Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (232)

Search Parameters:
Keywords = Colletotrichum fungi

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3287 KiB  
Review
Endophytic Species of the Genus Colletotrichum as a Source of Bioactive Metabolites: A Review of Their Biotechnological Potential
by Manuela Vitoria Nascimento da Silva, Andrei da Silva Alexandre and Cecilia Veronica Nunez
Microorganisms 2025, 13(8), 1826; https://doi.org/10.3390/microorganisms13081826 - 5 Aug 2025
Abstract
The genus Colletotrichum is widely known for its phytopathological significance, especially as the causative agent of anthracnose in diverse agricultural crops. However, recent studies have unveiled its ecological versatility and biotechnological potential, particularly among endophytic species. These fungi, which asymptomatically colonize plant tissues, [...] Read more.
The genus Colletotrichum is widely known for its phytopathological significance, especially as the causative agent of anthracnose in diverse agricultural crops. However, recent studies have unveiled its ecological versatility and biotechnological potential, particularly among endophytic species. These fungi, which asymptomatically colonize plant tissues, stand out as high-yielding producers of bioactive secondary metabolites. Given their scientific and economic relevance, this review critically examines endophytic Colletotrichum species, focusing on the chemical diversity and biological activities of the metabolites they produce, including antibacterial, antifungal, and cytotoxic activity against cancer cells, and antioxidant properties. This integrative review was conducted through a structured search of scientific databases, from which 39 relevant studies were selected, highlighting the chemical and functional diversity of these compounds. The analyzed literature emphasizes their potential applications in pharmaceutical, agricultural, and industrial sectors. Collectively, these findings reinforce the promising biotechnological potential of Colletotrichum endophytes not only as sources of bioactive metabolites but also as agents involved in ecological regulation, plant health promotion, and sustainable production systems. Full article
(This article belongs to the Special Issue Endophytic Fungus as Producers of New and/or Bioactive Substances)
Show Figures

Figure 1

23 pages, 12392 KiB  
Article
Identification, Characterization, Pathogenicity, and Fungicide Sensitivity of Postharvest Fungal Diseases in Culinary Melon from Northern Thailand
by Nakarin Suwannarach, Karnthida Wongsa, Chanokned Senwanna, Wipornpan Nuangmek and Jaturong Kumla
J. Fungi 2025, 11(7), 540; https://doi.org/10.3390/jof11070540 - 19 Jul 2025
Viewed by 564
Abstract
Culinary melon (Cucumis melo subsp. agrestis var. conomon) is widely cultivated throughout Thailand and represents an important agricultural crop. During 2023–2024, anthracnose, charcoal rot, and fruit rot caused by fungi were observed on postharvest culinary melon fruits in northern Thailand. This [...] Read more.
Culinary melon (Cucumis melo subsp. agrestis var. conomon) is widely cultivated throughout Thailand and represents an important agricultural crop. During 2023–2024, anthracnose, charcoal rot, and fruit rot caused by fungi were observed on postharvest culinary melon fruits in northern Thailand. This study aimed to isolate and identify fungal pathogens associated with these postharvest diseases in culinary melons, as well as to assess their pathogenicity. Eight fungal strains were isolated and identified through morphological characterization and multi-gene phylogenetic analysis. Colletotrichum chlorophyti and C. siamense were identified as the causal agents of anthracnose, Fusarium sulawesiense caused fruit rot, and Macrophomina phaseolina was responsible for charcoal rot. Pathogenicity tests were conducted, and the fungi were successfully re-isolated from the symptomatic lesions. Moreover, sensitivity tests for fungicides revealed that C. siamense was completely inhibited by copper oxychloride and copper hydroxide. Colletotrichum chlorophyti was inhibited by benalaxyl-M + mancozeb, copper hydroxide, and mancozeb. In the case of M. phaseolina, complete inhibition was observed with the use of benalaxyl-M + mancozeb, mancozeb, and propineb. Copper hydroxide successfully inhibited F. sulawesiense completely. To our knowledge, this study is the first to report C. siamense and C. chlorophyti as causes of anthracnose, F. sulawesiense as a cause of fruit rot, and M. phaseolina as a cause of charcoal rot in postharvest culinary melon fruits in Thailand. It also marks the first global report of C. siamense, M. phaseolina, and F. sulawesiense as causal agents of these respective diseases in culinary melon. Furthermore, the results of the fungicide sensitivity tests provide valuable information for developing effective management strategies to control these postharvest diseases in the future. Full article
Show Figures

