Evaluation of the Biodegradation Potential of Phytopathogenic Fungi in Sugar Cane (Saccharum officinarum) Waste from the Rural Sector of Milagro, Ecuador
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biological Material
2.2. Isolation of Phytopathogenic Fungi
2.3. Propagation Solution
2.4. Production of Biodegraders Based on Fungal Spores of Colletotrichum spp. and Rhizopus spp.
2.5. Field Experimentation
2.6. Biodegradation Tests
2.7. Laboratory Processing
2.7.1. Determination of Proximate Composition
2.7.2. Determination of Amino Acids
2.7.3. Determination of Microbiological Parameters
2.8. Statistical Analysis
2.8.1. PCA Biplot
2.8.2. Descriptive Statistics
3. Results and Discussion
3.1. Biodegradation Characteristics
3.2. Proximate Composition Statistical Algorithm
3.3. Amino Acid Composition in Biodegraded Residues
3.4. Microbiological Parameters
4. Limitations and Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CFN. Ficha Sectorial: Azúcar, 2021. Available online: https://www.cfn.fin.ec/wp-content/uploads/downloads/biblioteca/2021/fichas-sectoriales-3-trimestre/Ficha-Sectorial-Azucar.pdf (accessed on 2 April 2025).
- INEC. Encuesta de Superficie y Producción Agropecuaria Continua, 2023. Available online: https://www.ecuadorencifras.gob.ec/documentos/web-inec/Estadisticas_agropecuarias/espac/espac_2022/PPT_%20ESPAC_%202022_04.pdf (accessed on 2 April 2025).
- Ratu, R.; Velescu, I.; Stoica, F.; Usturoi, A.; Nicolae, V.; Crivei, I.; Postolache, A.; Lipsa, F.; Filipov, F.; Florea, A.; et al. Application of Agri-Food By-Products in the Food Industry. Agriculture 2023, 13, 1559. [Google Scholar] [CrossRef]
- García-Ramos, C.M.; Quirós-Roque, V.A.; Rosales-Mendoza, L.E. Los Residuos Generados En La Producción de La Industria Azucarera En Los Últimos 25 Años. Rev. Iberoam. Bioecon. Cambio. Clim. 2022, 8, 1979–1991. [Google Scholar] [CrossRef]
- Sindhu, R.; Gnansounou, E.; Binod, P.; Pandey, A. Bioconversion of Sugarcane Crop Residue for Value Added Products—An Overview. Renew Energy 2016, 98, 203–215. [Google Scholar] [CrossRef]
- Formann, S.; Hahn, A.; Janke, L.; Stinner, W.; Sträuber, H.; Logroño, W.; Nikolausz, M. Beyond Sugar and Ethanol Production: Value Generation Opportunities Through Sugarcane Residues. Front. Energy Res. 2020, 8, 579577. [Google Scholar] [CrossRef]
- Jones, A.D.; Morehead, A.T.; Yang, Y. Degradation and Extraction of Organochlorine Pollutants from Environmental Solids under Subcritical Water Conditions. Molecules 2023, 28, 5445. [Google Scholar] [CrossRef] [PubMed]
- Freitas, P.A.V.; Martín-Pérez, L.; Gil-Guillén, I.; González-Martínez, C.; Chiralt, A. Subcritical Water Extraction for Valorisation of Almond Skin from Almond Industrial Processing. Foods 2023, 12, 3759. [Google Scholar] [CrossRef]
- Tortora, M.L.; de los Ángeles Núñez, M.; Fernández-De Ullivarri, J.; Leggio-Neme, F.; Romero, E.R.; Digonzelli, P.A. Descomposición Del Residuo de Cosecha de La Caña de Azúcar Por Una Cepa Fúngica Autóctona de Trichocladium Pyriforme. Cultiv. Trop. 2023, 44, 1–7. [Google Scholar]
