Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = Chinese cabbage harvester

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8119 KiB  
Article
Study on the Photosynthetic Physiological Responses of Greenhouse Young Chinese Cabbage (Brassica rapa L. Chinensis Group) Affected by Particulate Matter Based on Hyperspectral Analysis
by Lijuan Kong, Siyao Gao, Jianlei Qiao, Lina Zhou, Shuang Liu, Yue Yu and Haiye Yu
Plants 2025, 14(10), 1479; https://doi.org/10.3390/plants14101479 - 15 May 2025
Viewed by 498
Abstract
Particulate matter affects both the light environment and air quality in greenhouses, obstructing normal gas exchange and hindering efficient physiological activities such as photosynthesis. This study focused on young Chinese cabbage (Brassica rapa L. Chinensis Group) in a greenhouse at harvest [...] Read more.
Particulate matter affects both the light environment and air quality in greenhouses, obstructing normal gas exchange and hindering efficient physiological activities such as photosynthesis. This study focused on young Chinese cabbage (Brassica rapa L. Chinensis Group) in a greenhouse at harvest time, monitoring and comparing hyperspectral information, net photosynthetic rate, and microscopic leaf structure under two conditions: a quantitative artificial particulate matter environment and a healthy environment. Based on microscopic results combined with spectral responses and changes in photosynthetic physiological information, it is believed that particulate matter enters plant cells through stomata. Through retention and transport pathways, it disrupts the membrane structure, organelles, and other components of plant cells, resulting in adverse effects on the plant’s physiological functions. The study analyzed the mechanisms by which particulate matter influences the photosynthesis, spectral characteristics, and physiological responses of young Chinese cabbage. Physiological Reflectance Index (PRI), Modified Chlorophyll Absorption Ratio Index (MCARI), spectral red-edge position (λr), and spectral sensitive bands were used as spectral feature variables. Through cubic polynomial and 24 combinations of spectral preprocessing and modeling methods, an inversion model of spectral features and net photosynthetic rate was established. The optimal combination of spectral preprocessing and modeling methods was finally selected as SG + SD + PLS + MSC, which consists of Savitzky-Golay smooth (SG), second derivative (SD), partial least squares (PLS), and multiplicative scatter correction (MSC). The coefficient of determination (R2) of the model is 0.9513. The results indicate that particulate matter affects plant photosynthesis. The SG + SD + PLS + MSC combination method is relatively advantageous for processing the photosynthetic spectral physiological information of plants under the influence of particulate matter. The results of this study will deepen the understanding of the mechanisms by which particulate matter affects plants and provide a reference for the physiological information inversion of greenhouse vegetables under particulate matter pollution. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

18 pages, 2373 KiB  
Article
Yield, Bioactive Compounds, and Antioxidant Potential of Twenty-Three Diverse Microgreen Species Grown Under Controlled Conditions
by Bhornchai Harakotr, Lalita Charoensup, Panumart Rithichai, Yaowapha Jirakiattikul and Patlada Suthamwong
Resources 2025, 14(5), 71; https://doi.org/10.3390/resources14050071 - 27 Apr 2025
Viewed by 978
Abstract
Selecting suitable crop species is crucial for optimizing the productivity and nutritional content of microgreens. In this study, twenty-three diverse microgreen species, grown under controlled conditions, were analyzed for yield, bioactive compounds, and antioxidant activities. The microgreens were cultivated on a peat substrate [...] Read more.
Selecting suitable crop species is crucial for optimizing the productivity and nutritional content of microgreens. In this study, twenty-three diverse microgreen species, grown under controlled conditions, were analyzed for yield, bioactive compounds, and antioxidant activities. The microgreens were cultivated on a peat substrate in a controlled environment, with a growth period of 6 to 20 days from planting to harvest. Conditions were maintained at 25 ± 2 °C, a 16 h photoperiod, CO2 concentration of 1000 ppm, relative humidity of 60 ± 2%, and the LED light was set at 330 μmol/m2/s PPFD. Results from the analysis revealed that the yield, bioactive compounds, and antioxidant potential differed significantly among the twenty-three microgreen species. Unfortunately, the superior microgreens exhibiting greater values for all studied traits could not be identified. However, the principal component analysis (PCA) clustered red radish, rat-tailed radish, and Chinese kale microgreens, which were high in both yield and bioactive compounds. In contrast, red holy basil and lemon basil microgreens had high levels of these compounds but low yields. Additionally, a high level of anti-tyrosinase activity was observed in garland chrysanthemum, Chinese mustard, and Chinese cabbage microgreens. Therefore, these microgreen species can be utilized individually or in varying ratios to produce bioactive compounds in different concentrations that are suitable for various applications. The information presented in this study provides valuable insights for health-conscious consumers and growers for selecting superior species with functional implications. Full article
Show Figures