Figure 1

14 pages, 1796 KiB  
Article
In Vitro Efficacy of Thymbra capitata (L.) Cav. Essential Oil Against Olive Phytopathogenic Fungi
by Gabriele Simone, Margherita Campo, Silvia Urciuoli, Lorenzo Moncini, Maider Giorgini, Francesca Ieri and Pamela Vignolini
Microorganisms 2025, 13(7), 1503; https://doi.org/10.3390/microorganisms13071503 - 27 Jun 2025
Viewed by 385
Abstract
In recent years, the excessive use of pesticides has raised environmental and health concerns, which has led to research into natural alternatives. Essential oils may represent a sustainable solution to this problem. In this study, essential oils from Thymbra capitata (L.) Cav., Eucalyptus [...] Read more.
In recent years, the excessive use of pesticides has raised environmental and health concerns, which has led to research into natural alternatives. Essential oils may represent a sustainable solution to this problem. In this study, essential oils from Thymbra capitata (L.) Cav., Eucalyptus globulus Labill, and Mentha piperita L. were analyzed by GC–MS and tested in vitro using the poisoned food technique against six olive pathogen fungi: Alternaria sp., Arthrinium marii, Colletotrichum acutatum, Fomitiporia mediterranea, Fusarium solani, and Verticillium dahliae. T. capitata essential oil (0.1 g/L) showed the highest antifungal activity when compared to E. globulus and M. piperita essential oils, which exhibited significantly lower efficacy against the tested olive phytopathogenic fungi. GC–MS analysis revealed that carvacrol is the main compound (76.1%) in T. capitata essential oil. A comparison of the inhibitory effect of T. capitata essential oil (0.1 g/L) and carvacrol (0.07 g/L) on selected fungal strains showed similar results, with carvacrol slightly more effective, although the differences were mostly statistically insignificant, except for C. acutatum. To the authors knowledge, this is the first study demonstrating the inhibitory effect of Thymbra capitata essential oil against A. marii and F. mediterranea. The results of this study represent a basis for the development of new biochemical biopesticides based on T. capitata essential oil as a useful tool for the contrast of some fungal olive tree diseases. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

21 pages, 3945 KiB  
Article
Microbial Community Composition Associated with Potato Plants Displaying Early Dying Syndrome
by Tudor Borza, Rhea Amor Lumactud, So Yeon Shim, Khalil Al-Mughrabi and Balakrishnan Prithiviraj
Microorganisms 2025, 13(7), 1482; https://doi.org/10.3390/microorganisms13071482 - 26 Jun 2025
Viewed by 386
Abstract
Potato early dying disease complex (PED) leads to premature senescence and rapid decline in potato plants. Unlike potato wilt caused solely by Verticillium species, PED symptoms are more severe due to the synergistic effects of multiple pathogens, including root-lesion nematodes, fungi such as [...] Read more.
Potato early dying disease complex (PED) leads to premature senescence and rapid decline in potato plants. Unlike potato wilt caused solely by Verticillium species, PED symptoms are more severe due to the synergistic effects of multiple pathogens, including root-lesion nematodes, fungi such as Colletotrichum and Fusarium, and soft-rot bacteria. To investigate the microbiome responsible for PED, soil and stem samples from healthy-looking and symptomatic plants were analyzed using amplicon-targeted next-generation sequencing (Illumina MiSeq and PacBio technologies). Samples were collected from four locations in New Brunswick, Canada from fields previously rotated with barley or oat. Comparative analysis of the bacterial, fungal, and eukaryotic diversity in soil samples showed minimal differences, with only bacterial alpha diversity influenced by the plant health status. Verticillium dahliae was abundant in all soil samples, and its abundance was significantly higher in the stems of diseased plants. Additional fungal species implicated in PED, including Plectosphaerella cucumerina, Colletotrichum coccodes, Botrytis sp., and Alternaria alternata, were also identified in the stems. This study highlights the complex, plant-associated microbial interactions underlying PED and provides a foundation for microbiome-informed disease management strategies. Full article
Show Figures

