Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = Chitosan-calcium carbonate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4461 KiB  
Article
Sodium Alginate/Cuprous Oxide Composite Materials with Antibacterial Properties: A Preliminary Study Revealing the Counteracting Effects of Oligosaccharides in the Matrix
by Reeba Thomas, Fengyi Wang, Wipa Suginta, Chien-Yi Chang and Fengwei Xie
Foods 2025, 14(10), 1666; https://doi.org/10.3390/foods14101666 - 8 May 2025
Viewed by 584
Abstract
The integration of biopolymers with antimicrobial inorganic materials has emerged as a promising strategy for developing eco-friendly and biocompatible functional materials for food packaging and biomedical applications. However, the impact of biopolymer matrix composition on the antimicrobial efficacy of inorganic fillers remains underexplored. [...] Read more.
The integration of biopolymers with antimicrobial inorganic materials has emerged as a promising strategy for developing eco-friendly and biocompatible functional materials for food packaging and biomedical applications. However, the impact of biopolymer matrix composition on the antimicrobial efficacy of inorganic fillers remains underexplored. This study addresses this critical gap by investigating the effects of chitin or chitosan oligosaccharides (NACOS or COS) on the antimicrobial properties of sodium alginate (SA)/cuprous oxide (Cu2O) composite gels. The composite gels were synthesized through a physical blending of the components, followed by calcium-induced crosslinking of SA. Characterization using UV-vis, FTIR, and EDX confirmed the successful incorporation of Cu2O, while a SEM analysis revealed its uniform dispersion. Antibacterial assays demonstrated that SA-Cu2O exhibited the highest inhibition rates, with a 67.4 ± 11.9% growth suppression of Staphylococcus aureus (MRSA), 33.7 ± 5.1% against Escherichia coli, and 39.1 ± 14.8% against Pseudomonas aeruginosa. However, incorporating NACOS and COS reduced inhibition, as oligosaccharides served as bacterial carbon sources. Swelling and contact angle measurements indicate that antimicrobial effectiveness was independent of surface hydrophilicity. These findings underscore the importance of rational composite design to balance bioactivity and material stability for antimicrobial applications. Full article
(This article belongs to the Special Issue Natural Polymer-Based Films and Coatings for Food Packaging)
Show Figures

Figure 1

16 pages, 2273 KiB  
Article
Foundation Model Study on Inorganic and Biopolymer Nano Additives Treated Soil—A Step Forward in Nano Additive Soil Stabilization
by Govindarajan Kannan, Evangelin Ramani Sujatha, Jair de Jesús Arrieta Baldovino and Yamid E. Nuñez de la Rosa
Sustainability 2024, 16(21), 9562; https://doi.org/10.3390/su16219562 - 2 Nov 2024
Viewed by 1164
Abstract
For almost a decade, various studies have been carried out to prove the suitability of nano additives in enhancing the geotechnical properties of soil. Yet, this line of research is still in its elementary stage, restricting itself to laboratory tests to determine soil’s [...] Read more.
For almost a decade, various studies have been carried out to prove the suitability of nano additives in enhancing the geotechnical properties of soil. Yet, this line of research is still in its elementary stage, restricting itself to laboratory tests to determine soil’s index and engineering properties blended with varying dosages of nano additives. In other words, research on practical applications of nano additives for soil stabilization is scarce. The present work attempts to investigate the suitability of three different nanomaterials as a load-bearing stratum for shallow foundations. The nano additives were chosen in such a way that each of them is from a different origin. One of them is nano calcium carbonate (inorganic) whereas the other two are nano-sized varieties of natural biopolymers, namely nano chitosan (crustacean-based) and nano carboxymethyl cellulose (plant-based). A series of laboratory tests were initially conducted to determine the strength of all three nano-additive-treated soils at different dosages, which were investigated for 180 days to ensure their long-term performance. This was followed by a foundation model study on untreated soil and on soil treated with optimal dosages of nano additives. The results were validated using finite element software followed by a parametric study to optimize the depth of soil stabilization. It was observed that all three nano additives exhibited a better performance when the top layer had the optimal dosage and the subsequent layers had a relatively lesser dosage. Full article
Show Figures