Graphical abstract

29 pages, 10278 KiB  
Article
Design and Experiment of a Universal Harvesting Platform for Cabbage and Chinese Cabbage
by Ze Liu, Hanping Mao, Yana Wang, Tao Jiang, Zhiyu Zuo, Jiajun Chai, Chengyi Liu, Lei Shen, Shuocheng Wei and Guoxin Ma
Agriculture 2025, 15(9), 935; https://doi.org/10.3390/agriculture15090935 - 25 Apr 2025
Viewed by 487
Abstract
To address the issue of the single-crop adaptability of current head-forming leafy vegetable harvesters in China—which limits their ability to harvest multiple vegetable varieties—a universal cabbage–Chinese cabbage harvesting platform was designed. This design was based on the statistical analysis of the physical and [...] Read more.
To address the issue of the single-crop adaptability of current head-forming leafy vegetable harvesters in China—which limits their ability to harvest multiple vegetable varieties—a universal cabbage–Chinese cabbage harvesting platform was designed. This design was based on the statistical analysis of the physical and planting parameters of major cabbage and Chinese cabbage varieties in Jiangsu and Zhejiang provinces. The harvesting platform adopts a modular design, enabling the harvesting of both Chinese cabbage and cabbage by replacing specific components and adjusting relevant parameters. Through the theoretical analysis of key components, the specific parameters of each part were determined, and a soil-trough harvesting test was conducted. The results of the Chinese cabbage harvesting test showed that at a forward speed of 1 km·h−1 and a conveyor belt speed of 60 RPM, the platform achieved optimal performance, with an extraction success rate of 86.7%, a clamping and conveying success rate of 92.3%, and an operational damage rate of 6.7%. The cabbage soil-trough harvesting test results indicated that when the extraction roller speed was 100 RPM, the conveyor belt speed was 60 RPM, and the forward speed was 1 km·h−1, the extraction and feeding success rate reached 93.3%, the conveying success rate was 100%, and the operational loss rate was 6.7%, representing the best overall performance. This study provides theoretical support and references for the design of universal harvesters for head-forming leafy vegetables. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

22 pages, 7566 KiB  
Article
Design and Simulation of Chinese Cabbage Harvester
by Simo Liu, Xuhui Yang, Zhe Zhang, Jianing Xu, Ping Zhao, Subo Tian, Lihua Wei and Xiaofeng Ning
Agriculture 2025, 15(8), 831; https://doi.org/10.3390/agriculture15080831 - 11 Apr 2025
Viewed by 568
Abstract
In view of the problems of low work efficiency and high operating costs caused by manual harvesting of Chinese cabbage in China, in this study, a Chinese cabbage harvester with agronomic integrity was designed. The harvester is mainly composed of a crawler chassis, [...] Read more.
In view of the problems of low work efficiency and high operating costs caused by manual harvesting of Chinese cabbage in China, in this study, a Chinese cabbage harvester with agronomic integrity was designed. The harvester is mainly composed of a crawler chassis, a drawing device, a flexible clamping device, a cutting device, and a horizontal delivery device. Firstly, physical properties of Chinese cabbage such as diameter, plant height, weight, and drawing rate of Chinese cabbage were measured and analyzed to provide necessary basic data for the design of the harvester. Secondly, simulation tests were conducted on the Chinese cabbage harvesting process; a 3D model of Chinese cabbage using SolidWorks 2022 was established and filled with particles using the three-layer stacking method. At the same time, SolidWorks was applied to simplify the model of the Chinese cabbage harvester. The belt of the machine model was set as a flexible body through RecurDyn 2023 software and coupled with EDEM 2022 for simulation analysis. Based on single factor tests, the BBD model was applied to conduct multi-factor response surface analysis on the above factor levels. The optimal working conditions of the harvester were obtained as follows: the rotating speed of the cutting device was 207.85 r/min, the rotating speed of the flexible clamping conveyor belt was 165.51 r/min, the rotating speed of the drawing device was 102.38 r/min, and the machine walking speed was 1.37 km/h. The qualified rate of Chinese cabbage harvesting was the highest, achieving a maximum theoretical value of 97.91%. Field validation tests were conducted on the designed Chinese cabbage harvester. Based on the actual operating conditions of the Chinese cabbage harvester and the simulated operating parameters, the optimal parameter combination was finally determined as follows: rotating speed of the root cutting device was 200 r/min, rotating speed of the flexible clamping conveyor belt was 160 r/min, rotating speed of the drawing device was 100 r/min, and machine walking speed was 1.4 km/h, respectively. Through field verification tests, the highest qualified rate of Chinese cabbage harvesting reached 93.19%, showing a good harvesting effect, which approximates the simulated optimal qualified rate of 97.91%, meeting the mechanized harvesting demand of Chinese cabbage. This study provides reference to the further design and development of Chinese cabbage harvesters in the future. Full article
Show Figures

