Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (113)

Search Parameters:
Keywords = Cdse/ZnS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 8143 KiB  
Article
An Edge-Deployable Multi-Modal Nano-Sensor Array Coupled with Deep Learning for Real-Time, Multi-Pollutant Water Quality Monitoring
by Zhexu Xi, Robert Nicolas and Jiayi Wei
Water 2025, 17(14), 2065; https://doi.org/10.3390/w17142065 - 10 Jul 2025
Viewed by 332
Abstract
Real-time, high-resolution monitoring of chemically diverse water pollutants remains a critical challenge for smart water management. Here, we report a fully integrated, multi-modal nano-sensor array, combining graphene field-effect transistors, Ag/Au-nanostar surface-enhanced Raman spectroscopy substrates, and CdSe/ZnS quantum dot fluorescence, coupled to an edge-deployable [...] Read more.
Real-time, high-resolution monitoring of chemically diverse water pollutants remains a critical challenge for smart water management. Here, we report a fully integrated, multi-modal nano-sensor array, combining graphene field-effect transistors, Ag/Au-nanostar surface-enhanced Raman spectroscopy substrates, and CdSe/ZnS quantum dot fluorescence, coupled to an edge-deployable CNN-LSTM architecture that fuses raw electrochemical, vibrational, and photoluminescent signals without manual feature engineering. The 45 mm × 20 mm microfluidic manifold enables continuous flow-through sampling, while 8-bit-quantised inference executes in 31 ms at <12 W. Laboratory calibration over 28,000 samples achieved limits of detection of 12 ppt (Pb2+), 17 pM (atrazine) and 87 ng L−1 (nanoplastics), with R2 ≥ 0.93 and a mean absolute percentage error <6%. A 24 h deployment in the Cherwell River reproduced natural concentration fluctuations with field R2 ≥ 0.92. SHAP and Grad-CAM analyses reveal that the network bases its predictions on Dirac-point shifts, characteristic Raman bands, and early-time fluorescence-quenching kinetics, providing mechanistic interpretability. The platform therefore offers a scalable route to smart water grids, point-of-use drinking water sentinels, and rapid environmental incident response. Future work will address sensor drift through antifouling coatings, enhance cross-site generalisation via federated learning, and create physics-informed digital twins for self-calibrating global monitoring networks. Full article
Show Figures

Figure 1

17 pages, 3346 KiB  
Article
Quantum Dots Affect Actin Cytoskeleton Reorganization, Resulting in Impaired HeLa and THLE-2 Cell Motility
by Mileah Metcalf, Abhishu Chand and Kyoungtae Kim
Micro 2025, 5(2), 29; https://doi.org/10.3390/micro5020029 - 12 Jun 2025
Viewed by 476
Abstract
Quantum dots (QDs) are nanoparticles with intrinsic fluorescence. Recent studies have found that metal-based QDs often impart toxic effects on the biological systems they interact with. Their undefined limitations have offset their potential for biomedical application. Our study aimed to address the research [...] Read more.
Quantum dots (QDs) are nanoparticles with intrinsic fluorescence. Recent studies have found that metal-based QDs often impart toxic effects on the biological systems they interact with. Their undefined limitations have offset their potential for biomedical application. Our study aimed to address the research gap regarding QDs’ impacts on the intracellular actin cytoskeleton and the associated structures. Our XTT viability assays revealed that QDs only reduced viability in transformed human liver epithelial (THLE-2) cells, whereas HeLa cells remained viable after QD treatment. We also used confocal microscopy to evaluate the morphological changes in THLE-2 induced by QDs. We further investigated cell protrusion morphology using phalloidin-Alexa488 which selectively labels F-actin. The fluorescent microscopy of this phalloidin label revealed that QD treatment resulted in the redistribution of actin filaments within both THLE-2 and HeLa cells. We also report that the average number of focal adhesions decreased in QD-treated cells. As actin filaments at the cell are peripherally linked to the extracellular matrix via talin and integrin and are thus a crucial component of cell motility, we conducted a migration assay. The migration assay revealed that cell motility was significantly reduced in both THLE-2 and HeLa cells following QD treatment. Our findings establish that the internalization of QDs reduces cell motility by rearranging actin filaments. Full article
(This article belongs to the Section Microscale Biology and Medicines)
Show Figures