Figure 1

18 pages, 3842 KiB  
Article
Systematic Investigations of the Huperzine A—Producing Endophytic Fungi of Huperzia serrata in China and Fermentation Optimization Using OSMAC Strategy
by Wei Li, Zhicheng Wang, Qiuyu Zhu and Pingfang Tian
Molecules 2025, 30(13), 2704; https://doi.org/10.3390/molecules30132704 - 23 Jun 2025
Viewed by 440
Abstract
Huperzine A (HupA) can alleviate Alzheimer’s disease due to its reversible inhibition of acetylcholinesterase (AChE). The chemical synthesis and plant extraction of HupA is plagued by route complexity and resource scarcity, respectively. Although some endophytic fungi from Huperzia serrata can independently biosynthesize HupA, [...] Read more.
Huperzine A (HupA) can alleviate Alzheimer’s disease due to its reversible inhibition of acetylcholinesterase (AChE). The chemical synthesis and plant extraction of HupA is plagued by route complexity and resource scarcity, respectively. Although some endophytic fungi from Huperzia serrata can independently biosynthesize HupA, their yields are trivial. After a comprehensive investigation of HupA-producing H. serrata across China, we focused on the endophytic fungi from Hunan and Hubei provinces, which demonstrated high-level HupA. Morphological characteristics and internal transcriptional sequence (ITS) analysis revealed their diversity. Among the four HupA-producing endophytic fungi, Colletotrichum kahawae is the best-performing and was thus subjected to fermentation optimization. When its fermentation medium was supplemented with H. serrata flavonoids daidzein and apigenin, HupA yields reached 58.38 μg/g (dry cell weight, dcw) and 72.21 μg/g dcw, respectively. In contrast, the addition of L-lysine and H. serrata extracts led to yields of 50.17 μg/g dcw and 255.32 μg/g dcw, respectively. Transcriptomic analysis revealed that H. serrata extracts substantially upregulated the expression of HupA biosynthesis genes in C. kahawae. Overall, H. serrata extracts outperformed L-lysine, daidzein, and apigenin in boosting HupA production, as they encompass all the necessary nutrients for C. kahawae growth. This study not only connotes a nutritional exchange between H. serrata and C. kahawae during long-term coevolution but also offers insights for harnessing plant extracts for the overproduction of desired metabolites in endophytic fungi. Full article
(This article belongs to the Special Issue Bioproducts for Health III)
Show Figures

Figure 1

13 pages, 2585 KiB  
Article
Chitosan Combined with Methanolic Plants Extracts: Antifungal Activity, Phytotoxicity and Acute Toxicity
by Sofía de Gante-de la Maza, Maribel Plascencia-Jatomea, Mario Onofre Cortez-Rocha, Reyna Isabel Sánchez-Mariñez, Salvador Enrique Meneses-Sagrero, Alma Carolina Gálvez-Iriqui and Ana Karenth López-Meneses
Polysaccharides 2025, 6(2), 52; https://doi.org/10.3390/polysaccharides6020052 - 18 Jun 2025
Viewed by 1916
Abstract
Anthracnose is a disease caused by phytopathogenic fungi such as Colletotrichum siamense that attacks plants and fruits causing great postharvest losses. Different alternatives for the control of this fungus have been studied. In the present study, we evaluated the in vitro antifungal activity [...] Read more.
Anthracnose is a disease caused by phytopathogenic fungi such as Colletotrichum siamense that attacks plants and fruits causing great postharvest losses. Different alternatives for the control of this fungus have been studied. In the present study, we evaluated the in vitro antifungal activity of the methanolic extracts of Baccharis glutinosa (ExB) and Jacquinia macrocarpa (ExJ) individually, as well as in combination with chitosan (CS), along with their toxicity in different models. Using the radial growth technique, it was observed that the mycelial development of C. siamense was altered and reduced during exposure to the different treatments evaluated during the first hours of incubation, indicating a fungistatic effect. While the cell viability, by colorimetric assay using the XTT salt, showed alteration since the chitosan reduced proliferation by 50%, while the plant extracts and their mixtures with chitosan reduced approximately 40% indicating cell damage, which was confirmed by fluorescence microscopy. In addition, toxicity tests demonstrated that the J. macrocarpa extract significantly affected the germination percentage of Lactuca sativa seeds, whereas radicle length was reduced in all treatments except for chitosan. The larval survival test for Artemia salina with the extracts indicated their potential toxicity by causing up to 60% mortality. The results indicate that ExB and ExJ mixed with CS are a good option for controlling C. siamense; however, at the concentrations used, they exhibit a toxic effect on the evaluated models. Full article
Show Figures