Figure 1

14 pages, 14455 KiB  
Article
NAC047/052/104 Synergistically Regulate the Dark-Induced Leaf Senescence in Non-Heading Chinese Cabbage
by Bing Yang, Dingyu Zhang, Zitong Meng, Yijiang Yin, Xiao Yang, Mengqin Cao, Ruixin Li, Yishan Song and Hongfang Zhu
Int. J. Mol. Sci. 2025, 26(5), 2340; https://doi.org/10.3390/ijms26052340 - 6 Mar 2025
Viewed by 619
Abstract
Non-heading Chinese cabbage (NHCC) is an important vegetable, and its leaves are harvested for consumption. Thus, the initiation and progression of leaf senescence in NHCC directly impact its yield and quality. In multiple plant species, NAC transcription factors are known to act as [...] Read more.
Non-heading Chinese cabbage (NHCC) is an important vegetable, and its leaves are harvested for consumption. Thus, the initiation and progression of leaf senescence in NHCC directly impact its yield and quality. In multiple plant species, NAC transcription factors are known to act as critical regulators of leaf senescence. However, in NHCC, the NAC transcription factors contributing to leaf senescence regulation remain to be identified, and the mechanisms underlying dark-induced leaf senescence remain unclear. To explore the molecular mechanisms of leaf senescence in NHCC, we stored NHCC away from light and subsequently examined dark-induced transcriptional alterations via RNA sequencing. Interestingly, three NAC transcription factors, BrNAC047, BrNAC052, and BrNAC104, were found to be potently activated by darkness. Subsequently, the virus-induced gene silencing of BrNAC047, BrNAC052, and BrNAC104 demonstrated that these three NACs act as positive regulators of dark-induced leaf senescence in NHCC. Dual-luciferase assays further confirmed that BrNAC047, BrNAC052, and BrNAC104 directly activate the promoters of certain senescence-associated genes. This study uncovers the molecular signaling pathways governing dark-induced leaf senescence in NHCC, highlighting the role of three key regulators and offering valuable molecular targets for delaying leaf senescence in NHCC. Full article
(This article belongs to the Special Issue Research on Plant Genomics and Breeding: 2nd Edition)
Show Figures

Figure 1

21 pages, 10251 KiB  
Article
Autonomous Self-Propelled Napa Cabbage Harvester: Cutting, Attitude Control, and Loading Modules
by Yonghyun Park, Myeong-Sin Kim, Juwon Shin, Yongjin Cho, Hyuck-Joo Kim and Hyoung Il Son
Agriculture 2024, 14(11), 1869; https://doi.org/10.3390/agriculture14111869 - 23 Oct 2024
Viewed by 2296
Abstract
This paper introduces an autonomous self-propelled Napa cabbage harvester, designed to significantly improve the efficiency and effectiveness of the traditionally labor-intensive harvesting process. The harvester integrates three key modules: a cutting, an attitude control, and a loading module. The cutting module is equipped [...] Read more.
This paper introduces an autonomous self-propelled Napa cabbage harvester, designed to significantly improve the efficiency and effectiveness of the traditionally labor-intensive harvesting process. The harvester integrates three key modules: a cutting, an attitude control, and a loading module. The cutting module is equipped with an attitude control module that ensures precise severance of the Napa cabbage stems, minimizing damage to the crop and maintaining product quality. The attitude control module employs a backstepping-based force control that continuously adjusts the cutting angle and height to ensure consistent cutting precision, even on uneven terrain, thereby optimizing the quality of the Napa cabbages. The loading module automates the collection and transfer of harvested Napa cabbages into storage, significantly reducing the physical burden on workers and improving operational efficiency. Field experiments demonstrated improvements, including a 42–66% reduction in task time compared to manual harvesting, as well as a 37% increase in cutting accuracy through the use of autonomous control. The proposed system presents a comprehensive solution for enhancing productivity, reducing labor demands, and maintaining high crop quality in Napa cabbage harvesting, offering a practical approach to modernizing agricultural practices. Full article
Show Figures