- Camacho, A.D.; Martínez, L.; Saad, H.R.; Valenzuela, R.; Valdés, M. Potential of Different Microorganisms for Solid Waste Composting. Terra Latinoam. 2014, 32, 281–300. [Google Scholar]
- Peraza-Jiménez, K.; De la Rosa-García, S.; Huijara-Vasconselos, J.J.; Reyes-Estebanez, M.; Gómez-Cornelio, S. Enzymatic Bioprospecting of Fungi Isolated from a Tropical Rainforest in Mexico. J. Fungi 2022, 8, 22. [Google Scholar] [CrossRef]
- Chorolque, A.; Pellejero, G.; Sosa, M.C.; Palacios, J.; Aschkar, G.; García-Delgado, C.; Jiménez-Ballesta, R. Biological Control of Soil-Borne Phytopathogenic Fungi through Onion Waste Composting: Implications for Circular Economy Perspective. Int. J. Environ. Sci. Technol. 2022, 19, 6411–6420. [Google Scholar] [CrossRef]
- Mena-Nevarez, G.; Valencia-Del Toro, G.; Piña-Guzmán, A.B.; Villanueva-Arce, R.; Durán-Páramo, E.; Robles-Martínez, F. Degradation Capacity of Fungi (Colletotrichum sp., Penicillium sp. and Rhizopus sp.) on Mangoes and Oranges. Afr. J. Agric. Res. 2012, 7, 4564–4574. [Google Scholar] [CrossRef]
- Borkovich, K.; Ebbole, D.J. Cellular and Molecular Biology of Filamentous Fungi; ASM Press: Washington, DC, USA, 2010. [Google Scholar]
- Salazar, C.A.; Murillo, E.; Oviedo, N. Calidad Física, Química y Biológica de Las Aguas Residuales Del Jardín Botánico. Rev. Tumbaga 2016, 1, 115–133. [Google Scholar]
- Guevara-Viejó, F.; Valenzuela-Cobos, J.D.; Vicente-Galindo, P.; Galindo-Villardón, P. Application of K-Means Clustering Algorithm to Commercial Parameters of Pleurotus spp. Cultivated on Representative Agricultural Wastes from Province of Guayas. J. Fungi 2021, 7, 537. [Google Scholar] [CrossRef]
- Agbangba, C.E.; Sacla Aide, E.; Honfo, H.; Glèlè Kakai, R. On the Use of Post-Hoc Tests in Environmental and Biological Sciences: A Critical Review. Heliyon 2024, 10, e25131. [Google Scholar] [CrossRef] [PubMed]
- Fuentes-Aragón, D.; Guarnaccia, V.; Rebollar-Alviter, A.; Juárez-Vázquez, S.B.; Aguirre-Rayo, F.; Silva-Rojas, H.V. Multilocus Identification and Thiophanate-Methyl Sensitivity of Colletotrichum Gloeosporioides Species Complex Associated with Fruit with Symptoms and Symptomless Leaves of Mango. Plant Pathol. 2020, 69, 1125–1138. [Google Scholar] [CrossRef]
- Than, P.; Jeewon, R.; Hyde, K.; Pongsupasamit, S.; Mongkolporn, O.; Taylor, P.W.J. Characterization and Pathogenicity of Colletotrichum Species Associated with Anthracnose on Chilli (Capsicum spp.) in Thailand. Plant Pathol. 2008, 57, 562–572. [Google Scholar] [CrossRef]
- Valenzuela-Cobos, J.D.; Rodríguez-Grimón, R.O.; Vargas-Farías, C.; Grijalva-Endara, A.; Mercader-Camejo, O.A. Biodegradation of Plantain Rachis Using Phytopathogenic Fungi for Composting. Rev. Mex. Ing. Quim. 2020, 19, 533–541. [Google Scholar] [CrossRef]
- Valenzuela-Cobos, J.D.; Lazo-Sulca, R.; Noriega-Verdugo, D.; Garcés, M.; Grijalva-Endara, A. Biodegradation of Cocoa Shell by Phytopatogenic Fungi for Pleurotus Ostreatus Production. Rev. Mex. Ing. Química 2021, 20, 381–388. [Google Scholar] [CrossRef]
- Green, B.J.; Schmechel, D.; Summerbell, R.C. Aerosolized Fungal Fragments. In Fundamentals of Mold Growth in Indoor Environments and Strategies for Healthy Living; Springer: Berlin/Heidelberg, Germany, 2011; pp. 211–243. [Google Scholar] [CrossRef]
