep 2024
Viewed by 1107
Abstract
The development of photoelectrochemical tandem cells for water splitting with electrodes entirely based on metal oxides is hindered by the scarcity of stable p-type oxides and the poor stability of oxides in strongly alkaline and, particularly, strongly acidic electrolytes. As a novelty in [...] Read more.
The development of photoelectrochemical tandem cells for water splitting with electrodes entirely based on metal oxides is hindered by the scarcity of stable p-type oxides and the poor stability of oxides in strongly alkaline and, particularly, strongly acidic electrolytes. As a novelty in the context of transition metal oxide photoelectrochemistry, a bias-free tandem cell driven by simulated sunlight and based on a CuCrO2 photocathode and a WO3 photoanode, both unprotected and free of co-catalysts, is demonstrated to split water while working with strongly acidic electrolytes. Importantly, the Faradaic efficiency for H2 evolution for the CuCrO2 electrode is found to be about 90%, among the highest for oxide photoelectrodes in the absence of co-catalysts. The tandem cell shows no apparent degradation in short-to-medium-term experiments. The prospects of using a practical cell based on this configuration are discussed, with an emphasis on the importance of modifying the materials for enhancing light absorption. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

13 pages, 3834 KiB  
Article
Upcycling of Cr-Containing Sulfate Waste into Efficient FeCrO3/Fe2O3 Catalysts for CO2 Hydrogenation Reaction
by Yongqi Liu, Shasha Chu, Yuebing Xu, Xinyu Chen, Hao Zhou, Jinlin Li, Yanjie Ren and Xintai Su
Materials 2024, 17(7), 1598; https://doi.org/10.3390/ma17071598 - 31 Mar 2024
Cited by 2 | Viewed by 1374
Abstract
Upcycling Cr-containing sulfate waste into catalysts for CO2 hydrogenation reaction benefits both pollution mitigation and economic sustainability. In this study, FeCrO3/Fe2O3 catalysts were successfully prepared by a simple hydrothermal method using Cr-containing sodium sulfate (Cr-SS) as a [...] Read more.
Upcycling Cr-containing sulfate waste into catalysts for CO2 hydrogenation reaction benefits both pollution mitigation and economic sustainability. In this study, FeCrO3/Fe2O3 catalysts were successfully prepared by a simple hydrothermal method using Cr-containing sodium sulfate (Cr-SS) as a Cr source for efficient conversion and stable treatment of Cr. The removal rate of Cr in Cr-SS can reach 99.9% at the optimized hydrothermal conditions. When the synthesized catalysts were activated and used for the CO2 hydrogenation reaction, a 50% increase in CO2 conversion was achieved compared with the catalyst prepared by impregnation with a comparable amount of Cr. According to the extraction and risk assessment code (RAC) of the Reference Office of the European Community Bureau (BCR), the synthesized FeCrO3/Fe2O3 is risk-free. This work not only realizes the detoxification of the Cr-SS but transfers Cr into stable FeCrO3 for application in a catalytic field, which provides a strategy for the harmless disposal and resource utilization of Cr-containing hazardous waste. Full article
Show Figures