Figure 1

25 pages, 27763 KiB  
Article
Improved Multi-Size, Multi-Target and 3D Position Detection Network for Flowering Chinese Cabbage Based on YOLOv8
by Yuanqing Shui, Kai Yuan, Mengcheng Wu and Zuoxi Zhao
Plants 2024, 13(19), 2808; https://doi.org/10.3390/plants13192808 - 7 Oct 2024
Cited by 4 | Viewed by 1876
Abstract
Accurately detecting the maturity and 3D position of flowering Chinese cabbage (Brassica rapa var. chinensis) in natural environments is vital for autonomous robot harvesting in unstructured farms. The challenge lies in dense planting, small flower buds, similar colors and occlusions. This study [...] Read more.
Accurately detecting the maturity and 3D position of flowering Chinese cabbage (Brassica rapa var. chinensis) in natural environments is vital for autonomous robot harvesting in unstructured farms. The challenge lies in dense planting, small flower buds, similar colors and occlusions. This study proposes a YOLOv8-Improved network integrated with the ByteTrack tracking algorithm to achieve multi-object detection and 3D positioning of flowering Chinese cabbage plants in fields. In this study, C2F-MLCA is created by adding a lightweight Mixed Local Channel Attention (MLCA) with spatial awareness capability to the C2F module of YOLOv8, which improves the extraction of spatial feature information in the backbone network. In addition, a P2 detection layer is added to the neck network, and BiFPN is used instead of PAN to enhance multi-scale feature fusion and small target detection. Wise-IoU in combination with Inner-IoU is adopted as a new loss function to optimize the network for different quality samples and different size bounding boxes. Lastly, ByteTrack is integrated for video tracking, and RGB-D camera depth data are used to estimate cabbage positions. The experimental results show that YOLOv8-Improve achieves a precision (P) of 86.5% and a recall (R) of 86.0% in detecting the maturity of flowering Chinese cabbage. Among them, mAP50 and mAP75 reach 91.8% and 61.6%, respectively, representing an improvement of 2.9% and 4.7% over the original network. Additionally, the number of parameters is reduced by 25.43%. In summary, the improved YOLOv8 algorithm demonstrates high robustness and real-time detection performance, thereby providing strong technical support for automated harvesting management. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

14 pages, 3081 KiB  
Article
Profiling Metabolites Distribution among Various Leaf Layers of Chinese Cabbage
by Yanting Zhao, Huasen Wang, Ying Mei, Zhichen Yue, Juanli Lei, Peng Tao, Biyuan Li, Jianjun Zhao and Qizan Hu
Horticulturae 2024, 10(9), 988; https://doi.org/10.3390/horticulturae10090988 - 18 Sep 2024
Cited by 3 | Viewed by 1339
Abstract
Chinese cabbage is an important vegetable from both a nutritional and an economic standpoint, with the leafy head serving as the primary harvested organ. However, the nutrient accumulation as well as influencing factors within the leafy head have not yet been elucidated. Thus, [...] Read more.
Chinese cabbage is an important vegetable from both a nutritional and an economic standpoint, with the leafy head serving as the primary harvested organ. However, the nutrient accumulation as well as influencing factors within the leafy head have not yet been elucidated. Thus, the distribution of metabolites (soluble sugars, minerals, carotenoids, vitamin C, flavonoid compounds, glucosinolates, and total phenolic compounds) were investigated in different leaf layers of Chinese cabbage with varying head types. The results showed that the inner leaves consistently displayed markedly higher levels of fructose and glucose when contrasted with the outer leaves. Similarly, there was an accumulation of glucosinolates in the inner leaves. By contrast, however, the antioxidants content exhibited a consistent decline from the outer leaves towards the central core, in line with the diminishing antioxidant capacity. This descending trend was also apparent in the mineral content, encompassing calcium, sodium, magnesium and sulfur. These results will provide dietary instruction, especially for consumers who have particular dietary needs. Full article
Show Figures