Figure 1

15 pages, 5737 KiB  
Article
Advanced Optimization of Optical Carbon Dioxide Sensor Through Sensitivity Enhancement in Anodic Aluminum Oxide Substrate
by Manna Septriani Simanjuntak, Rispandi and Cheng-Shane Chu
Polymers 2025, 17(11), 1460; https://doi.org/10.3390/polym17111460 - 24 May 2025
Viewed by 458
Abstract
The current research developed an optical carbon dioxide (CO2) sensor using anodized aluminum oxide (AAO) as the substrate. We developed an optical carbon dioxide (CO2) sensor utilizing CdSe/ZnS quantum dots (QDs) as the fluorescent dye and Phenol Red as [...] Read more.
The current research developed an optical carbon dioxide (CO2) sensor using anodized aluminum oxide (AAO) as the substrate. We developed an optical carbon dioxide (CO2) sensor utilizing CdSe/ZnS quantum dots (QDs) as the fluorescent dye and Phenol Red as the pH indicator. The QDs acted as the CO2-responsive fluorophore and were embedded in a polyimide butyl methacrylate (polyIBM) matrix. This sensing solution was applied to an anodized aluminum oxide (AAO) substrate, which provided a porous and stable platform for sensor fabrication. Photoluminescence measurements were conducted using the coated AAO substrate, with excitation from a 405 nm LED light source. The sensor exhibited red fluorescence emission at 570 nm and could detect CO2 concentrations in the linear range of 0–100%. Experimental results showed that fluorescence intensity increased with CO2 concentration, achieving a sensitivity of 211. A wavelength shift of 0.1657 nm/% was observed, indicating strong interactions among CO2 molecules, Phenol Red, and the QDs within the AAO matrix. The sensor demonstrated a response time of 55 s and a recovery time of 120 s. These results confirm the effectiveness of this optical sensing approach in minimizing fluctuations from the excitation light source and highlight the potential of the AAO-supported QDs and Phenol Red composite as a reliable CO2 sensing material. This advancement holds promise for applications in both medical and industrial fields. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

11 pages, 1990 KiB  
Article
Room-Temperature Lasing in Self-Assembled Micro-Rings of CdSe/ZnS Quantum Dots
by Xiaoyu Wang, Zelei Chen, Haibin Zhao and Jun Wang
Photonics 2025, 12(5), 477; https://doi.org/10.3390/photonics12050477 - 12 May 2025
Viewed by 373
Abstract
Colloidal quantum dots (QDs) provide an ideal platform for the development of integrated optoelectronic devices due to their excellent solution processability and size-tunable optical properties. In this paper, we investigate the self-assembly process of QD micro-rings based on the solution patterning method and [...] Read more.
Colloidal quantum dots (QDs) provide an ideal platform for the development of integrated optoelectronic devices due to their excellent solution processability and size-tunable optical properties. In this paper, we investigate the self-assembly process of QD micro-rings based on the solution patterning method and the lasing phenomenon in the micro-rings. The characterization of the QD micro-rings demonstrates that they possess a high-quality morphological structure and excellent optical properties. The photoluminescence spectra of the QD micro-rings with different pump fluences are studied, and photon lasing with a narrow linewidth (0.3 nm) is found to have been achieved in the micro-rings above the threshold (23 μJ cm2). The high coherence of the lasing in the QD micro-rings is revealed by angle-resolved photoluminescence (ARPL) spectra at room temperature. Moreover, the interference pattern of the coherent lasing obtained with Young’s double-slit interference method based on the far-field Fourier optical system in the ARPL spectrum reflects the distribution of the optical field in the QD micro-rings. Our research on the self-assembly of colloidal QDs and the lasing of QD micro-rings is expected to further promote the development of on-chip integrated QD optoelectronic devices. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