Figure 1

16 pages, 472 KiB  
Article
Evaluation of the Biodegradation Potential of Phytopathogenic Fungi in Sugar Cane (Saccharum officinarum) Waste from the Rural Sector of Milagro, Ecuador
by Sandra Campuzano-Rodríguez, Fabricio Guevara-Viejó, Arturo Guevara-Sandoya, Juan Diego Valenzuela-Cobos and Claudia Pozzi Jantalia
Appl. Sci. 2025, 15(12), 6621; https://doi.org/10.3390/app15126621 - 12 Jun 2025
Viewed by 353
Abstract
In Ecuador, sugarcane (Saccharum officinarum) is a grass of great socioeconomic impact due to the employment rate involved in its cultivation and its use as a raw material for obtaining sugar and other derivatives. The industrial processing of the usable sugarcane [...] Read more.
In Ecuador, sugarcane (Saccharum officinarum) is a grass of great socioeconomic impact due to the employment rate involved in its cultivation and its use as a raw material for obtaining sugar and other derivatives. The industrial processing of the usable sugarcane material generates an excessive amount of waste, including leaves, bagasse, molasses, and other types of organic residues. Waste treatment systems have demonstrated inefficiency in the degradation time with respect to the harmful effects they cause. In this study, the dynamics of two genera of phytopathogenic microorganisms (Colletotrichum spp. and Rhizopus spp.) in the decomposition of sugarcane organic wastes were tested by analyzing the proximate composition, biodegradation characteristics, microbial incidence, and amino acid content. The results showed that inoculation with a combination of 2.00 × 106 spores/mL of Colletotrichum spp. and 2.00 × 106 spores/mL of Rhizopus spp., corresponding to treatment T4, led to a higher degree of biodegradation of the residues and aspartic amino acid content, with an incidence of 14.11 mmol/100 g. The amount of amino acids was not closely related to the addition of microorganisms, since the wastes belonging to the control treatment were not recorded as the wastes with the lowest concentration. On the other hand, the different treatments induced variations in the quantification of microorganisms in each biodegraded waste, reporting an average of 5.43 × 104 CFU/g of mesophilic bacteria and 6.52 × 104 CFU/g of fungi with treatment T2. The amounts obtained highlighted the predominance of cycles of increase and decrease in the concentration of microorganisms in a compost according to the stage of compost maturation. Full article
(This article belongs to the Special Issue Research Progress in Waste Resource Utilization)
Show Figures

Figure 1

21 pages, 3874 KiB  
Article
An Attempted Correlation Between the Fecal Microbial Community of Chinese Forest Musk Deer (Moschus berezovskii) and Differences in Musk Production and Quality
by Tingting Zheng, Qian Liu, Chengli Zheng, Xiuxiang Meng, Xue Bai, Diyan Li, Tao Wang, Jun Guo, Zhongxian Xu and Hang Jie
Animals 2025, 15(11), 1622; https://doi.org/10.3390/ani15111622 - 31 May 2025
Viewed by 534
Abstract
Musk, a dried secretion from the sac gland near the urethral foramen of adult male forest musk deer (Moschus berezovskii), has significant economic value and is extensively utilized as a valuable component in traditional Chinese medicine. In the practice of forest [...] Read more.
Musk, a dried secretion from the sac gland near the urethral foramen of adult male forest musk deer (Moschus berezovskii), has significant economic value and is extensively utilized as a valuable component in traditional Chinese medicine. In the practice of forest musk deer breeding, musk with different colors and varying moisture contents is observed during the season when the musk reaches maturity. For many years, researchers have focused mainly on musk composition and symbiotic bacteria. However, the influence of fecal fungi on the production and quality of musk is unknown. In this study, internal transcribed spacer (ITS) analysis was employed to explore the relationships between the fungal composition of musk deer fecal and the quality and production of musk produced by each individual. The results indicate that fungal genera known to cause diseases, such as Colletotrichum and Apiotrichum, are prevalent in the feces of musk deer that produce abnormal musk. Furthermore, the fecal microbiota health index (GMHI) is lower and the intestinal microbiota dysbiosis index (MDI) is greater in musk deer producing white musk than in normal individuals. Additionally, by correlating musk production with fecal fungi, we also found that Dolichousnea and Scolecoleotia were significantly positively correlated with musk production. Moreover, Metschnikowia, Ganodermataceae_gen_Incertae_sedis, Hypoxylon, Neovaginatispora, Didymella, Dothidea, and Trichoderma were negatively correlated with musk production. This study is the first to investigate gut fungi in relation to musk production/quality, establish gut health and fungal dysbiosis links, and identify candidate fungi tightly associated with musk traits. This exploratory approach is critical for exploring uncharted territories like gut fungi in musk deer and musk traits. Full article
Show Figures

