Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = Caribbean climate response

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 12071 KiB  
Article
Drought, Topographic Depression, and Severe Damage Slowed Down and Differentiated Recovery of Mangrove Forests from Major Hurricane Disturbance
by Mei Yu and Qiong Gao
Remote Sens. 2025, 17(13), 2223; https://doi.org/10.3390/rs17132223 - 28 Jun 2025
Cited by 1 | Viewed by 285
Abstract
Extreme climate events are becoming more intense, and how coastal mangroves respond to the alternating intense cyclones and severe droughts is less understood, which challenges the sustainability of the ecosystem services they provide to coastal communities. To address this, we analyzed spatiotemporal dynamics [...] Read more.
Extreme climate events are becoming more intense, and how coastal mangroves respond to the alternating intense cyclones and severe droughts is less understood, which challenges the sustainability of the ecosystem services they provide to coastal communities. To address this, we analyzed spatiotemporal dynamics of coastal mangroves in a Caribbean island in response to major hurricanes in 2017, which followed a severe multi-year drought in 2014–2015, using multiple indices derived from multispectral optical images. We further explored the roles of hurricane forces, local hydro-geomorphic environment, and rainfall dynamics in the damage and the following recovery. In addition to the hurricane forces, such as gusty wind and rainfall, the local hydro-geomorphic environment largely determines the spatial variations of damage. Lower-lying, flatter, and wetter mangrove areas sustained more damage, possibly due to prolonged inundation susceptibility and tall canopy configurations. Recovery is mainly limited by the severity of damage. However, sufficient rainfall gradually becomes important to facilitate the recovery. While the pre-hurricane severe drought (2014–2015) largely degraded the mangroves at dry sites, the drought after the hurricanes exacerbated the hurricane damage and retarded the recovery. We also found that the spectral distance and the mangrove vegetation index revealed slower and more spatiotemporally heterogenous mangrove recovery than indices of greenness, implying they are better measures for monitoring mangroves’ response to disturbance. Six years after the disturbance, the greenness of mangroves near the hurricane landfall reached 84% of the pre-hurricane values. However, the mangrove vegetation index showed that healthy mangrove coverage was only 10%, in comparison to 76% before the disturbance. The sluggish recovery at this site with the severest damage may be associated with the loss of pre-established seedlings and the difficulty to have new ones established, thus human efforts are in need to restore the system. Full article
Show Figures