Figure 1

16 pages, 5818 KiB  
Article
Biomineralization Process Inspired In Situ Growth of Calcium Carbonate Nanocrystals in Chitosan Hydrogels
by Xinyue Zeng, Zheng Zhu, Wei Chang, Bin Wu and Wei Huang
Appl. Sci. 2024, 14(20), 9193; https://doi.org/10.3390/app14209193 - 10 Oct 2024
Viewed by 2152
Abstract
Biological composites such as bone, nacre, and teeth show excellent mechanical efficiency because of the incorporation of biominerals into the organic matrix at the nanoscale, leading to hierarchical composite structures. Adding a large volume of ceramic nanoparticles into an organic molecular network uniformly [...] Read more.
Biological composites such as bone, nacre, and teeth show excellent mechanical efficiency because of the incorporation of biominerals into the organic matrix at the nanoscale, leading to hierarchical composite structures. Adding a large volume of ceramic nanoparticles into an organic molecular network uniformly has been a challenge in engineering applications. However, in natural organisms, biominerals grow inside organic fibers, such as chitin and collagen, forming perfect ceramic/polymer composites spontaneously via biomineralization processes. Inspired from these processes, the in situ growth of calcium carbonate nanoparticles inside the chitosan network to form ceramic composites was proposed in the current work. The crystal growth of CaCO3 nanoparticles in the chitosan matrix as a function of time was investigated. A weight percentage of ~35 wt% CaCO3 composite was realized, resembling the high weight percentage of mineral phase in bones. Scanning and transmission electron microscopy indicated the integration of CaCO3 nanocrystals with chitosan macromolecules. By growing CaCO3 minerals inside the chitosan matrix, the elastic modulus and tensile strength increases by ~110% and ~90%, respectively. The in situ crystal growth strategy was also demonstrated in organic frameworks prepared via 3D printing, indicating the potential of fabricating ceramic/polymer composites with complicated structures, and further applications in tissue engineering. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

12 pages, 23396 KiB  
Article
Tritium-Labeled Nanodiamonds as an Instrument to Analyze Bioprosthetic Valve Coatings: A Case of Using a Nanodiamond Containing Coating on a Pork Aorta
by Maria G. Chernysheva, Tianyi Shen, Gennadii A. Badun, Ivan V. Mikheev, Ivan S. Chaschin, Yuriy M. Tsygankov, Dmitrii V. Britikov, Georgii A. Hugaev and Natalia P. Bakuleva
Molecules 2024, 29(13), 3078; https://doi.org/10.3390/molecules29133078 - 28 Jun 2024
Cited by 1 | Viewed by 1477
Abstract
Coatings with xenogenic materials, made of detonation nanodiamonds, provide additional strength and increase elasticity. A functionally developed surface of nanodiamonds makes it possible to apply antibiotics. Previous experiments show the stability of such coatings; however, studies on stability in the bloodstream and calcification [...] Read more.
Coatings with xenogenic materials, made of detonation nanodiamonds, provide additional strength and increase elasticity. A functionally developed surface of nanodiamonds makes it possible to apply antibiotics. Previous experiments show the stability of such coatings; however, studies on stability in the bloodstream and calcification of the material in natural conditions have yet to be conducted. Tritium-labeled nanodiamonds (negative and positive) were obtained by the tritium activation method and used to develop coatings for a pork aorta to analyze their stability in a pig’s bloodstream using a radiotracer technique. A chitosan layer was applied from a solution of carbonic acid under high-pressure conditions to prevent calcification. The obtained materials were used to prepare a porcine conduit, which was surgically stitched inside the pig’s aorta for four months. The aorta samples, including nanodiamond-coated and control samples, were analyzed for nanodiamond content and calcium, using the radiotracer and ICP-AES methods. A histological analysis of the materials was also performed. The obtained coatings illustrate a high in vivo stability and low levels of calcification for all types of nanodiamonds. Even though we did not use additional antibiotics in this case, the development of infection was not observed for negatively charged nanodiamonds, opening up prospects for their use in developing coatings. Full article
(This article belongs to the Special Issue Advance in Radiochemistry)
Show Figures