Figure 1

12 pages, 4849 KiB  
Article
Construction of Single-Atom Catalysts for N, O Synergistic Coordination and Application to Electrocatalytic O2 Reduction
by Jin-Hang Liu, Huixiong Jiang, Bokai Liao, Xiaohua Cao, Langhua Yu and Xiudong Chen
Molecules 2023, 28(21), 7264; https://doi.org/10.3390/molecules28217264 - 25 Oct 2023
Cited by 1 | Viewed by 1889
Abstract
Replacing expensive platinum oxygen reduction reaction (ORR) catalysts with atomically dispersed single-atom catalysts is an effective way to improve the energy conversion efficiency of fuel cells. Herein, a series of single-atom catalysts, TM-N2O2Cx (TM=Sc-Zn) with TM-N2O [...] Read more.
Replacing expensive platinum oxygen reduction reaction (ORR) catalysts with atomically dispersed single-atom catalysts is an effective way to improve the energy conversion efficiency of fuel cells. Herein, a series of single-atom catalysts, TM-N2O2Cx (TM=Sc-Zn) with TM-N2O2 active units, were designed, and their catalytic performance for electrocatalytic O2 reduction was investigated based on density functional theory. The results show that TM-N2O2Cx exhibits excellent catalytic activity and stability in acidic media. The eight catalysts (TM=Sc, Ti, V, Cr, Mn, Fe, Co, and Ni) are all 4e reaction paths, among which Sc-N2O2Cx, Ti-N2O2Cx, and V-N2O2Cx follow dissociative mechanisms and the rest are consistent with associative mechanisms. In particular, Co-N2O2Cx and Ni-N2O2Cx enable a smooth reduction in O2 at small overpotentials (0.44 V and 0.49 V, respectively). Furthermore, a linear relationship between the adsorption free energies of the ORR oxygen-containing intermediates was evident, leading to the development of a volcano plot for the purpose of screening exceptional catalysts for ORR. This research will offer a novel strategy for the design and fabrication of exceptionally efficient non-precious metal catalysts on an atomic scale. Full article
(This article belongs to the Special Issue 2D Nanosheets and Their Nanohybrids)
Show Figures

Graphical abstract

20 pages, 3794 KiB  
Article
Circular Design and Functionalized Upcycling of Waste Commodity Polystyrene via C-H Activation Using Microwave-Assisted Multicomponent Synthesis
by Shegufta Shetranjiwalla, Claire Cislak and Kevin M. Scotland
Polymers 2023, 15(14), 3108; https://doi.org/10.3390/polym15143108 - 21 Jul 2023
Cited by 4 | Viewed by 2379
Abstract
The inefficient reuse and recycling of plastics—and the current surge of medical and take-out food packaging use during the pandemic—have exacerbated the environmental burden. This impels the development of alternative recycling/upcycling methods to pivot toward circularity. We report the use of the Mannich [...] Read more.
The inefficient reuse and recycling of plastics—and the current surge of medical and take-out food packaging use during the pandemic—have exacerbated the environmental burden. This impels the development of alternative recycling/upcycling methods to pivot toward circularity. We report the use of the Mannich three-component coupling reaction for the modification of polystyrene (PS) recovered with a 99.1% yield from waste food containers to form functionalized nitrogen and oxygen-rich PS derivatives. A series of functionalized PS with increasing moles of formaldehyde (F) and morpholine (M) (0.5 × 10−2, 1.0 × 10−2, and 2.0 × 10−2 mol) was achieved using a sol–gel-derived Fe-TiO2 catalyst in a solvent-free, microwave-assisted synthesis. Modified polymers were characterized with viscometry, 1H NMR, 13CNMR (DEPT) FTIR, XPS, UV, and TGA. Functionalization scaled with an increasing ratio, validating the 3CR approach. Further functionalization was constrained by a competing oxidative degradation; however, the varying hydrogen bond density due to nitrogen and oxygen-rich species at higher ratios was shown to compensate for molecular weight loss. The integration of the N-cyclic quaternary ammonium cations exhibited the potential of functionalized polymers for ion-exchange membrane applications. Full article
Show Figures

