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Abstract: Assessing interspecific adaptive genetic variation across environmental gradients offers
insight into the scale of habitat-dependent heritable heterotic effects, which may ultimately enable
pre-breeding for abiotic stress tolerance and novel climates. However, environmentally dependent
allelic effects are often bypassed by intra-specific single-locality genome-wide associations studies
(GWAS). Therefore, in order to bridge this gap, this study aimed at coupling an advanced panel of
drought/heat susceptible common bean (Phaseolus vulgaris L.) × tolerant tepary bean (P. acutifolius A.
Gray) interspecific lines with last-generation multi-environment GWAS algorithms to identify novel
sources of heat and drought tolerance to the humid and dry subregions of the Caribbean coast of
Colombia, where the common bean typically exhibits maladaptation to extreme weather. A total
of 87 advanced lines with interspecific ancestries were genotyped by sequencing (GBS), leading
to the discovery of 15,645 single-nucleotide polymorphism (SNP) markers. Five yield traits were
recorded for each genotype and inputted in modern GWAS algorithms (i.e., FarmCPU and BLINK)
to identify the putative associated loci across four localities in coastal Colombia. Best-fit models
revealed 47 significant quantitative trait nucleotides (QTNs) distributed in all 11 common bean
chromosomes. A total of 90 flanking candidate genes were identified using 1-kb genomic windows
centered in each associated SNP marker. Pathway-enriched analyses were done using the mapped
output of the GWAS for each yield trait. Some genes were directly linked to the drought tolerance
response; morphological, physiological, and metabolic regulation; signal transduction; and fatty acid
and phospholipid metabolism. We conclude that habitat-dependent interspecific polygenic effects
are likely sufficient to boost common bean adaptation to the severe climate in coastal Colombia via
introgression breeding. Environmental-dependent polygenic adaptation may be due to contrasting
levels of selection and the deleterious load across localities. This work offers putative associated
loci for marker-assisted and genomic selection targeting the common bean’s neo-tropical lowland
adaptation to drought and heat.
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1. Introduction

The means by which crop populations may adapt to abiotic pressures and novel
climates is now a major research question in the fields of plant biology and genetics [1,2].
The pace at which adaptive reactions may occur is conditioned by the genomic architecture
of adaptation (i.e., the frequency and effect sizes of underlying loci), as well as by its
context-dependent interactions (e.g., intra- vs. interspecific heterosis, environmentally
dependent allelic effects, and second-order genomic dependency, known as epistasis) [3].
However, despite recent efforts to harness interspecific variation as part of hybrid and
introgression breeding approaches [4], habitat-dependent allelic effects are not sufficiently
assessed when reconstructing the genomic bases of adaptation across multi-locality setups.
Hence, we examine advanced interspecific pre-breeding lines across contrasting localities,
and explore environmentally dependent allelic novelty for adaptation via last-generation
multi-environment genome-wide association studies (GWAS).

Meanwhile, food security is being jeopardized by climate change worldwide [5]. Vul-
nerable localities in Latin America and the Caribbean exhibited levels of undernourishment
of 47.7 million people in 2020, which are projected to reach 67 million by 2030; the repercus-
sions of the COVID-19 pandemic are not factored into these data [6]. Given this scenario,
legumes have offered a nature-based solution to source nutrients for rural communities
in Latin America, Africa, and Asia, thanks to their high content of protein, folic acid, iron,
dietary fiber, and complex carbohydrates [7]. Among the diverse legume species, the
common bean (Phaseolus vulgaris L.) is one of the most widely cropped, with ∼27 million
tons worldwide, with China and America being the main producers (FAO, 2018). However,
the common bean remains heat and drought susceptible [8].

In the Caribbean coast of northwest South America, where beans are a key food
security component and part of the cultural heritage of some indigenous communities [9],
the global average temperature may increase close to the 1.5 ◦C threshold established in the
Paris agreement [10], with a projected decrease of 3.75% in the average precipitation from
2020 to 2050, compared to the reference period of 1981–2010 [11,12]. Consequently, low
levels of precipitation coupled with increased temperature may limit bean productivity in
the Caribbean region. This is why common bean breeding efforts should target adaptability
to adverse abiotic conditions in the region [13]. Optimizing the adaptive trajectories would
then require (1) diversifying novel adaptation sources and (2) harnessing the genomic
architecture of adaptation and environmental dependency.