Figure 1

18 pages, 665 KiB  
Article
Potential of Salvia discolor Extract Against Common Agricultural Pathogens
by Poonam Devi, Anna Paola Lanteri, Andrea Minuto, Valentina Parisi, Valeria Iobbi, Nunziatina De Tommasi and Angela Bisio
Agronomy 2025, 15(6), 1268; https://doi.org/10.3390/agronomy15061268 - 22 May 2025
Viewed by 557
Abstract
Phytopathogenic fungi and bacteria pose a serious threat to global agriculture, leading to significant economic losses and potential health risks. Consequently, the search for natural alternatives to synthetic agrochemicals has garnered increasing scientific attention, with plant extracts emerging as promising environmentally friendly solutions. [...] Read more.
Phytopathogenic fungi and bacteria pose a serious threat to global agriculture, leading to significant economic losses and potential health risks. Consequently, the search for natural alternatives to synthetic agrochemicals has garnered increasing scientific attention, with plant extracts emerging as promising environmentally friendly solutions. In this context, the surface extract of Salvia discolor, obtained using dichloromethane, was analyzed for its bioactive potential. Chemical profiling revealed a rich composition of terpenoids and flavonoids. The antimicrobial potential of the ground extract was evaluated against nine phytopathogenic fungi (Alternaria solani, Botrytis cinerea, Colletotrichum lindemuthianum, Fusarium solani, Fusarium oxysporum f. sp. lactucae race 1, Phoma betae, Phaeomoniella chlamydospora, Pythium dissotocum, and Stemphylium sp.), and two phytopathogenic bacteria (Clavibacter michiganesis subsp. michiganesis and Pectobacterium carotovorum subsp. carotovorum), selected from common pathogens of agricultural interest. Complete inhibition of P. chlamydospora at 1000 µg mL−1 and strong activity against P. dissotocum, F. solani and B. cinerea was observed, and low inhibition (<40%) against C. lindemuthianum and F. oxysporum f. sp. lactucae race 1. However, the extract showed promising results in the post-harvest protection of tomatoes against gray mold. Moderate antibacterial activity was seen against C. michiganensis subsp. michiganensis. These findings indicate that S. discolor extract has the potential to serve as an effective natural crop protection agent, though further optimization may be needed for broader application. Full article
Show Figures