Graphical abstract

14 pages, 3273 KiB  
Article
Intercalated-Laurate-Enhanced Photocatalytic Activities of Ni/Cr-Layered Double Hydroxides
by Xuehua Zhang, Zili Jiang, Fengting Sun, Yuhan Chen, Changrong Shi, Zhanying Zhang, Guangren Qian and Xiuxiu Ruan
Catalysts 2023, 13(4), 698; https://doi.org/10.3390/catal13040698 - 4 Apr 2023
Cited by 1 | Viewed by 1860
Abstract
Laurate (LA)-intercalated nickel–chromium-layered double hydroxides (LDHs) were synthesized using the co-precipitation method and investigated as a potential photocatalyst for methylene orange (MO) degradation. For comparison, a series of LDHs with various molar ratios of Ni2+(or Mg2+)/Cr3+ [...] Read more.
Laurate (LA)-intercalated nickel–chromium-layered double hydroxides (LDHs) were synthesized using the co-precipitation method and investigated as a potential photocatalyst for methylene orange (MO) degradation. For comparison, a series of LDHs with various molar ratios of Ni2+(or Mg2+)/Cr3+(or Fe3+)/LA(or CO32−) were prepared. X−ray diffraction (XRD) and element analysis showed that Ni/Cr(2/1)−1.0 LA LDH had the most ordered crystal structure, and showed the same photocatalytic decolorization performance as Mg/Cr(2/1)−1.0LA LDH towards MO, which was significantly superior to Ni/Cr−CO3 LDH, Ni/Fe(2/1)−1.0LA LDH, and Ni/Cr−CO3 LDH with LA, and Cr3+ with LA. The photocatalytic removal rate of MO with the initial concentration of 100 mg/L by Ni/Cr(2/1)−1.0LA LDH (0.5 g/L) could be up to 80% with UV light irradiation for 3 h, which was almost twice higher than that of the sorption test. The photocatalytic reaction was in accordance with the pseudo-first-order kinetics, which implied that the catalytic process took place on the surface of the catalyst. All the results indicate the photodegradation of MO by Ni/Cr−LA LDHs was enhanced by the sorption of MO onto the intercalated LA in the interlayer. The free radical capture experiments suggest that the main role of the photocatalytic mechanism of Ni/Cr−LA LDHs could be the •O2 with high oxidation activity produced by the electron-hole pairs of LDH, as excited by UV light. Additionally, the •O2 further reacted with the adjacent MO molecule pre-sorbed on the intercalated LA. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Figure 1

28 pages, 5714 KiB  
Article
Quantification of the Microwave Effect in the Synthesis of 5-Hydroxymethylfurfural over Sulfonated MIL-101(Cr)
by Noor Aljammal, Jeroen Lauwaert, Bert Biesemans, Francis Verpoort, Philippe M. Heynderickx and Joris W. Thybaut
Catalysts 2023, 13(3), 622; https://doi.org/10.3390/catal13030622 - 20 Mar 2023
Cited by 4 | Viewed by 2896
Abstract
The potential benefits of microwave irradiation for fructose dehydration into 5 hydroxymethylfurfural (5-HMF) have been quantified over a sulfonated metal–organic framework (MOF), MIL 101(Cr)-SO3H. The effects of temperature (140–170 °C), batch time (5–300 min), and catalyst-to-substrate ratio (0.1–0.01 g/g) were systematically [...] Read more.
The potential benefits of microwave irradiation for fructose dehydration into 5 hydroxymethylfurfural (5-HMF) have been quantified over a sulfonated metal–organic framework (MOF), MIL 101(Cr)-SO3H. The effects of temperature (140–170 °C), batch time (5–300 min), and catalyst-to-substrate ratio (0.1–0.01 g/g) were systematically mapped. After 10 min of microwave (MW) irradiation at 140 °C in a DMSO–acetone reaction medium, practically complete fructose conversion was obtained with a 70% yield of 5-HMF. Without MW, i.e., using conventional heating (CH) at the same conditions, the fructose conversion was limited to 13% without any 5-HMF yield. Rather, 90 min of CH was required to reach a similarly high conversion and yield. The profound impact of moving from CH towards MW conditions on the reaction kinetics, also denoted as the microwave effect, has been quantified through kinetic modeling via a change in the Gibbs free energy of the transition state. The modeling results revealed an eight-fold rate coefficient enhancement for fructose dehydration owing to MW irradiation, while the temperature dependence of the various reaction steps almost completely disappeared in the investigated range of operating conditions. Full article
Show Figures