13 pages, 3936 KiB  
Article
A Highly Sensitive Silicon-Core Quantum Dot Fluorescent Probe for Vomitoxin Detection in Cereals
by Caiwen Dong, Yaqin Li, Xincheng Sun, Xuehao Yang and Tao Wei
Foods 2025, 14(9), 1545; https://doi.org/10.3390/foods14091545 - 28 Apr 2025
Viewed by 561
Abstract
Vomitoxin is a member of the monotrichous mycotoxin family with a complex chemical structure and significant biological activity. This toxin has strong immunosuppressive toxic effects and can cause serious damage to human and animal health. In this study, an on-site immune detection method [...] Read more.
Vomitoxin is a member of the monotrichous mycotoxin family with a complex chemical structure and significant biological activity. This toxin has strong immunosuppressive toxic effects and can cause serious damage to human and animal health. In this study, an on-site immune detection method based on an immune SiO2@QD fluorescent probe was developed, which realized the rapid and quantitative detection of emetic toxins in grains. Polyethyleneimine (PEI) is a polymer containing a large number of amino groups, and the binding of PEI to the surface of quantum dots can serve to regulate growth and provide functionalized groups. A SiO2@QD nanotag with good dispersibility and a high fluorescence intensity was synthesized by combining a PEI interlayer on the surface of SiO2 nanospheres. Utilizing the electrostatic adsorption of the amino group in PEI, CdSe/ZnS QDs were self-assembled on the surface of SiO2 nanospheres. In the stability test, the SiO2@QDs could maintain basically the same fluorescence intensity for 90 consecutive days in the dark at 4 °C, showing a high fluorescence stability. The fluorescence-enhanced QD immune probe was formed by coupling with anti-DON monoclonal antibodies through carbodiimide chemical synthesis. For the detection of spiked wheat flour samples, the immuno-SiO2@QD fluorescent probe showed excellent sensitivity and stability, the detection limit reached 0.25 ng/mL, and the average recovery rate was 92.2–101.6%. At the same time, the immuno-SiO2@QD fluorescent probe is simple to operate, is capable of rapid responses, and has great potential in the rapid detection of vomitoxins in grains. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

14 pages, 3165 KiB  
Article
A Molecularly Imprinted Fluorescence Sensor for the Simultaneous and Rapid Detection of Histamine and Tyramine in Cheese
by Xinpei Li, Zhiwei Wu, Hui Cao, Tai Ye, Liling Hao, Jinsong Yu, Min Yuan and Fei Xu
Foods 2025, 14(9), 1475; https://doi.org/10.3390/foods14091475 - 23 Apr 2025
Viewed by 595
Abstract
Based on dual-template molecular imprinting polymerization technology, a fluorescent molecularly imprinted polymer doped with CdSe/ZnS quantum dots was developed to construct a “Turn-on” fluorescence sensor for the rapid, sensitive, and specific detection of two biogenic amines. The biogenic amines bind to the quantum [...] Read more.
Based on dual-template molecular imprinting polymerization technology, a fluorescent molecularly imprinted polymer doped with CdSe/ZnS quantum dots was developed to construct a “Turn-on” fluorescence sensor for the rapid, sensitive, and specific detection of two biogenic amines. The biogenic amines bind to the quantum dots, which eliminates surface defects and enhances the fluorescence emission intensity of the quantum dots. By optimizing both the polymerization and detection processes, the results demonstrate that the sensor can detect biogenic amines within the range of 0.01–10 mmol/L, with a low detection limit of 14.57 μmol/L and a detection time of only ten minutes. Moreover, the sensor is cost-effective and does not require specialized instrument operation, offering a practical approach for the rapid detection of biogenic amines in complex food matrices. This study advances the development of simultaneous recognition and rapid detection technologies for multiple target molecules. Full article
Show Figures