Graphical abstract

20 pages, 10189 KiB  
Article
Glycated Walnut Meal Peptide–Calcium Chelates: Preparation, Characterization, and Stability
by Zilin Wang, Ye Zhao, Min Yang, Yuanli Wang, Yue Wang, Chongying Shi, Tianyi Dai, Yifan Wang, Liang Tao and Yang Tian
Foods 2024, 13(7), 1109; https://doi.org/10.3390/foods13071109 - 4 Apr 2024
Cited by 8 | Viewed by 2826
Abstract
Finding stable and bioavailable calcium supplements is crucial for addressing calcium deficiency. In this study, glycated peptide–calcium chelates (WMPHs–COS–Ca) were prepared from walnut meal protein hydrolysates (WMPHs) and chitosan oligosaccharides (COSs) through the Maillard reaction, and the structural properties and stability of the [...] Read more.
Finding stable and bioavailable calcium supplements is crucial for addressing calcium deficiency. In this study, glycated peptide–calcium chelates (WMPHs–COS–Ca) were prepared from walnut meal protein hydrolysates (WMPHs) and chitosan oligosaccharides (COSs) through the Maillard reaction, and the structural properties and stability of the WMPHs–COS–Ca were characterized. The results showed that WMPHs and COSs exhibited high binding affinities, with a glycation degree of 64.82%. After glycation, Asp, Lys, and Arg decreased by 2.07%, 0.46%, and 1.06%, respectively, which indicated that these three amino acids are involved in the Maillard reaction. In addition, compared with the WMPHs, the emulsifying ability and emulsion stability of the WMPHs–COS increased by 10.16 mg2/g and 52.73 min, respectively, suggesting that WMPHs–COS have better processing characteristics. After chelation with calcium ions, the calcium chelation rate of peptides with molecular weights less than 1 kDa was the highest (64.88%), and the optimized preparation conditions were 5:1 w/w for WMPH–COS/CaCl2s, with a temperature of 50 °C, a chelation time of 50 min, and a pH of 7.0. Scanning electron microscopy showed that the “bridging role” of WMPHs-COS changed to a loose structure. UV–vis spectroscopy and Fourier transform infrared spectrometry results indicated that the amino nitrogen atoms, carboxyl oxygen atoms, and carbon oxygen atoms in WMPHs-COS chelated with calcium ions, forming WMPHs-COS-Ca. Moreover, WMPHs-COS-Ca was relatively stable at high temperatures and under acidic and alkaline environmental and digestion conditions in the gastrointestinal tract, indicating that WMPHs–COS–Ca have a greater degree of bioavailability. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Graphical abstract

12 pages, 3623 KiB  
Article
Porous Nano-Fiber Structure of Modified Electrospun Chitosan GBR Membranes Improve Osteoblast Calcium Phosphate Deposition in Osteoblast-Fibroblast Co-Cultures
by Hengjie Su, Tomoko Fujiwara, Omar Skalli, Gretchen Schreyack Selders, Ting Li, Linna Mao and Joel D. Bumgardner
Mar. Drugs 2024, 22(4), 160; https://doi.org/10.3390/md22040160 - 30 Mar 2024
Cited by 1 | Viewed by 2316
Abstract
Desirable characteristics of electrospun chitosan membranes (ESCM) for guided bone regeneration are their nanofiber structure that mimics the extracellular fiber matrix and porosity for the exchange of signals between bone and soft tissue compartments. However, ESCM are susceptible to swelling and loss of [...] Read more.
Desirable characteristics of electrospun chitosan membranes (ESCM) for guided bone regeneration are their nanofiber structure that mimics the extracellular fiber matrix and porosity for the exchange of signals between bone and soft tissue compartments. However, ESCM are susceptible to swelling and loss of nanofiber and porous structure in physiological environments. A novel post-electrospinning method using di-tert-butyl dicarbonate (tBOC) prevents swelling and loss of nanofibrous structure better than sodium carbonate treatments. This study aimed to evaluate the hypothesis that retention of nanofiber morphology and high porosity of tBOC-modified ESCM (tBOC-ESCM) would support more bone mineralization in osteoblast-fibroblast co-cultures compared to Na2CO3 treated membranes (Na2CO3-ESCM) and solution-cast chitosan solid films (CM-film). The results showed that only the tBOC-ESCM retained the nanofibrous structure and had approximately 14 times more pore volume than Na2CO3-ESCM and thousands of times more pore volume than CM-films, respectively. In co-cultures, the tBOC-ESCM resulted in a significantly greater calcium-phosphate deposition by osteoblasts than either the Na2CO3-ESCM or CM-film (p < 0.05). This work supports the study hypothesis that tBOC-ESCM with nanofiber structure and high porosity promotes the exchange of signals between osteoblasts and fibroblasts, leading to improved mineralization in vitro and thus potentially improved bone healing and regeneration in guided bone regeneration applications Full article
(This article belongs to the Special Issue Application of Marine Chitin and Chitosan, 3rd Edition)
Show Figures