Graphical abstract

17 pages, 16134 KiB  
Article
Surface Modified CoCrFeNiMo High Entropy Alloys for Oxygen Evolution Reaction in Alkaline Seawater
by Zhibin Chen, Kang Huang, Tianyi Zhang, Jiuyang Xia, Junsheng Wu, Zequn Zhang and Bowei Zhang
Processes 2023, 11(1), 245; https://doi.org/10.3390/pr11010245 - 12 Jan 2023
Cited by 12 | Viewed by 3938
Abstract
Electrolysis of seawater is a promising technique to desalinate seawater and produce high-purity hydrogen production for freshwater and renewable energy, respectively. For the application of seawater electrolysis technique on a large scale, simplicity of manufacture method, repeatability of catalyst products, and stable product [...] Read more.
Electrolysis of seawater is a promising technique to desalinate seawater and produce high-purity hydrogen production for freshwater and renewable energy, respectively. For the application of seawater electrolysis technique on a large scale, simplicity of manufacture method, repeatability of catalyst products, and stable product quality is generally required in the industry. In this work, a facile, one-step, and metal salt-free fabrication method was developed for the seawater-oxygen-evolution-active catalysts composed of CoCrFeNiMo layered double hydroxide array self-supported on CoCrFeNiMo high entropy alloy substrate. The obtained catalysts show improved performance for oxygen evolution reaction in alkaline artificial seawater solution. The best-performing sample delivered the current densities of 10, 50, and 100 mA cm−2 at low overpotentials of 260.1, 294.3, and 308.4 mV, respectively. In addition, high stability is also achieved since no degradation was observed over the chronoamperometry test of 24 h at the overpotential corresponding to 100 mA cm−2. Furthermore, a failure mechanism OER activity of multi-element LDHs catalysts was put forward in order to enhance catalytic performance and design catalysts with long-term durability. Full article
(This article belongs to the Special Issue Design and Optimization of Clean Energy Systems)
Show Figures

Figure 1

24 pages, 7710 KiB  
Article
Construction of Bi-Enzyme Self-Assembly Clusters Based on SpyCatcher/SpyTag for the Efficient Biosynthesis of (R)-Ethyl 2-hydroxy-4-phenylbutyrate
by Jinmei Wang, Yuan Lu, Pengpeng Cheng, Chuyue Zhang, Lan Tang, Lihua Du, Jinghua Li and Zhimin Ou
Biomolecules 2023, 13(1), 91; https://doi.org/10.3390/biom13010091 - 1 Jan 2023
Cited by 6 | Viewed by 3146
Abstract
Cascade reactions catalyzed by multi-enzyme systems are important in science and industry and can be used to synthesize drugs and nutrients. In this study, two types of macromolecules of bi-enzyme self-assembly clusters (BESCs) consisting of carbonyl reductase (CpCR) and glucose dehydrogenase (GDH) were [...] Read more.
Cascade reactions catalyzed by multi-enzyme systems are important in science and industry and can be used to synthesize drugs and nutrients. In this study, two types of macromolecules of bi-enzyme self-assembly clusters (BESCs) consisting of carbonyl reductase (CpCR) and glucose dehydrogenase (GDH) were examined. Stereoselective CpCR and GDH were successfully fused with SpyCatcher and SpyTag, respectively, to obtain four enzyme modules, namely: SpyCatcher-CpCR, SpyCatcher-GDH, SpyTag-CpCR, and SpyTag-GDH, which were covalently coupled in vitro to form two types of hydrogel-like BESCs: CpCR-SpyCatcher-SpyTag-GDH and GDH-SpyCatcher-SpyTag-CpCR. CpCR-SpyCatcher-SpyTag-GDH showed a better activity and efficiently converted ethyl 2-oxo-4-phenylbutyrate (OPBE) to ethyl(R)2-hydroxy-4-phenylbutanoate ((R)-HPBE), while regenerating NADPH. At 30 °C and pH 7, the conversion rate of OPBE with CpCR-SpyCatcher-SpyTag-GDH as a catalyst reached 99.9%, with the ee% of (R)-HPBE reaching above 99.9%. This conversion rate was 2.4 times higher than that obtained with the free bi-enzyme. The pH tolerance and temperature stability of the BESCs were also improved compared with those of the free enzymes. In conclusion, bi-enzyme assemblies were docked using SpyCatcher/SpyTag to produce BESCs with a special structure and excellent catalytic activity, improving the catalytic efficiency of the enzyme. Full article
(This article belongs to the Topic Advances in Enzymes and Protein Engineering)
Show Figures