Figure 1

28 pages, 4056 KiB  
Article
Morphological, Physiological, Biochemical, and Molecular Characterization of Fungal Species Associated with Papaya Rot in Cameroon
by Moussango Victor Davy, Voundi Olugu Steve, Tchabong Raymond Sammuel, Marie Ampères Bedine Boat, Ntah Ayong Moise, Anna Cazanevscaia Busuioc, Priscile Ebong Mbondi, Andreea Veronica Dediu Botezatu, Manz Koule Jules, Maria Daniela Ionica Mihaila, Rodica Mihaela Dinica and Sameza Modeste Lambert
J. Fungi 2025, 11(5), 385; https://doi.org/10.3390/jof11050385 - 17 May 2025
Viewed by 934
Abstract
Post-harvest decay of Carica papaya L. is the primary cause of deterioration in papaya quality and the low economic impact of this sector in Cameroon. Field surveys conducted by teams from the Ministry of Agriculture and Rural Development (MINADER) in Cameroon have primarily [...] Read more.
Post-harvest decay of Carica papaya L. is the primary cause of deterioration in papaya quality and the low economic impact of this sector in Cameroon. Field surveys conducted by teams from the Ministry of Agriculture and Rural Development (MINADER) in Cameroon have primarily associated these decays with fungal attacks. However, to date, no methodological analysis has been conducted on the identification of these fungal agents. To reduce post-harvest losses, rapid detection of diseases is crucial for the application of effective management strategies. This study sought to identify the fungal agents associated with post-harvest decay of papaya cv Sunrise solo in Cameroon and to determine their physiological and biochemical growth characteristics. Isolation and pathogenicity tests were performed according to Koch’s postulate. Molecular identification of isolates was achieved by amplification and sequencing of the ITS1 and ITS4 regions. Phylogenetic analysis was based on the substitution models corresponding to each fungal genus determined by jModeltest, according to the Akaike information criterion (AIC). Fungal explants of each identified species were subjected to variations in temperature, pH, water activity, and NaCl concentration. The ability to secrete hydrolytic enzymes was determined on specific media such as skimmed milk agar for protease, peptone agar for lipase, and carboxymethylcellulose for cellulase. These experiments allowed the identification of three fungi responsible for papaya fruit decay, namely Colletotrichum gloeosporioides, Fusarium equiseti, and Lasiodiplodia theobromae. All three pathogens had maximum mycelial growth at a temperature of 25 ± 2 °C, pH 6.5, NaCl concentration of 100 µM, and water activity (aw) equal to 0.98. The three fungal agents demonstrated a strong potential for secreting cellulases, lipases, and proteases, which they use as lytic enzymes to degrade papaya tissues. The relative enzymatic activity varied depending on the fungal pathogen as well as the type of enzyme secreted. This study is the first report of F. equiseti as a causal agent of papaya fruit decay in Cameroon. Full article
(This article belongs to the Special Issue Genomics of Fungal Plant Pathogens, 3rd Edition)
Show Figures

Figure 1

13 pages, 1669 KiB  
Article
Citrus Essential Oils in the Control of the Anthracnose-Causing Fungus Colletotrichum okinawense in Papaya Fruits
by Cássia Roberta de Oliveira Moraes, Aldino Neto Venancio, Marcos Paz Saraiva Camara, Cíntia dos Santos Bento, Luciana Alves Parreira, Mario Ferreira Conceição Santos and Luciano Menini
Int. J. Plant Biol. 2025, 16(2), 50; https://doi.org/10.3390/ijpb16020050 - 13 May 2025
Viewed by 483
Abstract
Among the numerous diseases that affect papaya (Carica papaya L.) cultivation, anthracnose, caused by a complex of fungi from the genus Colletotrichum spp., stands out, primarily due to its damage to the commercial part of the papaya, the fruit, specifically the pulp. Although [...] Read more.
Among the numerous diseases that affect papaya (Carica papaya L.) cultivation, anthracnose, caused by a complex of fungi from the genus Colletotrichum spp., stands out, primarily due to its damage to the commercial part of the papaya, the fruit, specifically the pulp. Although chemical control with synthetic molecules is the most commonly used method to combat anthracnose, it is not the most appropriate solution. The indiscriminate use of synthetic chemical products results in numerous harmful effects on the environment, the health of farmers, and the final consumers. Given these circumstances, the objective of this study was to analyze the efficacy of essential oils (EOs) from Citrus aurantium var. dulcis L., known as sweet orange, Citrus limon (L.), known as Sicilian lemon, and the major compound present in these oils, limonene, against the pathogens Colletotrichum okinawense, which cause anthracnose in papaya fruits. The percentage inhibition of mycelial growth was evaluated on the seventh day, with estimates of 50% and 90% inhibition, to compare the inhibitory effect among the fungal isolates. Chromatographic analysis revealed that sweet orange EO contains myrcene and limonene. Sicilian lemon essential oil includes myrcene, limonene, α- and β-pinene, and γ-terpinene. Both EOs and limonene exhibited activity against C. okinawense. The 50 µL/mL concentration was the most effective in inhibiting growth. The EOs and limonene showed similar IC50 values, with limonene at 48 µL/mL, Sicilian lemon EO at 51 µL/mL, and sweet orange EO at 57 µL/mL. Full article
Show Figures