- Qian, J.; Ma, J.; Su, J.; Yan, Y.; Li, H.; Shin, J.W.; Wei, J.; Zhao, L. PHBV-Based Ternary Composite by Intermixing of Magnesium Calcium Phosphate Nanoparticles and Zein: In Vitro Bioactivity, Degradability and Cytocompatibility. Eur. Polym. J. 2016, 75, 291–302. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International; AOAC International: Rockville, MD, USA, 2006. [Google Scholar]
- Wang, Y.Q.; Ye, D.Q.; Zhu, B.Q.; Wu, G.F.; Duan, C.Q. Rapid HPLC Analysis of Amino Acids and Biogenic Amines in Wines during Fermentation and Evaluation of Matrix Effect. Food Chem. 2014, 163, 6–15. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Official; AOAC International: Rockville, MD, USA, 1990. [Google Scholar]
- Karadag, D.; Özkaya, B.; Ölmez, E.; Nissilä, M.E.; Çakmakçi, M.; Yildiz, Ş.; Puhakka, J.A. Profiling of Bacterial Community in a Full-Scale Aerobic Composting Plant. Int. Biodeterior. Biodegrad. 2013, 77, 85–90. [Google Scholar] [CrossRef]
- Koskinen, P.; Kaksonen, A.; Puhakka, J. The Relationship between Instability of H2 Production and Compositions of Bacterial Communities within a Dark Fermentation Fluidized-Bed Bioreactor. Biotechnol. Bioeng. 2007, 97, 742–758. [Google Scholar] [CrossRef]
- Cozzolino, D.; Power, A.; Chapman, J. Interpreting and Reporting Principal Component Analysis in Food Science Analysis and Beyond. Food Anal. Methods 2019, 12, 2469–2473. [Google Scholar] [CrossRef]
- Gower, J.C.; Le Roux, N.J.; Gardner-Lubbe, S. Biplots: Quantitative Data. Wiley Interdiscip. Rev. Comput. Stat. 2015, 7, 42–62. [Google Scholar] [CrossRef]
- Gabriel, K.; Odoroff, C. Biplots in Biomedical Research. Stat. Med. 1990, 9, 469–485. [Google Scholar] [CrossRef]
- González-Narváez, M.; Ruiz-Barzola, O.; Nieto-Librero, A. Análisis Multivariante: Un Recorrido Por Las Técnicas de Reducción de Dimensiones. Matemática 2020, 18, 2. [Google Scholar]
- Jollife, I.T.; Cadima, J. Principal Component Analysis: A Review and Recent Developments. Phil. Trans. R. Soc. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- Jolliffe, I.T.; Cadima, J.; Jolliffe, I.; Statist, P.J. On Relationships between Uncentred and Column-Centred Principal Component Analysis. Pak. J. Stat. 2009, 25, 473–503. [Google Scholar]
- Kitao, A. Principal Component Analysis and Related Methods for Investigating the Dynamics of Biological Macromolecules. J 2022, 5, 298–317. [Google Scholar] [CrossRef]
- Reveglia, P.; Agudo-Jurado, F.J.; Barilli, E.; Masi, M.; Evidente, A.; Rubiales, D. Uncovering Phytotoxic Compounds Produced by Colletotrichum spp. Involved in Legume Diseases Using an OSMAC–Metabolomics Approach. J. Fungi 2023, 9, 610. [Google Scholar] [CrossRef]
- Sivaramakrishnan, R.; Ramprakash, B.; Ramadoss, G.; Suresh, S.; Pugazhendhi, A.; Incharoensakdi, A. High Potential of Rhizopus Treated Rice Bran Waste for the Nutrient-Free Anaerobic Fermentative Biohydrogen Production. Bioresour. Technol. 2021, 319, 124193. [Google Scholar] [CrossRef] [PubMed]
- Bohórquez, A.; Puentes, Y.; Menjivar, J. Evaluación de La Calidad Del Compost Producido a Partir de Subproductos Agroindustriales de Caña de Azúcar. Corpoica Cienc. Tecnol. Agropecu. 2014, 15, 73–81. [Google Scholar] [CrossRef]