Genetic resources from closely related Phaseolus species may leverage natural variation
for adaptation to abiotic stresses, such as heat and drought [14]. Specifically, the tepary bean
(P. acutifolius A. Gray), an annual autogamous bean native to northwest Mexico [15,16], was
domesticated near the arid border with the USA. Geography has shaped the tepary bean’s
adaptation to hot [17] and dry environments [18,19], making it the most heat-tolerant
species of the Phaseolus genus. However, the tepary bean is limited as a modern crop
compared to the more susceptible but commercially accepted common bean. An alternative
is to use the tepary bean as an exotic donor of adapted alleles [20] to boost drought and
heat tolerance in the common bean [21]. Previous studies have already explored the
likelihood of hybrid and introgression breeding from the tepary bean genepool into the
common bean background. For instance, the common bean has been backcrossed with
tepary donors with a relatively good rate of viability [22,23]. Yet, these efforts have been
unsuccessful to pyramid the target alleles for drought tolerance, possibly due to its complex,
environmentally dependent, quantitative genetic inheritance [19].
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Marker-based infinitesimal additive models have already contributed to improving
our understanding of complex polygenic architectures underlying some quantitative adap-
tive traits [24]. For instance, last-generation genotyping of the common bean, inputted into
GWAS-types models [25,26], has unveiled the polygenic bases of tolerance to drought [24],
heat [27], and aluminum toxicity [28], as well as the complex genetic regulation of key
agronomic traits [29] and mineral concentration [30]. Despite these major successes, it
still remains to be assessed whether the same genomic architectures are concordant (in
terms of the frequency, effect size, and co-location of quantitative trait nucleotides–QTNs),
across habitat types at the multi-parental [31] interspecific boundary of hybrid and intro-
gression breeding schemes [32]. After all, Fisherian polygenic architectures often limit
the identification of single loci associations and their corresponding context-dependent
(i.e., environmental) effects [33], especially when reconstructed with traditional mixed
models. In other words, as the number of regulatory loci increases and their effect sizes
decrease (as expected from a negative exponential distribution), it becomes harder to retain
non-spurious genotype–phenotype associations while co-estimating their environmentally
dependent effects [34].

Overall, it is yet unknown whether habitat-dependent interspecific heterotic adaptive
effects might be recovered and leveraged in beans. Therefore, we wondered how multi-
environment GWAS would reconstruct the genomic bases of adaptation in an advanced
panel of drought/heat susceptible common bean (P. vulgaris L.) × tolerant tepary bean
(P. acutifolius A. Gray) interspecific lines across the humid and dry Colombian Caribbean
subregions. With this question in mind, the objectives of this study were to (1) identify
well-adapted common bean × tepary bean interspecific lines at four localities in coastal
Colombia by using seed yield as an agronomical fitness proxy; (2) reconstruct the genomic
architecture of interspecific adaptive responses utilizing modern GWAS algorithms (i.e.,
FarmCPU and BLINK); and (3) compare the resultant genetic bases across localities to
pinpoint putative habitat-dependent effects.

Because polygenic adaptation is regarded as a null working hypothesis strongly
shaped by the environment [35], we predict habitat-dependent polygenic adaptive variation
dragged from the exotic tepary ancestry into the more elite common bean background. The
ultimate outcome of this research is to explore the potential of discovering and introgressing
novel variants from the tepary bean into the common bean using seed yield traits as an
indirect indicator of tolerance to naturally prevalent heat/drought conditions in coastal
northwestern South America. Identifying the putatively associated loci (QTNs) with
the adaptive response (fitness defined as the reproductive output) in a bean panel with
interspecific common bean× tepary ancestries would aid in indirect selection (e.g., genomic-
enabled prediction) and speed breeding of common bean varieties targeting the extreme
weather conditions in coastal Colombia.