Figure 1

17 pages, 7282 KiB  
Article
Efficient Degradation of Congo Red in Water by UV-Vis Driven CoMoO4/PDS Photo-Fenton System
by Huimin Zhou, Yang Qiu, Chuanxi Yang, Jinqiu Zang, Zihan Song, Tingzheng Yang, Jinzhi Li, Yuqi Fan, Feng Dang and Weiliang Wang
Molecules 2022, 27(24), 8642; https://doi.org/10.3390/molecules27248642 - 7 Dec 2022
Cited by 20 | Viewed by 3290
Abstract
In order to improve the catalytic activity of cobalt molybdate (CoMoO4), a PDS-activated and UV-vis assisted system was constructed. CoMoO4 was prepared by coprecipitation and calcination, and characterized by XRD, FTIR, Raman, SEM, TEM, XPS, TGA Zeta potential, BET, and [...] Read more.
In order to improve the catalytic activity of cobalt molybdate (CoMoO4), a PDS-activated and UV-vis assisted system was constructed. CoMoO4 was prepared by coprecipitation and calcination, and characterized by XRD, FTIR, Raman, SEM, TEM, XPS, TGA Zeta potential, BET, and UV-Vis DRS. The results showed that the morphology of the CoMoO4 nanolumps consisted of stacked nanosheets. XRD indicated the monoclinic structures with C2/m (C32h, #12) space group, which belong to α-CoMoO4, and both Co2+ and Mo6+ ions occupy distorted octahedral sites. The pH of the isoelectric point (pHIEP) of CMO-8 at pH = 4.88 and the band gap of CoMoO4 was 1.92 eV. The catalytic activity of CoMoO4 was evaluated by photo-Fenton degradation of Congo red (CR). The catalytic performance was affected by calcination temperature, catalyst dosage, PDS dosage, and pH. Under the best conditions (0.8 g/L CMO-8, PDS 1 mL), the degradation efficiency of CR was 96.972%. The excellent catalytic activity of CoMoO4 was attributed to the synergistic effect of photo catalysis and CoMoO4-activated PDS degradation. The capture experiments and the ESR showed that superoxide radical (·O2), singlet oxygen (1O2), hole (h+), sulfate (SO4·), and hydroxyl (·OH) were the main free radicals leading to the degradation of CR. The results can provide valuable information and support for the design and application of high-efficiency transition metal oxide catalysts. Full article
(This article belongs to the Special Issue Recent Advances in Photocatalysts)
Show Figures