Figure 1

13 pages, 10147 KiB  
Article
Effect of Quantum Dot-Based Remote Lenses on the Emission Properties of White LED Lighting Studied by Optical Simulation and Experiment
by Sung Min Park, Eunki Baek, Sohee Kim, Jaehyeong Yoo, Sung-Yoon Joe, Jae-Hyeon Ko, Taehee Park and Young Wook Ko
Ceramics 2025, 8(2), 39; https://doi.org/10.3390/ceramics8020039 - 19 Apr 2025
Viewed by 590
Abstract
The introduction of side-emitting lenses into white light-emitting diodes (LEDs) has enabled thin panel lighting technology based on LED technology, but also presents the disadvantage of low color rendering due to insufficient red components in the spectra of typical white LEDs. Additional application [...] Read more.
The introduction of side-emitting lenses into white light-emitting diodes (LEDs) has enabled thin panel lighting technology based on LED technology, but also presents the disadvantage of low color rendering due to insufficient red components in the spectra of typical white LEDs. Additional application of remote quantum dot (QD) components such as QD films or caps presents the issues of increased numbers of components and higher costs. In this study, we incorporated red QDs directly into a lens placed on white LEDs and analyzed the effects of QD lenses on the optical characteristics of a lighting device through experiments and simulations. By incorporating red CdSe/ZnS QDs into UV-curable resin to fabricate QD lenses and applying them to white LEDs, we significantly improved the color rendering index and were able to adjust the correlated color temperature over a wide range between 2700 and 9900 K. However, as the concentration of QDs in the lens increased, scattering by the QD particles was enhanced, strengthening the Lambertian distribution in the intensity plot. Following the development of optical models for QD lenses under experimental conditions, comprehensive optical simulations of white LED lighting systems revealed that increasing the device height proved more effective than modifying TiO2 scattering particle concentration in the diffuser plate for mitigating QD-induced bright spots and enhancing illumination uniformity. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Figure 1

9 pages, 3341 KiB  
Article
Quantum Dot Waveguide Array for Broadband Light Sources
by Dongyang Li, Yufei Chu, Qingbo Xu, Dong Liu, Junying Ruan, Hao Sun, Jianwei Li, Chengde Guo, Xiaoyun Pu and Yuanxian Zhang
Photonics 2025, 12(3), 212; https://doi.org/10.3390/photonics12030212 - 28 Feb 2025
Viewed by 514
Abstract
In this paper, we demonstrate a broadband and simultaneous waveguide array light source based on water-soluble CdSe/ZnS quantum dots (QDs). We initially measure the fluorescence intensity for various cladding solution concentrations along the fiber axis to assess their impact on the propagation loss; [...] Read more.
In this paper, we demonstrate a broadband and simultaneous waveguide array light source based on water-soluble CdSe/ZnS quantum dots (QDs). We initially measure the fluorescence intensity for various cladding solution concentrations along the fiber axis to assess their impact on the propagation loss; the experimental results show that the fluorescent intensity decreases with fiber length, with higher concentrations showing a more pronounced decrease. Then, we showcase a synchronous QD light source in an optofluidic chip that fluoresces in red, green, and blue (RGB) within a microfluidic channel. Finally, a 3 × 3 QD array of a fluorescent display on a single PDMS chip is demonstrated. The QD waveguide represents a compact and stable structure that is readily manufacturable, making it an ideal light source for advancing high-throughput biochemical sensing and on-chip spectroscopic analysis. Full article
(This article belongs to the Special Issue Optical Sensing Technologies, Devices and Their Data Applications)
Show Figures

Figure 1

15 pages, 3403 KiB  
Review
A Chemical Transport Method for the Synthesis of Simple and Complex Inorganic Crystals—Survey of Applications and Modeling
by Grzegorz Matyszczak, Krzysztof Krawczyk, Albert Yedzikhanau and Michał Brzozowski
Crystals 2025, 15(2), 162; https://doi.org/10.3390/cryst15020162 - 8 Feb 2025
Viewed by 1036
Abstract
The chemical transport method is a process that occurs naturally; however, it is also very useful in the chemical laboratory environment for the synthesis of inorganic crystals. It was successfully used for the syntheses of simple and complex inorganic compounds, from binary (e.g., [...] Read more.
The chemical transport method is a process that occurs naturally; however, it is also very useful in the chemical laboratory environment for the synthesis of inorganic crystals. It was successfully used for the syntheses of simple and complex inorganic compounds, from binary (e.g., ZnS, CdSe) to quaternary (e.g., Cu2ZnSnS4) compounds. Many experimental parameters influence the quality of products of chemical transport reactions, and among them, one may distinguish the used precursors and applied temperature gradient. The careful selection of experimental conditions is crucial for the production of high-quality crystals. Mathematical descriptions of the chemical transport phenomena, however, may potentially help in the design of proper conditions. Full article
(This article belongs to the Special Issue Solidification and Crystallization of Inorganic Materials)
Show Figures