- Kassa, H.; Suliman, H.; Workayew, T. Evaluation of Composting Process and Quality of Compost from Coffee By-Products (Coffee Husk & Pulp). Ethiop. J. Environ. Stud. Manag. 2011, 4, 8–13. [Google Scholar] [CrossRef]
- Wichuk, K.; McCartney, D. Compost Stability and Maturity Evaluation—A Literature Review. Can. J. Civ. Eng. 2010, 37, 1505–1523. [Google Scholar] [CrossRef]
- Raj, D.; Antil, R.S. Evaluation of Maturity and Stability Parameters of Composts Prepared from Agro-Industrial Wastes. Bioresour. Technol. 2011, 102, 2868–2873. [Google Scholar] [CrossRef]
- De Medina-Salas, L.; Giraldi-Díaz, M.R.; Castillo-González, E.; Morales-Mendoza, L.E. Valorization of Orange Peel Waste Using Precomposting and Vermicomposting Processes. Sustainability 2020, 12, 7626. [Google Scholar] [CrossRef]
- Jahan, S.; Ujjaman, S.; Rahman, M.S.; Sarker, B.C.; Hossain, M.Z.; Kamal, M.M. Physicochemical Properties and Nutrient Contents of Compost as Influenced by Organic Wastes and Methods of Composting. J. Indian Soc. Soil Sci. 2022, 70, 106–112. [Google Scholar] [CrossRef]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural Uses of Plant Biostimulants. Plant and Soil 2014, 383, 3–41. [Google Scholar] [CrossRef]
- Souri, M.K.; Sooraki, F.Y.; Moghadamyar, M. Growth and Quality of Cucumber, Tomato, and Green Bean under Foliar and Soil Applications of an Aminochelate Fertilizer. Hortic. Env. Biotechnol. 2017, 58, 530–536. [Google Scholar] [CrossRef]
- Ichihashia, Y.Y.; Date, Y.; Shino, A.; Shimizu, T.; Shibata, A.; Kumaishi, K.; Funahashi, F.; Wakayama, K.; Yamazaki, K.; Umezawa, A.; et al. Multi-Omics Analysis on an Agroecosystem Reveals the Significant Role of Organic Nitrogen to Increase Agricultural Crop Yield. Proc. Natl. Acad. Sci. USA 2020, 117, 14552–14560. [Google Scholar] [CrossRef]
- Baca, M.T.; Fernandez-Figares, I.; De Nobili, M. Amino Acid Composition of Composting Cotton Waste. Sci. Total Env. 1994, 153, 51–56. [Google Scholar] [CrossRef]
- Yao, X.; Zhou, H.; Meng, H.; Ding, J.; Shen, Y.; Cheng, H.; Zhang, X.; Li, R.; Fan, S. Amino Acid Profile Characterization during the Co-Composting of a Livestock Manure and Maize Straw Mixture. J. Clean. Prod. 2021, 278, 123494. [Google Scholar] [CrossRef]
- Ameen, F.; Al-Homaidan, A.A. Compost Inoculated with Fungi from a Mangrove Habitat Improved the Growth and Disease Defense of Vegetable Plants. Sustainability 2021, 13, 124. [Google Scholar] [CrossRef]
- Partanen, P.; Hultman, J.; Paulin, L.; Auvinen, P.; Romantschuk, M. Bacterial Diversity at Different Stages of the Composting Process. BMC Microbiol. 2010, 10, 94. [Google Scholar] [CrossRef]
- Mosquera Rodríguez, F.S.; Quintero Vélez, A.; Córdoba Urrutia, E.; Ramírez-Malule, H.; Mina Hernandez, J.H. Study of the Degradation of a TPS/PCL/Fique Biocomposite Material in Soil, Compost, and Water. Polymers 2023, 15, 3952. [Google Scholar] [CrossRef]
- Paudel, P.P.; Kafle, S.; Park, S.; Kim, S.J.; Cho, L.; Kim, D.H. Advancements in Sustainable Thermochemical Conversion of Agricultural Crop Residues: A Systematic Review of Technical Progress, Applications, Perspectives, and Challenges. Renew. Sustain. Energy Rev. 2024, 202, 114723. [Google Scholar] [CrossRef]