Figure 1

31 pages, 948 KiB  
Review
Use of Biomaterials in 3D Printing as a Solution to Microbial Infections in Arthroplasty and Osseous Reconstruction
by Argyrios Periferakis, Aristodemos-Theodoros Periferakis, Lamprini Troumpata, Serban Dragosloveanu, Iosif-Aliodor Timofticiuc, Spyrangelos Georgatos-Garcia, Andreea-Elena Scheau, Konstantinos Periferakis, Ana Caruntu, Ioana Anca Badarau, Cristian Scheau and Constantin Caruntu
Biomimetics 2024, 9(3), 154; https://doi.org/10.3390/biomimetics9030154 - 1 Mar 2024
Cited by 25 | Viewed by 4562
Abstract
The incidence of microbial infections in orthopedic prosthetic surgeries is a perennial problem that increases morbidity and mortality, representing one of the major complications of such medical interventions. The emergence of novel technologies, especially 3D printing, represents a promising avenue of development for [...] Read more.
The incidence of microbial infections in orthopedic prosthetic surgeries is a perennial problem that increases morbidity and mortality, representing one of the major complications of such medical interventions. The emergence of novel technologies, especially 3D printing, represents a promising avenue of development for reducing the risk of such eventualities. There are already a host of biomaterials, suitable for 3D printing, that are being tested for antimicrobial properties when they are coated with bioactive compounds, such as antibiotics, or combined with hydrogels with antimicrobial and antioxidant properties, such as chitosan and metal nanoparticles, among others. The materials discussed in the context of this paper comprise beta-tricalcium phosphate (β-TCP), biphasic calcium phosphate (BCP), hydroxyapatite, lithium disilicate glass, polyetheretherketone (PEEK), poly(propylene fumarate) (PPF), poly(trimethylene carbonate) (PTMC), and zirconia. While the recent research results are promising, further development is required to address the increasing antibiotic resistance exhibited by several common pathogens, the potential for fungal infections, and the potential toxicity of some metal nanoparticles. Other solutions, like the incorporation of phytochemicals, should also be explored. Incorporating artificial intelligence (AI) in the development of certain orthopedic implants and the potential use of AI against bacterial infections might represent viable solutions to these problems. Finally, there are some legal considerations associated with the use of biomaterials and the widespread use of 3D printing, which must be taken into account. Full article
Show Figures