Figure 1

14 pages, 223 KiB  
Article
Everyday Apocalypses: Debt and Dystopia in Nicole Dennis-Benn’s Here Comes the Sun
by Michael Niblett
Humanities 2025, 14(5), 105; https://doi.org/10.3390/h14050105 - 2 May 2025
Viewed by 547
Abstract
Writing in November 2010 in the aftermath of a series of devastating hurricanes, Norman Girvan admitted to “a growing sense that Caribbean states may be more and more facing a challenge of existential threats”. By this, he continues, “I mean systemic challenges to [...] Read more.
Writing in November 2010 in the aftermath of a series of devastating hurricanes, Norman Girvan admitted to “a growing sense that Caribbean states may be more and more facing a challenge of existential threats”. By this, he continues, “I mean systemic challenges to the viability of our states as functioning socio-economic-ecological-political systems” due to “the intersection of climatic, economic, social and political developments”. In this article, I examine the specifically literary response to these existential threats. My focus is on Nicole Dennis-Benn’s novel Here Comes the Sun (2016), which offers a searing critique of what I term the apocalypse of the everyday, that is, of the way capitalism’s logics of social death and ecocide permeate every facet of contemporary quotidian practice. I am particularly interested in Dennis-Benn’s registration of the impact of debt colonialism on Jamaica. Debt, for Girvan, is one of the contributing factors to the existential threat facing the Caribbean. However, the temporality of debt also provides a useful optic for understanding how Dennis-Benn’s novel grapples with the effects of the ongoing catastrophe of slavery and the plantation system, as well as with the erosion of futurity in apocalyptic times. Full article
(This article belongs to the Special Issue Rise of a New World: Postcolonialism and Caribbean Literature)
9 pages, 3305 KiB  
Article
Impact of East Pacific La Niña on Caribbean Climate
by Mark R. Jury
Atmosphere 2025, 16(4), 485; https://doi.org/10.3390/atmos16040485 - 21 Apr 2025
Viewed by 588
Abstract
Statistical cluster analysis applied to monthly 1–100 m ocean temperatures reveals El Niño–Southern Oscillation (ENSO) dipole patterns with a leading mode having opposing centers of action across the dateline and tropical east Pacific. We focus on the La Niña cold phase and study [...] Read more.
Statistical cluster analysis applied to monthly 1–100 m ocean temperatures reveals El Niño–Southern Oscillation (ENSO) dipole patterns with a leading mode having opposing centers of action across the dateline and tropical east Pacific. We focus on the La Niña cold phase and study its impact on the Caribbean climate over the period of 1980–2024. East dipole time scores are used to identify composite years, and anomaly patterns are calculated for Jan-Jun and Jul-Dec. Convective responses over the Caribbean exhibit seasonal contrasts: dry winter–spring and wet summer–autumn. Trade winds and currents across the southern Caribbean weaken and lead to anomalous warming of upper ocean temperatures. Sustained coastal upwelling off Peru and Ecuador during east La Niña is teleconnected with easterly wind shear and tropical cyclogenesis over the Caribbean during summer, leading to costly impacts. This ocean–atmosphere coupling is quite different from the more common central Pacific ENSO dipole. Full article
Show Figures

Figure 1

28 pages, 1441 KiB  
Systematic Review
The Impact of Climate on Human Dengue Infections in the Caribbean
by Kirk Osmond Douglas, Karl Payne, Gilberto Sabino-Santos, Peter Chami and Troy Lorde
Pathogens 2024, 13(9), 756; https://doi.org/10.3390/pathogens13090756 - 3 Sep 2024
Viewed by 3485
Abstract
Climate change is no longer a hypothetical problem in the Caribbean but a new reality to which regional public health systems must adapt. One of its significant impacts is the increased transmission of infectious diseases, such as dengue fever, which is endemic in [...] Read more.
Climate change is no longer a hypothetical problem in the Caribbean but a new reality to which regional public health systems must adapt. One of its significant impacts is the increased transmission of infectious diseases, such as dengue fever, which is endemic in the region, and the presence of the Aedes aegypti mosquito vector responsible for transmitting the disease. (1) Methods: To assess the association between climatic factors and human dengue virus infections in the Caribbean, we conducted a systematic review of published studies on MEDLINE and Web of Science databases according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. (2) Results: In total, 153 papers were identified, with 27 studies selected that met the inclusion criteria ranging from the northern and southern Caribbean. Rainfall/precipitation and vapor pressure had a strong positive association with dengue incidence, whereas the evidence for the impact of temperatures was mixed. (3) Conclusions: The interaction between climate and human dengue disease in the Caribbean is complex and influenced by multiple factors, including waste management, infrastructure risks, land use changes, and challenged public health systems. Thus, more detailed research is necessary to understand the complexity of dengue within the wider Caribbean and achieve better dengue disease management. Full article
Show Figures