Figure 1

10 pages, 1350 KiB  
Article
Investigation of Residue Dissipation of Fluxapyroxad and Its Metabolites in Chinese Cabbage and Spring Scallion Using Different Application Methods
by Ji Won Lee, Jin-Seong Kim, Ji Hyun Park, Hyun Ho Noh, Min Seok Oh, Jin-Hyo Kim and Kyeong-Ae Son
Plants 2024, 13(17), 2448; https://doi.org/10.3390/plants13172448 - 1 Sep 2024
Cited by 2 | Viewed by 1647
Abstract
Fluxapyroxad, a persistent fungicide in soil, was investigated for differences in residue dissipation in Chinese cabbage and spring scallion through the application methods of soil, foliar, and systemic treatment. Soil application of 0.4% granule fluxapyroxad resulted in residues up to 0.09 mg kg [...] Read more.
Fluxapyroxad, a persistent fungicide in soil, was investigated for differences in residue dissipation in Chinese cabbage and spring scallion through the application methods of soil, foliar, and systemic treatment. Soil application of 0.4% granule fluxapyroxad resulted in residues up to 0.09 mg kg−1 in the scallion, while it did not contribute to the residues in the harvested cabbage. The 50% dissipation time (DT50) of fluxapyroxad in the scallion was 6.8 days. The residues from systemic treatment were highly correlated with foliar application in both the cabbage and the scallion, and the initial residue and DT50 values were similar for foliar and systemic treatments. In comparing the residues from the systemic treatments between the two crops, the initial residue was 3.11 and 0.22 mg kg−1 in the cabbage and the scallion after the systemic treatment, respectively. The DT50 values were 2.6 and 12.2 days in the cabbage and the scallion, respectively. The theoretical dilution effect due to crop growth was higher for the cabbage (4-fold) than for the scallion (1.2-fold), and the half-lives of fluxapyroxad without considering the dilution effect were 6.4 days in the cabbage and 17.8 days in the scallion. Thus, the residue difference was drastically reduced after 14 days from the last treatment. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

23 pages, 5896 KiB  
Article
A Lightweight Method for Ripeness Detection and Counting of Chinese Flowering Cabbage in the Natural Environment
by Mengcheng Wu, Kai Yuan, Yuanqing Shui, Qian Wang and Zuoxi Zhao
Agronomy 2024, 14(8), 1835; https://doi.org/10.3390/agronomy14081835 - 20 Aug 2024
Cited by 6 | Viewed by 1512
Abstract
The rapid and accurate detection of Chinese flowering cabbage ripeness and the counting of Chinese flowering cabbage are fundamental for timely harvesting, yield prediction, and field management. The complexity of the existing model structures somewhat hinders the application of recognition models in harvesting [...] Read more.
The rapid and accurate detection of Chinese flowering cabbage ripeness and the counting of Chinese flowering cabbage are fundamental for timely harvesting, yield prediction, and field management. The complexity of the existing model structures somewhat hinders the application of recognition models in harvesting machines. Therefore, this paper proposes the lightweight Cabbage-YOLO model. First, the YOLOv8-n feature pyramid structure is adjusted to effectively utilize the target’s spatial structure information as well as compress the model in size. Second, the RVB-EMA module is introduced as a necking optimization mechanism to mitigate the interference of shallow noise in the high-resolution sounding layer and at the same time to reduce the number of parameters in this model. In addition, the head uses an independently designed lightweight PCDetect detection head, which enhances the computational efficiency of the model. Subsequently, the neck utilizes a lightweight DySample upsampling operator to capture and preserve underlying semantic information. Finally, the attention mechanism SimAm is inserted before SPPF for an enhanced ability to capture foreground features. The improved Cabbage-YOLO is integrated with the Byte Tracker to track and count Chinese flowering cabbage in video sequences. The average detection accuracy of Cabbage-YOLO can reach 86.4%. Compared with the original model YOLOv8-n, its FLOPs, the its number of parameters, and the size of its weights are decreased by about 35.9%, 47.2%, and 45.2%, respectively, and its average detection precision is improved by 1.9% with an FPS of 107.8. In addition, the integrated Cabbage-YOLO with the Byte Tracker can also effectively track and count the detected objects. The Cabbage-YOLO model boasts higher accuracy, smaller size, and a clear advantage in lightweight deployment. Overall, the improved lightweight model can provide effective technical support for promoting intelligent management and harvesting decisions of Chinese flowering cabbage. Full article
(This article belongs to the Special Issue Advanced Machine Learning in Agriculture)
Show Figures