Figure 1

17 pages, 1118 KiB  
Review
Snail Shell Waste Threat to Sustainability and Circular Economy: Novel Application in Food Industries
by Angela Giorgia Potortì, Laura Messina, Patrizia Licata, Enrico Gugliandolo, Antonello Santini and Giuseppa Di Bella
Sustainability 2024, 16(2), 706; https://doi.org/10.3390/su16020706 - 13 Jan 2024
Cited by 7 | Viewed by 6473
Abstract
Effective waste management has become an urgent societal challenge. Food waste is made up of items meant for human consumption that are lost, polluted, disposed of, or deteriorated; the reutilization of shells from mollusk waste is a severe problem in terms of environmental [...] Read more.
Effective waste management has become an urgent societal challenge. Food waste is made up of items meant for human consumption that are lost, polluted, disposed of, or deteriorated; the reutilization of shells from mollusk waste is a severe problem in terms of environmental protection and the development of the circular economy. The properties of waste shells are presented and discussed, including their biological–natural origin and high calcium carbonate content. This could add social and innovation focus on shell waste management, getting a non-toxic, eco-sustainable, low-cost, biodegradable supplement to invest in. Furthermore, it has the potential to support the circular economy approach by creating a closed system that minimizes the use of natural resources and environmental contamination. This review explores edible mollusk shell waste sources and functional properties of inorganic components of snail shell waste like minerals and active substances like chitin, chitosan, and calcium carbonate and attempts to carry out a comprehensive analysis of the scientific literature published over the last 20 years, elucidating prominent patterns in the utilization of shell waste in food application industry, as additives and supplements development to promote both human and animal health. Full article
(This article belongs to the Special Issue Food Waste and Circular Economy: Challenges and Opportunities)
Show Figures

Figure 1

20 pages, 5549 KiB  
Article
Effects of Oral Cavity Stem Cell Sources and Serum-Free Cell Culture on Hydrogel Encapsulation of Mesenchymal Stem Cells for Bone Regeneration: An In Vitro Investigation
by Premjit Arpornmaeklong, Supakorn Boonyuen, Komsan Apinyauppatham and Prisana Pripatnanont
Bioengineering 2024, 11(1), 59; https://doi.org/10.3390/bioengineering11010059 - 8 Jan 2024
Cited by 3 | Viewed by 2596
Abstract
Introduction: To develop a stem cell delivery model and improve the safety of stem cell transplantation for bone regeneration, this study aimed to determine the effects of stem cell sources, serum-free cell culture, and hydrogel cell encapsulation on the growth and osteogenic differentiation [...] Read more.
Introduction: To develop a stem cell delivery model and improve the safety of stem cell transplantation for bone regeneration, this study aimed to determine the effects of stem cell sources, serum-free cell culture, and hydrogel cell encapsulation on the growth and osteogenic differentiation of mesenchymal stem cells (MSCs) from the oral cavity. Methods: The study groups were categorized according to stem cell sources into buccal fat pad adipose (hBFP-ADSCs) (Groups 1, 4, and 7), periodontal ligament (hPDLSCs) (Groups 2, 5, and 8), and dental pulp-derived stem cells (hDPSCs) (Groups 3, 6, and 9). MSCs from each source were isolated and expanded in three types of sera: fetal bovine serum (FBS) (Groups 1–3), human serum (HS) (Groups 4–6), and synthetic serum (SS) (StemPro™ MSC SFM) (Groups 7–9) for monolayer (m) and hydrogel cell encapsulation cultures (e). Following this, the morphology, expression of MSC cell surface antigens, growth, and osteogenic differentiation potential of the MSCs, and the expression of adhesion molecules were analyzed and compared. Results: SS decreased variations in the morphology and expression levels of cell surface antigens of MSCs from three cell sources (Groups 7m–9m). The levels of osteoblastic differentiation of the hPDLSCs and hBFP-ADSCs were increased in SS (Groups 8m and 7m) and the cell encapsulation model (Groups 1e, 4e, 7e–9e), but the promoting effects of SS were decreased in a cell encapsulation model (Groups 7e–9e). The expression levels of the alpha v beta 3 (ITG-αVβ3) and beta 1 (ITG-β1) integrins in the encapsulated cells in FBS (Group 1e) were higher than those in the SS (Group 7e). Conclusions: Human PDLSCs and BFP-ADSCs were the optimum stem cell source for stem cell encapsulation by using nanohydroxyapatite–calcium carbonate microcapsule–chitosan/collagen hydrogel in serum-free conditions. Full article
(This article belongs to the Special Issue Stem Cell for Tissue Engineering)
Show Figures