Graphical abstract

27 pages, 1930 KiB  
Review
Mangrove Biodiversity and Conservation: Setting Key Functional Groups and Risks of Climate-Induced Functional Disruption
by Alexander C. Ferreira, Elizabeth C. Ashton, Raymond D. Ward, Ian Hendy and Luiz D. Lacerda
Diversity 2024, 16(7), 423; https://doi.org/10.3390/d16070423 - 19 Jul 2024
Cited by 8 | Viewed by 5400
Abstract
Climate change (CC) represents an increasing threat to mangroves worldwide and can amplify impacts caused by local anthropogenic activities. The direct effects of CC on mangrove forests have been extensively discussed, but indirect impacts such as the alteration of ecological processes driven by [...] Read more.
Climate change (CC) represents an increasing threat to mangroves worldwide and can amplify impacts caused by local anthropogenic activities. The direct effects of CC on mangrove forests have been extensively discussed, but indirect impacts such as the alteration of ecological processes driven by specific functional groups of the biota are poorly investigated. Ecological roles of key functional groups (FGs) in mangroves from the Atlantic–Caribbean–East Pacific (ACEP) and Indo-West Pacific (IWP) regions are reviewed, and impacts from CC mediated by these FGs are explored. Disruption by CC of ecological processes, driven by key FGs, can reinforce direct effects and amplify the loss of ecological functionality and further degradation of mangrove forests. Biogeochemistry mediator microbiotas of the soil, bioturbators, especially semiterrestrial crabs (Ocypodoids and Grapsoids) and herbivores (crustaceans and Insects), would be the most affected FG in both regions. Effects of climate change can vary regionally in the function of the combination of direct and indirect drivers, further eroding biodiversity and mangrove resilience, and impairing the predictability of ecosystem behaviour. This means that public policies to manage and conserve mangroves, as well as rehabilitation/restoration programs, should take into consideration the pressures of CC in specific regions and the response of key FGs to these pressures. Full article
(This article belongs to the Special Issue Biodiversity and Conservation of Mangroves)
Show Figures

Figure 1

22 pages, 13545 KiB  
Article
Influence of Fluvial Discharges and Tides on the Salt Wedge Position of a Microtidal Estuary: Magdalena River
by Jhonathan R. Cordero-Acosta, Luis J. Otero Díaz and Aldemar E. Higgins Álvarez
Water 2024, 16(8), 1139; https://doi.org/10.3390/w16081139 - 17 Apr 2024
Cited by 3 | Viewed by 1762
Abstract
The linkage between the salt wedge, tidal patterns, and the Magdalena River discharge is established by assessing the ensuing parameters: stratification (ϵ), buoyancy frequency (β), potential energy anomaly (φ), Richardson number by layers (RL), and [...] Read more.
The linkage between the salt wedge, tidal patterns, and the Magdalena River discharge is established by assessing the ensuing parameters: stratification (ϵ), buoyancy frequency (β), potential energy anomaly (φ), Richardson number by layers (RL), and bottom turbulent energy production (P). The salinity, temperature, density, and water velocity data utilized were derived from MOHID 3D, a previously tailored and validated model for the Magdalena River estuary. To grasp the dynamics of the river, a flow regime analysis was conducted during both the wet and dry climatic seasons of the Colombian Caribbean. The utilization of this model aimed to delineate the estuary’s spatial reach, considering flow rates spanning from 2000 to 6500 m3/s across two tidal cycles. This approach facilitates the prediction of the position, stability, and stratification degree of the salt front. Among the conclusions drawn, it is highlighted that: 1. The river flow serves as the principal conditioning agent for the system, inducing a strong estuary response to weather stations; 2. The extent of wedge intrusion and the river discharge exhibit a non-linear, inversely correlation; 3. Tidal waves cause differences of up to 1000 m in the horizontal extent of the wedge; 4. Widespread channel erosion occurs during the rainy season when the salt intrusion does not exceed 2 km; 5. Flocculation processes intensify during the transition between the dry and wet seasons; 6. The stability of the salt layering and the consolidation of the FSI–TMZ are contingent upon the geometric attributes of the channel. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