2. Materials and Methods
2.1. Plant Material

We carried out a pilot phenotyping in 2020 [21], which enabled the pre-selection of
more suitable interspecific genotypes for the current genetic mapping effort, and will
constitute an initial dataset to explore genome-enabled selection. The panel of 87 genotypes
used in this study was composed of 67 interspecific lines between the common bean (P.
vulgaris) and the tepary bean (P. acutifolius), and 19 advanced genotypes bred to high
temperature and drought conditions by the bean program of the Alliance Bioversity–
CIAT (International Center for Tropical Agriculture) [36]. These lines were transferred
to AGROSAVIA after ATM subscription. In addition, the genotype G40001 (P. acutifolius)
was used as a control. The interspecific lines corresponded to the third generation (and
beyond [36]; a detailed pedigree is presented in Table S1) evaluated for the first time at four
localities in the humid and dry Colombian Caribbean subregions [21].
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2.2. Multi-Locality Field Trials

During the crop cycle of July–October 2020, the panel described above was evaluated
at four localities in the humid and dry Colombian Caribbean subregions corresponding to
the following AGROSAVIA’s research stations: Motilonia ([10◦00′01.2′′ N, 73◦15′22.4′′ W]
Codazzi village in the province of Cesar); Caribia ([10◦47′35.4′′ N, 74◦10′49.9′′ W] Sevilla
village in the province of Magdalena); Carmen de Bolívar ([9◦42′50.8′′ N, 75◦06′26.9′′ W]
Carmen de Bolívar village in the province of Bolívar); and Turipaná ([8◦50′27.47′′ N,
75◦48′27.56′′ W] Cereté village in the province of Córdoba). The research stations in Motilo-
nia and Carmen de Bolivar (foothill and mountainous, both at more than 100 m a.s.l.) belong
to the dry Caribbean subregion, while the research stations in Caribia and Turipaná (tropical
plains, both at less than 20 m a.s.l.) are representative of the humid Caribbean subregion.

With the aim to corroborate these environmental subregions, climate variables were
recorded in situ during the months from cultivation to harvest. The precipitation pat-
terns suggested that the research stations in Motilonia and Carmen de Bolivar had less
precipitation (153.25 mm ± 34.94 and 81.95 mm ± 40.30, respectively) than the research
stations in Caribia and Turipaná (207.73 mm± 106.80 and 214.85 mm ± 92.62, respectively).
The locality with the highest relative humidity was Motilonia, and the research station
with the lowest relative humidity was in Carmen de Bolivar (Table S2). Additionally, the
global daily (30 arcsec, ≈1 km) land surface precipitation, based on cloud cover-informed
downscaling [37], was used to extract the time series of daily precipitation ( kg

m2day ) for
the same months from cultivation to harvest from the historical data from 2003 to 2016.
The data reinforced that the two localities with more precipitation were Caribia and Turi-
paná (11.08 kg

m2day ± 7.64 and 5.15 kg
m2day ± 3.24, respectively), and the research stations

with less precipitation were in Motilonia and Carmen de Bolivar (4.63 kg
m2day ± 5.31 and

4.69 kg
m2day ± 4.02, respectively; Figure S1). The soil properties suggested that Carmen de

Bolivar had the highest level of pH, P, Ca, and K compared to the other stations (Table S2).

2.3. Experimental Design and Phenotyping

The genotypes were planted following a completely randomized block design (CRBD)
with three repetitions at each locality. The experimental unit per treatment was a plot of
four m2 with a spatial arrangement of one row spaced at 0.8 m and 0.25 m between the
plants (13 plants per genotype). The missing genotypes were indicative of maladaptation
at each locality. The standard yield traits [21,38] in the common bean were measured at the
end of the cycle at each locality, specifically, NP: number of pods per plant, NS: average
number of seeds per pod, YLP: yield per plant (g/plant), SB: seed biomass as 100-seed
weight (g), and VB: vegetative biomass (g).