Figure 1

17 pages, 3415 KiB  
Article
Biomass-Based Silica/Calcium Carbonate Nanocomposites for the Adsorptive Removal of Escherichia coli from Aqueous Suspensions
by Ibrahim Birma Bwatanglang, Samuel T. Magili, Faruq Mohammad, Hamad A. Al-Lohedan and Ahmed A. Soleiman
Separations 2023, 10(3), 212; https://doi.org/10.3390/separations10030212 - 18 Mar 2023
Cited by 6 | Viewed by 2344
Abstract
The present study deals with the adsorptive removal of Escherichia coli (E. coli) by making use of chitosan-silica/calcium carbonate (CS-SiO2/CaCO3) nanocomposites (NCs) where it was synthesized using the waste eggshells and rice husks occurred by natural sources. [...] Read more.
The present study deals with the adsorptive removal of Escherichia coli (E. coli) by making use of chitosan-silica/calcium carbonate (CS-SiO2/CaCO3) nanocomposites (NCs) where it was synthesized using the waste eggshells and rice husks occurred by natural sources. The bioadsorbent CS-SiO2/CaCO3 NCs were synthesized by incorporating eggshell-CaCO3 nanoparticles (NPs) and rice husk-SiO2 NPs in chitosan NPs solution. The adsorbents were characterized using HRTEM, BET, DLS, and TGA. The characterization of NCs revealed the formation of adsorbents in the range of 10–50 nm and some structural changes to the spectra of adsorbents before and after the adsorption of E. coli was revealed by the FTIR analysis. Moreover, the adsorption efficiency of E. coli over the adsorbents after 35 min of incubation was about 80% for CS-SiO2/CaCO3 NCs. Further, the kinetics of adsorption studies were observed to be well-fitted to the Langmuir isotherm model with an adsorption capacity of 3.18 × 101 (CFU E. coil per gram of CS-SiO2/CaCO3). From the analysis, the synthesized bioadsorbent demonstrated the potential for ameliorating the inherent risk of pathogens in water. Full article
Show Figures

Figure 1

14 pages, 4924 KiB  
Article
Antioxidant Carboxymethyl Chitosan Carbon Dots with Calcium Doping Achieve Ultra-Low Calcium Concentration for Iron-Induced Osteoporosis Treatment by Effectively Enhancing Calcium Bioavailability in Zebrafish
by Lidong Yu, Xueting Li, Mingyue He, Qingchen Wang, Ce Chen, Fangshun Li, Bingsheng Li and Li Li
Antioxidants 2023, 12(3), 583; https://doi.org/10.3390/antiox12030583 - 26 Feb 2023
Cited by 7 | Viewed by 2745
Abstract
Iron overloads osteoporosis mainly occurs to postmenopausal women and people requiring repeated blood transfusions. Iron overload increases the activity of osteoclasts and decreases the activity of osteoblasts, leading to the occurrence of osteoporosis. Conventional treatment options include calcium supplements and iron chelators. However, [...] Read more.
Iron overloads osteoporosis mainly occurs to postmenopausal women and people requiring repeated blood transfusions. Iron overload increases the activity of osteoclasts and decreases the activity of osteoblasts, leading to the occurrence of osteoporosis. Conventional treatment options include calcium supplements and iron chelators. However, simple calcium supplementation is not effective, and it does not have a good therapeutic effect. Oxidative stress is one of the triggers for osteoporosis. Therefore, the study focuses on the antioxidant aspect of osteoporosis treatment. The present work revealed that antioxidant carboxymethyl chitosan-based carbon dots (AOCDs) can effectively treat iron overload osteoporosis. More interestingly, the functional modification of AOCDs by doping calcium gluconate (AOCDs:Ca) is superior to the use of any single component. AOCDs:Ca have the dual function of antioxidant and calcium supplement. AOCDs:Ca effectively improve the bioavailability of calcium and achieve ultra-low concentration calcium supplement for the treatment of iron-induced osteoporosis in zebrafish. Full article
(This article belongs to the Special Issue Nanoparticles with Antioxidant Activity)
Show Figures