62 pages, 34100 KiB  
Article
Stronger Hurricanes and Climate Change in the Caribbean Sea: Threats to the Sustainability of Endangered Coral Species
by Edwin A. Hernández-Delgado, Pedro Alejandro-Camis, Gerardo Cabrera-Beauchamp, Jaime S. Fonseca-Miranda, Nicolás X. Gómez-Andújar, Pedro Gómez, Roger Guzmán-Rodríguez, Iván Olivo-Maldonado and Samuel E. Suleimán-Ramos
Sustainability 2024, 16(4), 1506; https://doi.org/10.3390/su16041506 - 9 Feb 2024
Cited by 11 | Viewed by 5616
Abstract
An increasing sea surface temperature as a result of climate change has led to a higher frequency and strengthening of hurricanes across the northeastern Caribbean in recent decades, with increasing risks of impacts to endangered corals and to the sustainability of coral reefs. [...] Read more.
An increasing sea surface temperature as a result of climate change has led to a higher frequency and strengthening of hurricanes across the northeastern Caribbean in recent decades, with increasing risks of impacts to endangered corals and to the sustainability of coral reefs. Category five Hurricanes Irma and María during 2017 caused unprecedented damage to coral reef ecosystems across northeastern Puerto Rico, including mechanical destruction, localized sediment bedload (horizontal sediment transport and abrasion), and burial by hurricane-generated rubble fields. Hurricanes inflicted significant site-, depth-, and life history trait-specific impacts to endangered corals, with substantial and widespread mechanical damage to branching species, moderate mechanical damage to foliose species, and moderate to high localized damage to small-sized encrusting and massive morphotypes due to sediment bedload and burial by rubble. There was a mean 35% decline in Acropora palmata live cover, 79% in A. cervicornis, 12% in Orbicella annularis, 7% in O. faveolata, 12% in O. franksi, and 96% in Dendrogyra cylindrus. Hurricane disturbances resulted in a major regime shift favoring dominance by macroalgae, algal turf, and cyanobacteria. Recovery from coral recruitment or fragment reattachment in A. palmata was significantly higher on more distant coral reefs, but there was none for massive endangered species. Stronger hurricanes under projected climate change may represent a major threat to the conservation of endangered coral species and reef sustainability which will require enhancing coral propagation and restoration strategies, and the integration of adaptive, ecosystem-based management approaches. Recommendations are discussed to enhance redundancy, rapid restoration responses, and conservation-oriented strategies. Full article
(This article belongs to the Topic Conservation and Management of Marine Ecosystems)
Show Figures

Figure 1

18 pages, 3018 KiB  
Article
Navigating Flood Resilience: Challenges, Solutions, and Lessons Learnt from the Dominican Republic
by Hamlet David Reynoso Vanderhorst, Chaminda Pathirage and David Proverbs
Water 2024, 16(3), 382; https://doi.org/10.3390/w16030382 - 24 Jan 2024
Cited by 5 | Viewed by 7595
Abstract
Recent unprecedented events worldwide, such as floods in Dubai, recurring heavy rainfall in Santo Domingo, and abrupt temperature changes in the United Kingdom (UK), underscore the tangible impacts of climate change. In response to escalating threats from natural disasters, global communities prioritise resilience [...] Read more.
Recent unprecedented events worldwide, such as floods in Dubai, recurring heavy rainfall in Santo Domingo, and abrupt temperature changes in the United Kingdom (UK), underscore the tangible impacts of climate change. In response to escalating threats from natural disasters, global communities prioritise resilience and effective disaster management systems. This paper addresses best practices for managing abnormal floods, laying the foundation for the next generation of preparedness and mitigation plans. Focusing on flood risk in Santo Domingo, the study employs the Community Disaster Resilience Framework, conducting a workshop with over 100 stakeholders from government, private, and academic sectors. The assessment spans physical, economic, environmental, and social aspects, revealing common challenges in infrastructure upkeep, public awareness, urban planning, drainage, and economic disparities. The paper proposes technological solutions like predictive maintenance and smart drainage systems, emphasising the potential for implementation. Recognising the importance of community involvement and preparedness, insights from the United Kingdom guide initial steps in strategy development. The conclusions advocate for collaborative efforts among government, academia, and society to navigate the complexities of disaster management and community resilience, ultimately proposing a framework to address these challenges. Further research is suggested in expanding online platforms for disaster risk reduction education in the Caribbean region. Full article
(This article belongs to the Special Issue Flood Risk Management and Resilience Volume II)
Show Figures