Figure 1

18 pages, 10426 KiB  
Article
Antifungal and Toxicological Evaluation of Natural Compounds Such as Chitosan, Citral, and Hexanal Against Colletotrichum asianum
by Edson Rayón-Díaz, Luis G. Hernández-Montiel, Víctor Manuel Zamora-Gasga, Jorge A. Sánchez-Burgos, Surelys Ramos-Bell, Rita María Velázquez-Estrada, Juan Antonio Herrera-González and Porfirio Gutiérrez-Martínez
Horticulturae 2025, 11(5), 474; https://doi.org/10.3390/horticulturae11050474 - 28 Apr 2025
Viewed by 622
Abstract
The Colletotrichum genus is one of the ten most relevant pathogenic fungi in the post-harvest sector owing to its high infection rate in tropical fruits; however, the search for alternatives to synthetic fungicides is crucial because of their adverse effects on health and [...] Read more.
The Colletotrichum genus is one of the ten most relevant pathogenic fungi in the post-harvest sector owing to its high infection rate in tropical fruits; however, the search for alternatives to synthetic fungicides is crucial because of their adverse effects on health and the environment. This study evaluated the efficacy of chitosan (CH), citral (CT), and hexanal (HX) against Colletotrichum asianum, as well as the toxicological potential of these treatments. In in vitro tests, 1.0% CH, 0.03% CT, and 0.06% HX significantly inhibited fungal development in parameters of radial growth, sporulation, fungal biomass, and germination by 78–100% (p < 0.05). Furthermore, the toxicity index was low to moderate for most concentrations using cucumber and tomato seed germination as a study model. Toxicokinetic predictions suggest that CH, CT, and HX molecules do not pose a danger to human consumption, suggesting that they are promising alternatives to chemical fungicides for the control of phytopathogenic fungi. Full article
(This article belongs to the Special Issue Fungal Diseases in Horticultural Crops)
Show Figures

Figure 1

21 pages, 8553 KiB  
Article
Synthesis and Antifungal Activity of 1,2,4-Oxadiazole Derivatives
by Lili Yu, Kuan Yang, Lin Yao, Nana Wang, Hui Kang, Guangda Yao, Xiaomeng Li and Bei Qin
Molecules 2025, 30(8), 1851; https://doi.org/10.3390/molecules30081851 - 20 Apr 2025
Viewed by 996
Abstract
1,2,4-Oxadiazole derivatives containing anisic acid or cinnamic acid were designed and synthesized, which were expected to be an effective Succinate dehydrogenase (SDH) inhibitor, and their structures were characterized by 1H NMR, 13C NMR, and ESI-MS. The antifungal activity of the compounds [...] Read more.
1,2,4-Oxadiazole derivatives containing anisic acid or cinnamic acid were designed and synthesized, which were expected to be an effective Succinate dehydrogenase (SDH) inhibitor, and their structures were characterized by 1H NMR, 13C NMR, and ESI-MS. The antifungal activity of the compounds against plant pathogenic fungi was screened by the mycelial growth inhibition test in vitro. Compounds 4f and 4q showed significant antifungal activities against Rhizoctonia solani (R. solani), Fusarium graminearum (F. graminearum), Exserohilum turcicum (E. turcicum), Botrytis cinerea (B. cinerea), and Colletotrichum capsica (C. capsica). The EC50 values of 4q were 38.88 μg/mL, 149.26 μg/mL, 228.99 μg/mL, and 41.67 μg/mL against R. solani, F. graminearum, E. turcicum, and C. capsica, respectively, and the EC50 values of 4f were 12.68 μg/mL, 29.97 μg/mL, 29.14 μg/mL, and 8.81 μg/mL, respectively. Compound 4f was better than commercial carbendazim against Exserohilum turcicum. Compounds 4f and 4q showed an antifungal effect on C. capsica of capsicum in vivo. Molecular docking simulation showed that 4f and 4q interacted with the target protein through the hydrogen bond and hydrophobic interaction, in which 4q can form hydrogen bonds with TRP173 and ILE27 of SDH, and 4f had hydrogen bonds with TYR58, TRP173, and SER39. This also explains the possible mechanism of action between the inhibitor and target protein. Full article
Show Figures