Figure 1

17 pages, 2793 KiB  
Article
Electrochemical and Optical Multi-Detection of Escherichia coli Through Magneto-Optic Nanoparticles: A Pencil-on-Paper Biosensor
by Furkan Soysaldı, Derya Dincyurek Ekici, Mehmet Çağrı Soylu and Evren Mutlugun
Biosensors 2024, 14(12), 603; https://doi.org/10.3390/bios14120603 - 10 Dec 2024
Cited by 1 | Viewed by 2490
Abstract
Escherichia coli (E. coli) detection suffers from slow analysis time and high costs, along with the need for specificity. While state-of-the-art electrochemical biosensors are cost-efficient and easy to implement, their sensitivity and analysis time still require improvement. In this work, we present a [...] Read more.
Escherichia coli (E. coli) detection suffers from slow analysis time and high costs, along with the need for specificity. While state-of-the-art electrochemical biosensors are cost-efficient and easy to implement, their sensitivity and analysis time still require improvement. In this work, we present a paper-based electrochemical biosensor utilizing magnetic core-shell Fe2O3@CdSe/ZnS quantum dots (MQDs) to achieve fast detection, low cost, and high sensitivity. Using electrochemical impedance spectroscopy (EIS) as the detection technique, the biosensor achieved a limit of detection of 2.7 × 102 CFU/mL for E. coli bacteria across a concentration range of 102–108 CFU/mL, with a relative standard deviation (RSD) of 3.5781%. From an optical perspective, as E. coli concentration increased steadily from 104 to 107 CFU/mL, quantum dot fluorescence showed over 60% lifetime quenching. This hybrid biosensor thus provides rapid, highly sensitive E. coli detection with a fast analysis time of 30 min. This study, which combines the detection advantages of electrochemical and optical biosensor systems in a graphite-based paper sensor for the first time, has the potential to meet the needs of point-of-care applications. It is thought that future studies that will aim to examine the performance of the production-optimized, portable, graphite-based sensor system on real food samples, environmental samples, and especially medical clinical samples will be promising. Full article
(This article belongs to the Section Optical and Photonic Biosensors)
Show Figures

Figure 1

11 pages, 5146 KiB  
Communication
Achieving Optical Ozone Sensing with Increased Response and Recovery Speed by Using Highly Dispersed CdSe/ZnS Quantum Dots in Porous Glass
by Masanori Ando, Hideya Kawasaki, Satoru Tamura and Yasushi Shigeri
Chemosensors 2024, 12(12), 254; https://doi.org/10.3390/chemosensors12120254 - 5 Dec 2024
Viewed by 1484
Abstract
CdSe/ZnS quantum dots (QDs) that were highly dispersed in porous glass showed a rapid decrease in the intensity of their photoluminescence (PL) in response to ozone at concentrations of 0–200 ppm in air (at room temperature and atmospheric pressure), followed by a similarly [...] Read more.
CdSe/ZnS quantum dots (QDs) that were highly dispersed in porous glass showed a rapid decrease in the intensity of their photoluminescence (PL) in response to ozone at concentrations of 0–200 ppm in air (at room temperature and atmospheric pressure), followed by a similarly rapid recovery to full PL in air with no ozone. The response time of the PL quenching in the presence of ozone, and the recovery time to full PL in air after the ozone was removed, showed little dependence on the ozone concentration. Compared to conventional CdSe/ZnS QD films on planar glass substrates, the speed of ozone-induced decrease in the PL intensity of QDs increased, and the recovery speed of the PL intensity, once the ozone was removed from the air, was even more rapid compared to the recovery on planar glass. The 100% PL intensity recovery time in air was reduced to about 10% for CdSe/ZnS QDs that were dispersed in porous glass compared to CdSe/ZnS QD films on planar glass substrates. We hypothesize that this reflects the fact that ozone molecules that are adsorbed on the QD-layer-lined pore surfaces are quickly desorbed in ozone-free air, because the layer of CdSe/ZnS QDs is much thinner in the pores of porous glass than on a planar glass substrate. Thus, CdSe/ZnS QDs that were dispersed in porous glass showed a rapid response to ozone and a similarly rapid recovery in ozone-free air, which has not been seen in previous QD ozone gas sensors, indicating that they are promising as high-performance optical ozone sensor materials. Full article
(This article belongs to the Special Issue Functionalized Material-Based Gas Sensing)
Show Figures