Figure 1

14 pages, 9855 KiB  
Article
Recent Strengthening of the ENSO Influence on the Early Winter East Atlantic Pattern
by Jiayi Hou, Zheng Fang and Xin Geng
Atmosphere 2023, 14(12), 1809; https://doi.org/10.3390/atmos14121809 - 11 Dec 2023
Cited by 3 | Viewed by 1979
Abstract
Previous studies have demonstrated that the influence of the El Niño–Southern Oscillation (ENSO) on the Euro-Atlantic atmospheric circulation varies considerably during the boreal winter. Compared to the late winter (January–March) relationship, the early winter (November–December) teleconnection is more uncertain and less understood. In [...] Read more.
Previous studies have demonstrated that the influence of the El Niño–Southern Oscillation (ENSO) on the Euro-Atlantic atmospheric circulation varies considerably during the boreal winter. Compared to the late winter (January–March) relationship, the early winter (November–December) teleconnection is more uncertain and less understood. In this paper, we revisited this early winter regional ENSO teleconnection using the Hadley Centre Global Sea Ice and Sea Surface Temperature (HadISST) and the European Centre for Medium-Range Weather Forecasting (ECMWF) fifth generation reanalysis (ERA5) datasets for the period 1979–2022. It was found that the signal projected well onto the second dominant mode of Euro-Atlantic atmospheric variability, the East Atlantic Pattern (EAP), rather than the previously mentioned North Atlantic Oscillation (NAO). This influence is associated with ENSO-induced dipolar convection anomalies in the Gulf of Mexico and Caribbean Sea (GMCA), which leads to an EAP via exciting Rossby waves propagating northward into the North Atlantic. We further revealed that this ENSO–EAP teleconnection underwent a pronounced interdecadal strengthening around the late 1990s. Prior to the late 1990s, the convective response to ENSO in the GMCA was weak. The atmospheric responses over the Euro-Atlantic were mainly driven by the ENSO-induced convective forcing in the tropical Indian Ocean, which favors an NAO-like pattern. In contrast, since the late 1990s, ENSO has induced stronger precipitation anomalies in the GMCA, which exert a dominant influence on the Euro-Atlantic atmospheric circulation and produce an EAP. These results have useful implications for the further understanding of ENSO-related early winter atmospheric and climate variability in the Euro-Atlantic region. Full article
Show Figures