Figure 1

46 pages, 6442 KiB  
Review
Stress Responses and Mechanisms of Phytopathogens Infecting Humans: Threats, Drivers, and Recommendations
by Md. Motaher Hossain, Farjana Sultana, Mahabuba Mostafa, Humayra Ferdus, Mrinmoy Kundu, Shanta Adhikary, Nabela Akter, Ankita Saha and Md. Abdullah Al Sabbir
Stresses 2025, 5(2), 28; https://doi.org/10.3390/stresses5020028 - 18 Apr 2025
Cited by 1 | Viewed by 3188
Abstract
Cross-kingdom infections, where pathogens from one kingdom infect organisms of another, were historically regarded as rare anomalies with minimal concern. However, emerging evidence reveals their increasing prevalence and potential to disrupt the delicate balance between plant, animal, and human health systems. Traditionally recognized [...] Read more.
Cross-kingdom infections, where pathogens from one kingdom infect organisms of another, were historically regarded as rare anomalies with minimal concern. However, emerging evidence reveals their increasing prevalence and potential to disrupt the delicate balance between plant, animal, and human health systems. Traditionally recognized as plant-specific, a subset of phytopathogens, including certain fungi, bacteria, viruses, and nematodes, have demonstrated the capacity to infect non-plant hosts, particularly immunocompromised individuals. These pathogens exploit conserved molecular mechanisms, such as immune evasion strategies, stress responses, and effector proteins, to breach host-specific barriers and establish infections. Specifically, fungal pathogens like Fusarium spp. and Colletotrichum spp. employ toxin-mediated cytotoxicity and cell-wall-degrading enzymes, while bacterial pathogens, such as Pseudomonas syringae, utilize type III secretion systems to manipulate host immune responses. Viral and nematode phytopathogens also exhibit molecular mimicry and host-derived RNA silencing suppressors to facilitate infections beyond plant hosts. This review features emerging cases of phytopathogen-driven animal and human infections and dissects the key molecular and ecological determinants that facilitate such cross-kingdom transmission. It also highlights critical drivers, including pathogen plasticity, horizontal gene transfer, and the convergence of environmental and anthropogenic stressors that breach traditional host boundaries. Furthermore, this review focuses on the underlying molecular mechanisms that enable host adaptation and the evolutionary pressures shaping these transitions. To address the complex threats posed by cross-kingdom phytopathogens, a comprehensive One Health approach that bridges plant, animal, and human health strategies is advocated. Integrating molecular surveillance, pathogen genomics, AI-powered predictive modeling, and global biosecurity initiatives is essential to detect, monitor, and mitigate cross-kingdom infections. This interdisciplinary approach not only enhances our preparedness for emerging zoonoses and phytopathogen spillovers but also strengthens ecological resilience and public health security in an era of increasing biological convergence. Full article
(This article belongs to the Collection Feature Papers in Human and Animal Stresses)
Show Figures

Figure 1

23 pages, 7312 KiB  
Article
Comparative Antagonistic Activities of Endolichenic Fungi Isolated from the Fruticose Lichens Ramalina and Usnea
by Lloyd Christian Jamilano-Llames and Thomas Edison E. dela Cruz
J. Fungi 2025, 11(4), 302; https://doi.org/10.3390/jof11040302 - 10 Apr 2025
Viewed by 984
Abstract
Persistent fungal pathogens remain a threat to global food security as these pathogens continue to infect crops despite different mitigating strategies. Traditionally, synthetic fungicides are used to combat these threats, but their environmental and health impacts have spurred interest in a more sustainable, [...] Read more.
Persistent fungal pathogens remain a threat to global food security as these pathogens continue to infect crops despite different mitigating strategies. Traditionally, synthetic fungicides are used to combat these threats, but their environmental and health impacts have spurred interest in a more sustainable, eco-friendly approach. Endolichenic fungi (ELF) are a relatively underexplored group of microorganisms found thriving inside the lichen thalli. They are seen as promising alternatives for developing sustainable plant disease management strategies. Hence, in this study, a total of forty ELF isolates from two fruticose lichen hosts—Ramalina and Usnea, were tested and compared for their antagonistic activities against three economically important filamentous fungal pathogens—Colletotrichum gloeosporioides, Cladosporium cladosporioides, and Fusarium oxysporum. The results of the dual culture assay showed that all ELF isolates successfully reduced the growth of the three filamentous fungal pathogens with varying degrees, and with direct contact inhibition as the predominant trait among the endolichenic fungi. Comparing the antagonistic activities between the different endolichenic fungi from the two lichen hosts, ELF isolates from Ramalina generally demonstrated a higher percentage inhibition of growth of the test fungi as compared to ELF isolates from Usnea. This study underscores the importance of endolichenic fungi as an efficient biocontrol agent. Full article
(This article belongs to the Special Issue Plant Fungal Diseases and Crop Protection, 2nd Edition)
Show Figures

Figure 1

Back to TopTop