Figure 1

19 pages, 8368 KiB  
Article
Core-Shell Hierarchical Fe/Cu Bimetallic Fenton Catalyst with Improved Adsorption and Catalytic Performance for Congo Red Degradation
by Haimei Chen, Shaofei Wang, Lilan Huang, Leitao Zhang, Jin Han, Wanzheng Ren, Jian Pan and Jiao Li
Catalysts 2022, 12(11), 1363; https://doi.org/10.3390/catal12111363 - 4 Nov 2022
Cited by 9 | Viewed by 2499
Abstract
The preparation of heterogeneous Fenton catalysts with both adsorption and catalytic properties has become an effective strategy for the treatment of refractory organic wastewater. In this work, 4A-Fe@Cu bimetallic Fenton catalysts with a three-dimensional core-shell structure were prepared by a simple, template-free, and [...] Read more.
The preparation of heterogeneous Fenton catalysts with both adsorption and catalytic properties has become an effective strategy for the treatment of refractory organic wastewater. In this work, 4A-Fe@Cu bimetallic Fenton catalysts with a three-dimensional core-shell structure were prepared by a simple, template-free, and surfactant-free methodology and used in the adsorption and degradation of Congo red (CR). The results showed that the open three-dimensional network structure and the positive charge of the surface of the 4A-Fe@Cu catalyst could endow a high adsorption capacity for CR, reaching 432.9 mg/g. The good adsorption property of 4A-Fe@Cu for CR not only did not inactivate the catalytic site on 4A-Fe@Cu but also could promote the contact between CR and the active sites on the catalyst surface and accelerate the degradation process. The 4A-Fe@Cu bimetallic catalyst exhibited higher catalytic activity than monometallic 4A@Cu and/or 4A-Fe catalysts due to low work function value. The effects of different pH, H2O2 dosages, and catalyst dosages on the catalytic performance of 4A-Fe@Cu were explored. In the conditions of 7.2 mM H2O2, 2 g/L 4A-Fe@Cu, and 1 g/L CR solution, the degradation ratio of CR by 4A-Fe@Cu could reach 99.2% at pH 8. This strategy provided guidance to the design of high-performance Fenton-like catalysts with both adsorption and catalysis properties for dye wastewater treatment. Full article
Show Figures

Figure 1

16 pages, 3278 KiB  
Article
Homogenous Cr and C Doped 3D Self-Supporting NiO Cellular Nanospheres for Hydrogen Evolution Reaction
by Zhaojun Tan, Chuanbin Li, Lijun Wang, Mingjie Kang, Wen Wang, Mingqi Tang, Gang Li, Zaiqiang Feng and Zhenwei Yan
Materials 2022, 15(20), 7120; https://doi.org/10.3390/ma15207120 - 13 Oct 2022
Cited by 3 | Viewed by 2018
Abstract
Hydrogen evolution reaction (HER) is one promising technique to obtain high-purity hydrogen, therefore, exploiting inexpensive and high-efficiency HER electrocatalysts is a matter of cardinal significance under the background of achieving carbon neutrality. In this paper, a hydrothermal method was used to prepare the [...] Read more.
Hydrogen evolution reaction (HER) is one promising technique to obtain high-purity hydrogen, therefore, exploiting inexpensive and high-efficiency HER electrocatalysts is a matter of cardinal significance under the background of achieving carbon neutrality. In this paper, a hydrothermal method was used to prepare the Cr-NiC2O4/NF (Ni foam) precursor. Then, the NiO-Cr-C/NF self-supporting HER catalyst was obtained by heating the precursor at 400 °C. The catalyst presents a 3D cellular nanospheres structure which was composed of 2D nanosheets. Microstructure characterization shows that Cr and C elements were successfully doped into NiO. The results of electrochemical measurements and density functional theory (DFT) calculations show that under the synergy of Cr and C, the conductivity of NiO was improved, and the Gibbs free energy of H* (∆GH*) value is optimized. As a result, in 1.0 M KOH solution the NiO-Cr-C/NF-3 (Ni:Cr = 7:3) HER catalyst exhibits an overpotential of 69 mV and a Tafel slope of 45 mV/dec when the current density is 10 mA·cm−2. Besides, after 20 h of chronopotentiometry, the catalytic activity is basically unchanged. It is demonstrated that C and Cr co-doping on the lattice of NiO prepared by a simple hydrothermal method and subsequent heat treatment to improve the catalytic activity and stability of the non-precious metal HER catalysts in an alkaline medium is facile and efficient. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

Back to TopTop