Figure 1

30 pages, 1892 KiB  
Article
Multi-Environment Genome-Wide Association Studies of Yield Traits in Common Bean (Phaseolus vulgaris L.) × Tepary Bean (P. acutifolius A. Gray) Interspecific Advanced Lines in Humid and Dry Colombian Caribbean Subregions
by Felipe López-Hernández, Esteban Burbano-Erazo, Rommel Igor León-Pacheco, Carina Cecilia Cordero-Cordero, Diego F. Villanueva-Mejía, Adriana Patricia Tofiño-Rivera and Andrés J. Cortés
Agronomy 2023, 13(5), 1396; https://doi.org/10.3390/agronomy13051396 - 18 May 2023
Cited by 7 | Viewed by 3787
Abstract
Assessing interspecific adaptive genetic variation across environmental gradients offers insight into the scale of habitat-dependent heritable heterotic effects, which may ultimately enable pre-breeding for abiotic stress tolerance and novel climates. However, environmentally dependent allelic effects are often bypassed by intra-specific single-locality genome-wide associations [...] Read more.
Assessing interspecific adaptive genetic variation across environmental gradients offers insight into the scale of habitat-dependent heritable heterotic effects, which may ultimately enable pre-breeding for abiotic stress tolerance and novel climates. However, environmentally dependent allelic effects are often bypassed by intra-specific single-locality genome-wide associations studies (GWAS). Therefore, in order to bridge this gap, this study aimed at coupling an advanced panel of drought/heat susceptible common bean (Phaseolus vulgaris L.) × tolerant tepary bean (P. acutifolius A. Gray) interspecific lines with last-generation multi-environment GWAS algorithms to identify novel sources of heat and drought tolerance to the humid and dry subregions of the Caribbean coast of Colombia, where the common bean typically exhibits maladaptation to extreme weather. A total of 87 advanced lines with interspecific ancestries were genotyped by sequencing (GBS), leading to the discovery of 15,645 single-nucleotide polymorphism (SNP) markers. Five yield traits were recorded for each genotype and inputted in modern GWAS algorithms (i.e., FarmCPU and BLINK) to identify the putative associated loci across four localities in coastal Colombia. Best-fit models revealed 47 significant quantitative trait nucleotides (QTNs) distributed in all 11 common bean chromosomes. A total of 90 flanking candidate genes were identified using 1-kb genomic windows centered in each associated SNP marker. Pathway-enriched analyses were done using the mapped output of the GWAS for each yield trait. Some genes were directly linked to the drought tolerance response; morphological, physiological, and metabolic regulation; signal transduction; and fatty acid and phospholipid metabolism. We conclude that habitat-dependent interspecific polygenic effects are likely sufficient to boost common bean adaptation to the severe climate in coastal Colombia via introgression breeding. Environmental-dependent polygenic adaptation may be due to contrasting levels of selection and the deleterious load across localities. This work offers putative associated loci for marker-assisted and genomic selection targeting the common bean’s neo-tropical lowland adaptation to drought and heat. Full article
(This article belongs to the Special Issue Crop Tolerance under Biotic and Abiotic Stresses)
Show Figures

Figure 1

25 pages, 13366 KiB  
Article
Examining the Hydro-Climatic Drivers of Lagoon Breaching and Healing in a Deltaic Barrier
by Juan Felipe Gómez, Eva Kwoll, Ian J. Walker and Andrés F. Orejarena
Geosciences 2023, 13(4), 118; https://doi.org/10.3390/geosciences13040118 - 15 Apr 2023
Cited by 1 | Viewed by 3130
Abstract
As sea-level rise (SLR) and human-made interventions affect coastal currents and sediment transport, coastal barriers have become more vulnerable to the effect of storms, hurricanes, and climate variability. The response of each barrier is unique and depends on wave regime, coastline orientation, weather [...] Read more.
As sea-level rise (SLR) and human-made interventions affect coastal currents and sediment transport, coastal barriers have become more vulnerable to the effect of storms, hurricanes, and climate variability. The response of each barrier is unique and depends on wave regime, coastline orientation, weather conditions, bathymetry, and type of human-made interventions, among other factors. In the Magdalena River deltaic barrier, located on the Colombian Caribbean coast, coastal erosion has caused the loss of hundreds of square kilometers of critical ecosystems, such as wetlands and lagoons, since the 1960s. This work aims to analyze the short-term drivers behind the observed loss of lagoons, particularly the drivers of lagoon breaching events and subsequent healing along the deltaic barrier. Lagoon breaching events and healings were detected using satellite imagery, and the timing of these events was related to prior local atmospheric, oceanographic, and fluvial conditions. The findings reveal that the dynamics of the lagoons are driven by extreme river discharges and energetic wave conditions associated with storms or hurricanes. Healing is driven by the sediment supplied by littoral currents and average waves punctuated by energetic events. The cumulative effect of breaching and healing has resulted in a deltaic barrier that has rolled over the lagoons, reducing their size over time. These findings provide a better understanding of the forces of coastal retreat and will help inform future management decisions of the coastal zone. Full article
(This article belongs to the Special Issue Shoreline Dynamics and Beach Erosion, 2nd Edition)
Show Figures