Figure 1

12 pages, 1170 KiB  
Article
An Evaluation of Moderate-Refractive-Index Nanoantennas for Enhancing the Photoluminescence Signal of Quantum Dots
by Rafael Ramos Uña, Braulio García Cámara and Ángela I. Barreda
Nanomaterials 2024, 14(22), 1822; https://doi.org/10.3390/nano14221822 - 14 Nov 2024
Cited by 1 | Viewed by 1002
Abstract
The use of nanostructures to enhance the emission of single-photon sources has attracted some attention in the last decade due to the development of quantum technologies. In particular, the use of metallic and high-refractive-index dielectric materials has been proposed. However, the utility of [...] Read more.
The use of nanostructures to enhance the emission of single-photon sources has attracted some attention in the last decade due to the development of quantum technologies. In particular, the use of metallic and high-refractive-index dielectric materials has been proposed. However, the utility of moderate-refractive-index dielectric nanostructures to achieve more efficient single-photon sources remains unexplored. Here, a systematic comparison of various metallic, high-refractive-index and moderate-refractive-index dielectric nanostructures was performed to optimize the excitation and emission of a CdSe/ZnS single quantum dot in the visible spectral region. Several geometries were evaluated in terms of electric field enhancement and Purcell factor, considering the combination of metallic, high-refractive-index and moderate-refractive-index dielectric materials conforming to homogeneous and hybrid nanoparticle dimers. Our results demonstrate that moderate-refractive-index dielectric nanoparticles can enhance the photoluminescence signal of quantum emitters due to their broader electric and magnetic dipolar resonances compared to high-refractive-index dielectric nanoparticles. However, hybrid combinations of metallic and high-refractive-index dielectric nanostructures offer the largest intensity enhancement and Purcell factors at the excitation and emission wavelengths of the quantum emitter, respectively. The results of this work may find applications in the development of single-photon sources. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Graphical abstract

16 pages, 5004 KiB  
Article
Research on CdSe/ZnS Quantum Dots-Doped Polymer Fibers and Their Gain Characteristics
by Xuefeng Peng, Zhijian Wu and Yang Ding
Nanomaterials 2024, 14(17), 1463; https://doi.org/10.3390/nano14171463 - 9 Sep 2024
Cited by 1 | Viewed by 1480
Abstract
Polymer fibers are considered ideal transmission media for all-optical networks, but their high intrinsic loss significantly limits their practical use. Quantum dot-doped polymer fiber amplifiers are emerging as a promising solution to this issue and are becoming a significant focus of research in [...] Read more.
Polymer fibers are considered ideal transmission media for all-optical networks, but their high intrinsic loss significantly limits their practical use. Quantum dot-doped polymer fiber amplifiers are emerging as a promising solution to this issue and are becoming a significant focus of research in both academia and industry. Based on the properties of CdSe/ZnS quantum dots and PMMA material, this study experimentally explores three fabrication methods for CdSe/ZnS quantum dots-doped PMMA fibers: hollow fiber filling, melt-drawing, and melt extrusion. The advantages and disadvantages of each method and key issues in fiber fabrication are analyzed. Utilizing the CdSe/ZnS quantum dots-doped PMMA fibers that were fabricated, we theoretically analyzed the key factors affecting gain performance, including fiber length, quantum dots doping concentration, and signal light intensity. Under the conditions of 1.5 W power and 445 nm laser pumping, a maximum on-off gain of 16.2 dB was experimentally achieved at 635 nm. Additionally, using a white light LED as the signal source, a broadband on-off gain with a bandwidth exceeding 70 nm and a maximum gain of 12.4 dB was observed in the 580–650 nm range. This research will contribute to the development of quantum dots-doped fiber devices and broadband optical communication technology, providing more efficient solutions for future optical communication networks. Full article
(This article belongs to the Special Issue Innovations in Nano-Based Optoelectronic Devices)
Show Figures