Figure 1

20 pages, 10327 KiB  
Article
Improved Feature Fusion in YOLOv5 for Accurate Detection and Counting of Chinese Flowering Cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee) Buds
by Kai Yuan, Qian Wang, Yalong Mi, Yangfan Luo and Zuoxi Zhao
Agronomy 2024, 14(1), 42; https://doi.org/10.3390/agronomy14010042 - 22 Dec 2023
Cited by 5 | Viewed by 2035
Abstract
Chinese flowering cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee) is an important leaf vegetable originating from southern China. Its planting area is expanding year by year. Accurately judging its maturity and determining the appropriate harvest time are crucial [...] Read more.
Chinese flowering cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee) is an important leaf vegetable originating from southern China. Its planting area is expanding year by year. Accurately judging its maturity and determining the appropriate harvest time are crucial for production. The open state of Chinese flowering cabbage buds serves as a crucial maturity indicator. To address the challenge of accurately identifying Chinese flowering cabbage buds, we introduced improvements to the feature fusion approach of the YOLOv5 (You Only Look Once version 5) algorithm, resulting in an innovative algorithm with a dynamically adjustable detection head, named FPNDyH-YOLOv5 (Feature Pyramid Network with Dynamic Head-You Only Look Once version 5). Firstly, a P2 detection layer was added to enhance the model’s detection ability of small objects. Secondly, the spatial-aware attention mechanism from DyHead (Dynamic Head) for feature fusion was added, enabling the adaptive fusion of semantic information across different scales. Furthermore, a center-region counting method based on the Bytetrack object tracking algorithm was devised for real-time quantification of various categories. The experimental results demonstrate that the improved model achieved a mean average precision (mAP@0.5) of 93.9%, representing a 2.5% improvement compared to the baseline model. The average precision (AP) for buds at different maturity levels was 96.1%, 86.9%, and 98.7%, respectively. When applying the trained model in conjunction with Bytetrack for video detection, the average counting accuracy, relative to manual counting, was 88.5%, with class-specific accuracies of 90.4%, 80.0%, and 95.1%. In conclusion, this method facilitates relatively accurate classification and counting of Chinese flowering cabbage buds in natural environments. Full article
(This article belongs to the Special Issue Computer Vision and Deep Learning Technology in Agriculture)
Show Figures

Figure 1

16 pages, 1861 KiB  
Article
Effects of Different Manures in Combination with Fulvic Acid on the Abundance of N-Cycling Functional Genes in Greenhouse Soils
by Shouqiang Zhao, Zhongyang Li, Chuncheng Liu, Jiuming Sun, Jibin Song, Xiaotong Li and Yuan Liu
Agriculture 2023, 13(12), 2224; https://doi.org/10.3390/agriculture13122224 - 30 Nov 2023
Cited by 5 | Viewed by 2515
Abstract
To investigate the effects of different manures in combination with fulvic acid on the abundance of N-cycling functional genes in greenhouse soils, Chinese cabbage was planted for three growing seasons. A total of six treatments—pig manure (P), pig manure + fulvic acid (PH), [...] Read more.
To investigate the effects of different manures in combination with fulvic acid on the abundance of N-cycling functional genes in greenhouse soils, Chinese cabbage was planted for three growing seasons. A total of six treatments—pig manure (P), pig manure + fulvic acid (PH), chicken manure (C), chicken manure + fulvic acid (CH), sheep manure (S), sheep manure + fulvic acid (SH) and no fertilization (CK)—were set up. The abundance of 13 soil N-cycling functional genes (gdhA, amoA-1, amoA-2, amoB, narG, nirK-1, nirK-2, nirK-3, nirS-1, nirS-2, nirS-3, nosZ and nifH) were investigated after the harvest of the third growing season using a gene chip approach. The results showed that fertilization treatments increased the abundance of most N-cycling functional genes in the soil, such as nitrification genes amoA-2 and amoB as well as denitrification genes narG, nirK-1, nirS-1 and nirS-2, with the stronger influence of sheep and pig manure than chicken manure. Fortunately, the additional fulvic acid reduced the increasing effect resulting from pig, chicken and sheep manure application. The abundance of functional genes for nitrogen cycling in soil was positively correlated with the content of soil organic matter, available phosphorus and NO3-N, and negatively correlated with electrical conductivity. Overall, fertilization treatments increased soil nitrification and denitrification genes abundance, with a risk of increasing soil nitrogen loss, but the supplementary fulvic acid could limit the increase. In this study, it was concluded that the sheep manure (31.3 t/ha) + fulvic acid (7.5 kg/ha) treatment was more powerful in regulating the abundance of N-cycling functional genes in soil. Full article
Show Figures