Characteristic | Treatments | |||
---|---|---|---|---|
T1 | T2 | T3 | T4 | |
Biodegradation (%) | 30.90 a ± 0.42 | 38.19 b ± 0.23 | 47.76 c ± 0.36 | 55.81 d ± 0.56 |
Leachate production (mL) | 33.90 a ± 0.28 | 56.30 b ± 0.55 | 61.30 c ± 0.36 | 95.70 d ± 0.26 |
pH of leachate | 3.10 a ± 0.28 | 3.50 c ± 0.55 | 3.45 b ± 0.21 | 4.30 d ± 0.13 |
AA | Concentration (mmol/100 g) | |||
---|---|---|---|---|
T1 | T2 | T3 | T4 | |
GLU | 10.71 d ± 0.12 | 10.39 c ± 0.02 | 9.04 b ± 0.03 | 8.10 a ± 0.07 |
ASP | 4.18 b ± 0.02 | 2.83 a ± 0.05 | 4.89 c ± 0.03 | 14.11 d ± 0.12 |
GLY | 9.62 a ± 0.07 | 9.67 a ± 0.14 | 11.27 b ± 0.03 | 11.73 c ± 0.14 |
PRO | 6.42 b ± 0.07 | 6.37 ab ± 0.14 | 6.23 ab ± 0.45 | 5.94 a ± 0.07 |
CIS | 0.26 a ± 0.06 | 0.54 b ± 0.15 | 0.57 b ± 0.06 | 0.27 a ± 0.05 |
TIR | 2.57 a ± 0.14 | 2.64 a ± 0.18 | 2.6 a ± 0.02 | 4.67 b ± 0.09 |
VAL | 8.51 d ± 0.10 | 8.03 c ± 0.13 | 7.84 b ± 0.06 | 7.55 a ± 0.06 |
MET | 0.87 c ± 0.09 | 0.84 c ± 0.03 | 0.61 b ± 0.06 | 0.27 a ± 0.03 |
LIS | 7.82 a ± 0.25 | 8.19 b ± 0.14 | 9.01 c ± 0.12 | 8.29 b ± 0.12 |
ISO | 4.78 b ± 0.04 | 4.71 b ± 0.23 | 4.87 c ± 0.05 | 4.07 a ± 0.45 |
LEU | 7.01 a ± 0.12 | 7.28 b ± 0.14 | 7.34 b ± 0.09 | 6.87 a ± 0.14 |
PHE | 0.99 a ± 0.05 | 1.07 a ± 0.10 | 1.37 c ± 0.07 | 1.21 b ± 0.17 |
M.O. | Quantity (UFC/g) | |||
---|---|---|---|---|
T1 | T2 | T3 | T4 | |
Aerobic mesophilic bacteria | (5.38 × 106) c ± 0.07 | (5.43 × 104) a ± 0.45 | (1.40 × 105) a ± 0.45 | (5.30 × 105) b ± 0.40 |
Fungi | (2.50 × 106) c ± 0.50 | (6.52 × 104) a ± 1.17 | (2.73 × 106) a ± 0.46 | (3.03 × 105) a ± 0.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campuzano-Rodríguez, S.; Guevara-Viejó, F.; Guevara-Sandoya, A.; Valenzuela-Cobos, J.D.; Pozzi Jantalia, C. Evaluation of the Biodegradation Potential of Phytopathogenic Fungi in Sugar Cane (Saccharum officinarum) Waste from the Rural Sector of Milagro, Ecuador. Appl. Sci. 2025, 15, 6621. https://doi.org/10.3390/app15126621
Campuzano-Rodríguez S, Guevara-Viejó F, Guevara-Sandoya A, Valenzuela-Cobos JD, Pozzi Jantalia C. Evaluation of the Biodegradation Potential of Phytopathogenic Fungi in Sugar Cane (Saccharum officinarum) Waste from the Rural Sector of Milagro, Ecuador. Applied Sciences. 2025; 15(12):6621. https://doi.org/10.3390/app15126621
Chicago/Turabian StyleCampuzano-Rodríguez, Sandra, Fabricio Guevara-Viejó, Arturo Guevara-Sandoya, Juan Diego Valenzuela-Cobos, and Claudia Pozzi Jantalia. 2025. "Evaluation of the Biodegradation Potential of Phytopathogenic Fungi in Sugar Cane (Saccharum officinarum) Waste from the Rural Sector of Milagro, Ecuador" Applied Sciences 15, no. 12: 6621. https://doi.org/10.3390/app15126621
APA StyleCampuzano-Rodríguez, S., Guevara-Viejó, F., Guevara-Sandoya, A., Valenzuela-Cobos, J. D., & Pozzi Jantalia, C. (2025). Evaluation of the Biodegradation Potential of Phytopathogenic Fungi in Sugar Cane (Saccharum officinarum) Waste from the Rural Sector of Milagro, Ecuador. Applied Sciences, 15(12), 6621. https://doi.org/10.3390/app15126621