Figure 1

10 pages, 3410 KiB  
Communication
Expanding the Spectral Responsivity of Photodetectors via the Integration of CdSe/ZnS Quantum Dots and MEH−PPV Polymer Composite
by Thanh Thao Tran, Ha Trang Nguyen, Ankush Sharma, Young-Bin Cho, Manjeet Kumar and Ju-Hyung Yun
Polymers 2024, 16(16), 2371; https://doi.org/10.3390/polym16162371 - 21 Aug 2024
Cited by 1 | Viewed by 1720
Abstract
This study investigates the energy transfer mechanism between the organic polymer poly(2-methoxy-5(2’-ethyl)heroxyphenylenevinylene) (MEH−PPV) and CdSe/ZnS core-shell quantum dots (CdSe/ZnS CSQDs). Additionally, a hybrid ZnO-based photodetector (PD) is fabricated using the composite of MEH−PPV and CdSe/ZnS CSQDs, aiming to gain deeper insights. The combination [...] Read more.
This study investigates the energy transfer mechanism between the organic polymer poly(2-methoxy-5(2’-ethyl)heroxyphenylenevinylene) (MEH−PPV) and CdSe/ZnS core-shell quantum dots (CdSe/ZnS CSQDs). Additionally, a hybrid ZnO-based photodetector (PD) is fabricated using the composite of MEH−PPV and CdSe/ZnS CSQDs, aiming to gain deeper insights. The combination of MEH−PPV and CdSe/ZnS CSQDs facilitates a broad spectral response in PDs, spanning from the ultraviolet (UV) to the visible range. In particular, PDs with QDs in the composite demonstrate notably excellent photosensitivity to both ultraviolet (UV) light (365 nm) (~5 fold) and visible light (505 nm) (~3 fold). Full article
(This article belongs to the Special Issue Application of Polymer Materials in Optoelectronic Devices)
Show Figures

Graphical abstract

18 pages, 8646 KiB  
Article
A Comparison of Common Quantum Dot Alternatives to Cadmium-Based Quantum Dots on the Basis of Liver Cytotoxicity
by Seth Harris and Kyoungtae Kim
Nanomaterials 2024, 14(13), 1086; https://doi.org/10.3390/nano14131086 - 25 Jun 2024
Cited by 4 | Viewed by 2109
Abstract
Fluorescent nanoparticles known as quantum dots (QDs) have unique properties that make them useful in biomedicine. Specifically, CdSe/ZnS QDs, while good at fluorescing, show toxicity. Due to this, safer alternatives have been developed. This study uses a tetrazolium dye (XTT) viability assay, reactive [...] Read more.
Fluorescent nanoparticles known as quantum dots (QDs) have unique properties that make them useful in biomedicine. Specifically, CdSe/ZnS QDs, while good at fluorescing, show toxicity. Due to this, safer alternatives have been developed. This study uses a tetrazolium dye (XTT) viability assay, reactive oxygen species (ROS) fluorescent imaging, and apoptosis to investigate the effect of QD alternatives InP/ZnS, CuInS2/ZnS, and nitrogen-doped carbon dots (NCDs) in liver cells. The liver is a possible destination for the accumulation of QDs, making it an appropriate model for testing. A cancerous liver cell line known as HepG2 and an immortalized liver cell line known as THLE-2 were used. At a nanomolar range of 10–150, HepG2 cells demonstrated no reduced cell viability after 24 h. The XTT viability assay demonstrated that CdSe/ZnS and CuInS2/ZnS show reduced cell viability in THLE-2 cells with concentrations between 50 and 150 nM. Furthermore, CdSe/ZnS- and CuInS2/ZnS-treated THLE-2 cells generated ROS as early as 6 h after treatment and elevated apoptosis after 24 h. To further corroborate our results, apoptosis assays revealed an increased percentage of cells in the early stages of apoptosis for CdSe/ZnS-treated (52%) and CuInS2/ZnS-treated (38%) THLE-2. RNA transcriptomics revealed heavy downregulation of cell adhesion pathways such as wnt, cadherin, and integrin in all QDs except NCDs. In conclusion, NCDs show the least toxicity toward these two liver cell lines. While demonstrating less toxicity than CdSe/ZnS, the metallic QDs (InP/ZnS and CuInS2/ZnS) still demonstrate potential concerns in liver cells. This study serves to explore the toxicity of QD alternatives and better understand their cellular interactions. Full article
(This article belongs to the Special Issue Toxicity of Nanoparticles to Humans and the Environment)
Show Figures

Figure 1

Back to TopTop