Figure 1

15 pages, 2072 KiB  
Article
Optimized Nitrogen Fertilizer Rate Can Increase Yield and Nitrogen Use Efficiency for Open-Field Chinese Cabbage in Southwest China
by Hailin Cao, Fen Zhang, Jian Fu, Xiao Ma, Junjie Wang, Fabo Liu, Guangzheng Guo, Yiming Tian, Tao Liang, Na Zhou, Yan Wang, Xinping Chen and Xiaozhong Wang
Agronomy 2023, 13(6), 1578; https://doi.org/10.3390/agronomy13061578 - 11 Jun 2023
Cited by 5 | Viewed by 2952
Abstract
Intensive vegetable production has been characterized by high nitrogen (N) fertilizer input in southwest China. Optimizing the N fertilizer rate is the basis for the optimal management of regional N fertilizer. A two-year field experiment with five N fertilizer rates was conducted during [...] Read more.
Intensive vegetable production has been characterized by high nitrogen (N) fertilizer input in southwest China. Optimizing the N fertilizer rate is the basis for the optimal management of regional N fertilizer. A two-year field experiment with five N fertilizer rates was conducted during 2019–2021 in southwest China, and the aim of this study was to identify the effects of different N application rates on yield, dry matter biomass (DMB), N uptake, N use efficiency (NUE) and soil mineral N (Nmin) residues for Chinese cabbage (Brassica chinensis L.) and further determine the critical plant N concentration and root-zone soil Nmin residues required to reach the maximum DMB of Chinese cabbage. Five N treatments were established: control without N input (CK); optimal N fertilizer rate decreased by 30% (70% OPT, 175 kg N ha−1), optimized N fertilizer rate (OPT, 250 kg N ha−1), optimal N fertilizer rate increased by 30% (130% OPT, 325 kg N ha−1) and farmers’ N fertilizer practice (FP, 450 kg N ha−1). The N source in all treatments was conventional urea (N ≥ 46.2%). The results showed that the total yield of Chinese cabbage followed a “linear-plateau” trend with an increasing N fertilizer rate. There was no significant difference in yield between the OPT, 130% OPT and FP treatments. The aboveground plant DMB and N uptake showed a ‘slow-fast-slow’ pattern with the growth period. There was no significant difference in aboveground plant DMB and N uptake between the OPT, 130% OPT and FP treatments. Moreover, the OPT treatment significantly increased the aboveground plant DMB and N accumulation by 29.6% and 40.5%, respectively, compared with the 70% OPT treatment. The OPT treatment significantly increased the NUE by 23.8%, 31.2% and 43.1% compared with that in the 70% OPT, 130% OPT and FP treatments, respectively. The linear-plateau model provided the best fit for the relationship among aboveground DMB of Chinese cabbage, plant N concentration and root-zone soil Nmin content. The critical root-zone soil Nmin and plant N concentrations were 94.1, 63.4 and 68.3 kg ha−1 and 34.4, 33.5 and 32.9 g kg−1 during the rosette, heading and harvest periods, respectively. In summary, compared to the FP treatment, the optimized N fertilizer rate (250 kg N ha−1) could significantly reduce the N application rate, maintain yield, increase aboveground plant DMB and N uptake, and improve NUE. Moreover, the study has great significance for guiding the green utilization of vegetable N fertilizer in southwest China. Full article
(This article belongs to the Special Issue Growth and Nutrient Management of Vegetables)
Show Figures