Figure 1

20 pages, 5047 KiB  
Article
Total Water Level Mitigation Related to Fringing Reef and Upperbeach Vegetation Status at a Hurricane Exposed Coast
by Thibault Laigre, Yann Balouin, Deborah Villarroel-Lamb, Alexandre Nicolae Lerma, Nico Valentini, Manuel Moisan and Ywenn De La Torre
J. Mar. Sci. Eng. 2023, 11(3), 620; https://doi.org/10.3390/jmse11030620 - 15 Mar 2023
Cited by 1 | Viewed by 2210
Abstract
Increasing evidence suggests that coastal ecosystems provide significant protection against coastal flooding. However, these ecosystems are highly impacted by local human activities and climate change, which has resulted in reducing their extent and can limit their role in flooding mitigation. Most studies dealing [...] Read more.
Increasing evidence suggests that coastal ecosystems provide significant protection against coastal flooding. However, these ecosystems are highly impacted by local human activities and climate change, which has resulted in reducing their extent and can limit their role in flooding mitigation. Most studies dealing with the coastal protection offered by ecosystems focus on a single ecosystem and, also seldom assess potential differences in protection with changes in status of the ecosystem. Therefore, based on a Xbeach Non-hydrostatic numerical modeling approach, we quantified the coastal inundation response to different combinations of ecosystems’ health statuses. A combination of a fringing reef environment associated with a vegetated beach was chosen as this pattern is typical of many low-lying areas of the Caribbean and tropical areas in general. Our results, (1) highlight the potential of capitalizing on the combined impacts of multiple ecosystems on coastal protection, (2) alert to the consequences of further destruction of these ecosystems, (3) demonstrate the predominant role of vegetation with an increased sea-level rise and (4) provide strategies to limit the deleterious effects of present-day and future reef degradation. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

20 pages, 6293 KiB  
Review
Big Data, Small Island: Earth Observations for Improving Flood and Landslide Risk Assessment in Jamaica
by Cheila Avalon-Cullen, Christy Caudill, Nathaniel K. Newlands and Markus Enenkel
Geosciences 2023, 13(3), 64; https://doi.org/10.3390/geosciences13030064 - 24 Feb 2023
Cited by 9 | Viewed by 4962
Abstract
The Caribbean region is highly vulnerable to multiple hazards. Resultant impacts may be derived from single or multiple cascading risks caused by hydrological-meteorological, seismic, geologic, or anthropological triggers, disturbances, or events. Studies suggest that event records and data related to hazards, risk, damage, [...] Read more.
The Caribbean region is highly vulnerable to multiple hazards. Resultant impacts may be derived from single or multiple cascading risks caused by hydrological-meteorological, seismic, geologic, or anthropological triggers, disturbances, or events. Studies suggest that event records and data related to hazards, risk, damage, and loss are limited in this region. National Disaster Risk Reduction (DRR) planning and response require data of sufficient quantity and quality to generate actionable information, statistical inferences, and insights to guide continual policy improvements for effective DRR, national preparedness, and response in both time and space. To address this knowledge gap, we review the current state of knowledge, data, models, and tools, identifying potential opportunities, capacity needs, and long-term benefits for integrating Earth Observation (EO) understanding, data, models, and tools to further enhance and strengthen the national DRR framework using two common disasters in Jamaica: floods and landslides. This review serves as an analysis of the current state of DRR management and assess future opportunities. Equally, to illustrate and guide other United Nations Disaster Risk Reduction (UNDRR) priority countries in the Pacific region, known as Small Island Developing States (SIDS), to grapple with threats of multiple and compounding hazards in the face of increasing frequency, intensity, and duration of extreme weather events, and climate change impact. Full article
(This article belongs to the Special Issue Scientific Assessment of Recent Natural Hazard Events)
Show Figures