Graphical abstract

17 pages, 5406 KiB  
Article
Introducing Semi-Interpenetrating Networks of Chitosan and Ammonium-Quaternary Polymers for the Effective Removal of Waterborne Pathogens from Wastewaters
by Iulia E. Neblea, Anita-L. Chiriac, Anamaria Zaharia, Andrei Sarbu, Mircea Teodorescu, Andreea Miron, Lisa Paruch, Adam M. Paruch, Andreea G. Olaru and Tanta-V. Iordache
Polymers 2023, 15(5), 1091; https://doi.org/10.3390/polym15051091 - 22 Feb 2023
Cited by 8 | Viewed by 2509
Abstract
The present work aims to study the influence of ammonium-quaternary monomers and chitosan, obtained from different sources, upon the effect of semi-interpenetrating polymer network (semi-IPN) hydrogels upon the removal of waterborne pathogens and bacteria from wastewater. To this end, the study was focused [...] Read more.
The present work aims to study the influence of ammonium-quaternary monomers and chitosan, obtained from different sources, upon the effect of semi-interpenetrating polymer network (semi-IPN) hydrogels upon the removal of waterborne pathogens and bacteria from wastewater. To this end, the study was focused on using vinyl benzyl trimethylammonium chloride (VBTAC), a water-soluble monomer with known antibacterial properties, and mineral-enriched chitosan extracted from shrimp shells, to prepare the semi-IPNs. By using chitosan, which still contains the native minerals (mainly calcium carbonate), the study intends to justify that the stability and efficiency of the semi-IPN bactericidal devices can be modified and better improved. The new semi-IPNs were characterized for composition, thermal stability and morphology using well-known methods. Swelling degree (SD%) and the bactericidal effect assessed using molecular methods revealed that hydrogels made of chitosan derived from shrimp shell demonstrated the most competitive and promising potential for wastewater (WW) treatment. Full article
(This article belongs to the Special Issue Polymer Composites for Advanced Water Treatment Applications)
Show Figures

Figure 1

23 pages, 6804 KiB  
Article
Effects of Calcium Carbonate Microcapsules and Nanohydroxyapatite on Properties of Thermosensitive Chitosan/Collagen Hydrogels
by Premjit Arpornmaeklong, Natthaporn Jaiman, Komsan Apinyauppatham, Asira Fuongfuchat and Supakorn Boonyuen
Polymers 2023, 15(2), 416; https://doi.org/10.3390/polym15020416 - 12 Jan 2023
Cited by 20 | Viewed by 2908
Abstract
Thermosensitive chitosan/collagen hydrogels are osteoconductive and injectable materials. In this study, we aimed to improve these properties by adjusting the ratio of nanohydroxyapatite particles to calcium carbonate microcapsules in a β-glycerophosphate-crosslinked chitosan/collagen hydrogel. Two hydrogel systems with 2% and 5% nanohydroxyapatite particles were [...] Read more.
Thermosensitive chitosan/collagen hydrogels are osteoconductive and injectable materials. In this study, we aimed to improve these properties by adjusting the ratio of nanohydroxyapatite particles to calcium carbonate microcapsules in a β-glycerophosphate-crosslinked chitosan/collagen hydrogel. Two hydrogel systems with 2% and 5% nanohydroxyapatite particles were studied, each of which had varying microcapsule content (i.e., 0%, 1%, 2%, and 5%). Quercetin-incorporated calcium carbonate microcapsules were prepared. Calcium carbonate microcapsules and nanohydroxyapatite particles were then added to the hydrogel according to the composition of the studied system. The properties of the hydrogels, including cytotoxicity and biocompatibility, were investigated in mice. The calcium carbonate microcapsules were 2–6 µm in size, spherical, with rough and nanoporous surfaces, and thus exhibited a burst release of impregnated quercetin. The 5% nanohydroxyapatite system is a solid particulate gel that supports homogeneous distribution of microcapsules in the three-dimensional matrix of the hydrogels. Calcium carbonate microcapsules increased the mechanical and physical strength, viscoelasticity, and physical stability of the nanohydroxyapatite hydrogels while decreasing their porosity, swelling, and degradation rates. The calcium carbonate microcapsules–nanohydroxyapatite hydrogels were noncytotoxic and biocompatible. The properties of the hydrogel can be tailored by adjusting the ratio of calcium carbonate microcapsules to the nanohydroxyapatite particles. The 1% calcium carbonate microcapsules containing 5% nanohydroxyapatite particle–chitosan/collagen hydrogel exhibited mechanical and physical strength, permeability, and prolonged release profiles of quercetin, which were superior to those of the other studied systems and were optimal for promoting bone regeneration and delivering natural flavonoids. Full article
(This article belongs to the Special Issue Advanced Biodegradable Polymer Scaffolds for Tissue Engineering)
Show Figures