Figure 1

14 pages, 2746 KiB  
Article
Palmitic Acid Regulation of Stem Browning in Freshly Harvested Mini-Chinese Cabbage (Brassica pekinensis (Lour.) Rupr.)
by Hongdou Gao, Shixian Zeng, Xiaozhen Yue, Shuzhi Yuan, Jinhua Zuo and Qing Wang
Foods 2023, 12(5), 1105; https://doi.org/10.3390/foods12051105 - 5 Mar 2023
Cited by 4 | Viewed by 2412
Abstract
The effect of palmitic acid (PA) on stem browning was investigated in freshly harvested mini-Chinese cabbage (Brassica pekinensis). Results indicated that concentrations of PA ranging from 0.03 g L−1 to 0.05 g L−1 inhibited stem browning and decreased the [...] Read more.
The effect of palmitic acid (PA) on stem browning was investigated in freshly harvested mini-Chinese cabbage (Brassica pekinensis). Results indicated that concentrations of PA ranging from 0.03 g L−1 to 0.05 g L−1 inhibited stem browning and decreased the rate of respiration, electrolyte leakage, and weight loss, as well as the level of malondialdehyde (MDA) in freshly harvested mini-Chinese cabbage stored at 25 °C for 5 d. The PA treatment enhanced the activity of antioxidant enzymes (ascorbate peroxidase (APX), catalase (CAT), peroxidase (POD), 4-coumarate:CoA ligase (4CL) and phenylalamine ammonia lyase (PAL)), and inhibited the activity of polyphenol oxidase (PPO). The PA treatment also increased the level of several phenolics (chlorogenic acid, gallic acid, catechin, p-coumaric acid, ferulic acid, p-hydroxybenzoic acid, and cinnamic acid) and flavonoids (quercetin, luteolin, kaempferol, and isorhamnetin). In summary, results indicate that treatment of mini-Chinese cabbage with PA represents an effective method for delaying stem browning and maintaining the physiological quality of freshly harvested mini-Chinese cabbage due to the ability of PA to enhance antioxidant enzyme activity and the level of phenolics and flavonoids during 5 d. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

22 pages, 6944 KiB  
Article
Bio-Geophysical Suitability Mapping for Chinese Cabbage of East Asia from 2001 to 2020
by Shuai Shao and Wataru Takeuchi
Remote Sens. 2023, 15(5), 1427; https://doi.org/10.3390/rs15051427 - 3 Mar 2023
Cited by 2 | Viewed by 3284
Abstract
The cultivation of Chinese cabbage is a crucial source of daily vegetable supply for both human consumption and livestock feed, particularly in East Asian countries. However, changes in global climate and land usage have resulted in significant shifts in the ecological conditions suitable [...] Read more.
The cultivation of Chinese cabbage is a crucial source of daily vegetable supply for both human consumption and livestock feed, particularly in East Asian countries. However, changes in global climate and land usage have resulted in significant shifts in the ecological conditions suitable for Chinese cabbage production, thereby threatening its productivity. To address this issue, this study was conducted to map the bio-geophysical suitability of Chinese cabbage in East Asia (Japan, Northeast China, South Korea, and North Korea) from 2001 to 2020. This study integrated six key factors—temperature, rainfall, photosynthetically active radiation (PAR), soil nitrogen, soil pH, and soil texture—into a seasonal and monthly bio-geophysical suitability assessment using a GIS-based Analytic Hierarchy Process–Multiple-Criteria Decision-Making Analysis (AHP-MCDA). The levels of bio-geophysical suitability were categorized into four levels: optimal, suitable, marginal, and unsuitable. The findings of the study firstly indicate that summer is the optimal season for Chinese cabbage cultivation, as it was found to have the highest level of optimal suitability among the four seasons in East Asia. South Korea has the largest percentage of optimal and suitable areas compared to the other three countries. Secondly, this study also conducted a comparison analysis between bio-geophysical suitability and Normalized Difference Vegetation Index (NDVI) over 20 years, and the results show good consistency between the two indicators, with the highest R2 value being 0.61. Thirdly, the comparison between bio-geophysical suitability and production data in two villages in Japan demonstrates that an increase in suitability from 0.28 to 0.32 indicates a significant increase in production. Production would stay stable even with further increases in suitability. Finally, two case studies with monthly comparisons of bio-geophysical suitability across Japan and East Asia in 2020 provide an effective benchmark for determining optimal sowing and harvest times. This study’s results can provide important insights into the trade of Chinese cabbage and support the development of agricultural insurance programs both for farmers and insurance companies. Furthermore, this approach may also be applicable for the assessment of the suitability of other crops. Full article
Show Figures

Graphical abstract

Back to TopTop