Figure 1

18 pages, 4608 KiB  
Article
Preliminary Analyses of the Hydro-Meteorological Characteristics of Hurricane Fiona in Puerto Rico
by Carlos E. Ramos Scharrón, José Javier Hernández Ayala, Eugenio Y. Arima and Francis Russell
Hydrology 2023, 10(2), 40; https://doi.org/10.3390/hydrology10020040 - 1 Feb 2023
Cited by 8 | Viewed by 4106
Abstract
The Caribbean has displayed a capacity to fulfill climate change projections associated with tropical cyclone-related rainfall and flooding. This article describes the hydrometeorological characteristics of Hurricane Fiona in Puerto Rico in September 2022 in terms of measured and interpolated rainfall and observed peak [...] Read more.
The Caribbean has displayed a capacity to fulfill climate change projections associated with tropical cyclone-related rainfall and flooding. This article describes the hydrometeorological characteristics of Hurricane Fiona in Puerto Rico in September 2022 in terms of measured and interpolated rainfall and observed peak flows relative to previous tropical cyclones from 1899 to 2017. Hurricane Fiona ranks third overall in terms of island-wide total rainfall and fourth in terms of daily rainfall. Maximum daily rainfall during Hurricane Fiona exceeded those previously reported (excluding Hurricane María in 2017) in the eastern interior and eastern portions of the island. In terms of peak flows, no value approached the world’s or Puerto Rico’s flood envelope, although 69% of the observations are considered ‘exceptional’. About 26% and 29% of all peak flows were in the 5–10 year and 10–25 year recurrence interval ranges, respectively, yet none matched the 25-year levels. The highest peak flows were concentrated in the central-eastern and southeastern regions. Even though Hurricane María provoked a more extreme hydrometeorological response, some of Hurricane Fiona’s hydro-meteorological characteristics were among the highest ever recorded in Puerto Rico, particularly for the south-central and eastern portions of the island, and it displayed the island’s current level of vulnerability to extreme rainfall. Full article
(This article belongs to the Section Hydrology–Climate Interactions)
Show Figures

Figure 1

45 pages, 12407 KiB  
Review
Responses of Caribbean Mangroves to Quaternary Climatic, Eustatic, and Anthropogenic Drivers of Ecological Change: A Review
by Valentí Rull
Plants 2022, 11(24), 3502; https://doi.org/10.3390/plants11243502 - 13 Dec 2022
Cited by 15 | Viewed by 5271
Abstract
Mangroves are among the world’s most threatened ecosystems. Understanding how these ecosystems responded to past natural and anthropogenic drivers of ecological change is essential not only for understanding how extant mangroves have been shaped but also for informing their conservation. This paper reviews [...] Read more.
Mangroves are among the world’s most threatened ecosystems. Understanding how these ecosystems responded to past natural and anthropogenic drivers of ecological change is essential not only for understanding how extant mangroves have been shaped but also for informing their conservation. This paper reviews the available paleoecological evidence for Pleistocene and Holocene responses of Caribbean mangroves to climatic, eustatic, and anthropogenic drivers. The first records date from the Last Interglacial, when global average temperatures and sea levels were slightly higher than present and mangroves grew in locations and conditions similar to today. During the Last Glaciation, temperatures and sea levels were significantly lower, and Caribbean mangroves grew far from their present locations on presently submerged sites. The current mangrove configuration was progressively attained after Early Holocene warming and sea level rise in the absence of anthropogenic pressure. Human influence began to be important in the Mid-Late Holocene, especially during the Archaic and Ceramic cultural periods, when sea levels were close to their present position and climatic and human drivers were the most influential factors. During the last millennium, the most relevant drivers of ecological change have been the episodic droughts linked to the Little Ice Age and the historical developments of the last centuries. Full article
(This article belongs to the Special Issue Mangrove Plant Communities: Ecology, Evolution and Biogeography)
Show Figures

Figure 1

Back to TopTop