Figure 1

17 pages, 3753 KiB  
Article
Functional Chitosan–Calcium Carbonate Coatings for Enhancing Water and Fungal Resistance of Paper Materials
by Erwan Le Goué, Frédérique Ham-Pichavant, Stéphane Grelier, Jordan Remy and Véronique Coma
Molecules 2022, 27(24), 8886; https://doi.org/10.3390/molecules27248886 - 14 Dec 2022
Cited by 4 | Viewed by 3639
Abstract
The objective of this study was to increase the water resistance of paper while providing fungal resistance using a bio-based coating made from chitosan. The water resistance was improved through the surface control of roughness using modified calcium carbonate particles. The higher the [...] Read more.
The objective of this study was to increase the water resistance of paper while providing fungal resistance using a bio-based coating made from chitosan. The water resistance was improved through the surface control of roughness using modified calcium carbonate particles. The higher the quantity of particles in the film-forming solution, the higher the surface hydrophobicity of the paper. The addition of particles was found to counterbalance the chitosan hydrophilicity through the control of the coatings’ penetration in the paper bulk. As a consequence, the wetting time and liquid water resistance were enhanced. The antifungal activity of the film-forming solutions and coated paper was also investigated against the growth of Chaetomium globosum, which was selected as a model strain able to contaminate paper materials. The results reveal that the antifungal activity of chitosan was improved by a possible synergic effect with the bicarbonate ions from the mineral particles. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

16 pages, 2298 KiB  
Article
A Top-Down Procedure for Synthesizing Calcium Carbonate-Enriched Chitosan from Shrimp Shell Wastes
by Andreea Miron, Andrei Sarbu, Anamaria Zaharia, Teodor Sandu, Horia Iovu, Radu Claudiu Fierascu, Ana-Lorena Neagu, Anita-Laura Chiriac and Tanta-Verona Iordache
Gels 2022, 8(11), 742; https://doi.org/10.3390/gels8110742 - 15 Nov 2022
Cited by 17 | Viewed by 5659
Abstract
Chitosan is used in medicine, pharmaceuticals, cosmetics, agriculture, water treatment, and food due to its superior biocompatibility and biodegradability. Nevertheless, the complex and relatively expensive extraction costs hamper its exploitation and, implicitly, the recycling of marine waste, the most abundant source of chitosan. [...] Read more.
Chitosan is used in medicine, pharmaceuticals, cosmetics, agriculture, water treatment, and food due to its superior biocompatibility and biodegradability. Nevertheless, the complex and relatively expensive extraction costs hamper its exploitation and, implicitly, the recycling of marine waste, the most abundant source of chitosan. In the spirit of developing environmental-friendly and cost-effective procedures, the present study describes one method worth consideration to deliver calcium-carbonate-enriched chitosan from shrimp shell waste, which proposes to maintain the native minerals in the structure of chitin in order to improve the thermal stability and processability of chitosan. Therefore, a synthesis protocol was developed starting from an optimized deacetylation procedure using commercial chitin. The ultimate chitosan product from shrimp shells, containing native calcium carbonate, was further compared to commercial chitosan and chitosan synthesized from commercial chitin. Finally, the collected data during the study pointed out that the prospected method succeeded in delivering calcium-carbonate-enriched chitosan with high deacetylation degree (approximately 75%), low molecular weight (Mn ≈ 10.000 g/ mol), a crystallinity above 59 calculated in the (020) plane, high thermal stability (maximum decomposition temperature over 300 °C), and constant viscosity on a wide range of share rates (quasi-Newtonian behavior), becoming a viable candidate for future chitosan-based materials that can expand the application horizon. Full article
(This article belongs to the Special Issue Chitosan Functional Hydrogels: Synthesis and Applications)
Show Figures

Graphical abstract

Back to TopTop