The vegetative biomass was reported as the pod biomass since no destructive sam-
pling was performed. A previous pilot study considered the flowering time at the same
localities [21] because the phenological traits may help convey a better understating of the
adaptive responses. However, that study failed to provide any additional utility of weekly
inspection of the flowering phenology beyond the one that was retrieved by the more
traditional yield components. Therefore, with the intention to optimize manpower, the
current trials focused on yield components. Meanwhile, the vegetative biomass and seed
biomass were not reported for the Turipaná research station because of missing data. A ‘La
Niña’ late event led to pod decomposition, which did not allow for an accurate measure of
the vegetative biomass. Similarly, reliable seed biomass estimates were unfeasible in that
locality, partly because most genotypes did not yield enough as to perform three repetitions
for the 100-seed weight estimation. This was a manifestation of the naturally variable
yield-defined adaptation at each locality.
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An inherent consequence of the conditions described above was that the number of
genotypes differed across the research stations for each parameter because the genotypes
were not adapted in all the localities so as to concordantly reach the harvest phase, during
which the yield traits were measured. We realize that this line of argumentation embraces
an expanded, yet utilitarian concept of adaptation in the light of plant productivity, as
compared to a more classical ecological definition of in situ local adaptation that would
interpret fitness as the survivorship rate rather than reproductive output [8].

Detailed ANOVAs and correlations summary statistics were reported in extenso in [21].
On the other hand, the heritability estimates, although desirable, were precluded by the
interspecific nature of the genotypes, as compared to more controlled within species multi-
parental schemes.

2.4. Compilation of Indices for Yield Traits and Statistical Analysis

With the aim to weigh intra-genotype variability across repetitions for each yield
trait, we utilized a mean–variance index that ponders the variability in each trait as the
ratio of the mean of each genotype and its variance. Thus, high values of the index
indicate genotypes with high performance and uniformity. Furthermore, we carried out the
normalization of each trait by means of the automatic transformation Tukey’s Ladder of
Powers [39] using the R-package rcompanion [40]. This algorithm iteratively uses Shapiro–
Wilk tests to optimize the lambda at which transformation of the data is closest to normality.
The normalization step was included because GWAS approaches based on mixed lineal
models (MLM), as is the case for the algorithms implemented in GAPIT3 [41], are known to
improve the statistical power when utilizing normalized quantitative traits [42]. Gaussian
distribution was corroborated using the Shapiro–Wilk test carried out in the R-package
nortest [43].

Normalized mean–variance indices for all the traits were then subjected to an analysis
of variance between localities using Welch’s one-way ANOVA, as implemented by the
ggbetweenstats function in the R-Package ggstatsplot [44]. The Games–Howell post hoc test
was another non-parametric approach that we utilized to compare pairwise combinations
of groups without having to assume the balance in the number of individuals and homo-
geneity of their variances. Because this study had different sample sizes per location, a
Games–Howell test was implemented using Holm’s p-value adjustment method by the
ggbetweenstats function in the R-Package ggstatsplot [44].

We also computed the best linear unbiased predictors (BLUPs) in all the traits across
all the environments using the function lmer in the R-package lmerTest. Then, we carried
out a parametric regression by the Pearson’s approach, adjusted by the Bonferroni method,
between the BLUPs and the mean–variance index of all the traits across the environments
using the function grouped_ggcorrmat in the R-package ggstatsplot. Finally, we ranked 25% of
all the genotypes according to their BLUPs for all the traits per environment. This ranking
was input to perform a set analysis in the R-package venn to identify common elite lines
across localities.

2.5. DNA Extraction and Genotyping-by-Sequencing

The genomic data were obtained by means of genotyping by sequencing (GBS), follow-
ing Elshire et al. [45]. The genomic DNA was extracted from 20 mg of leaf tissue sampled
40 days after germination and kept in silica gel after collection (Sigma-Aldrich, Hamburg,
Germany). The DNA extraction was carried out using AGROSAVIA’s in-house protocol
with maceration under liquid nitrogen, and precipitation from alcohol-based organic com-
pounds (phenol and chloroform). The quantification of the extracted DNA was carried
out by means of spectrophotometry using Nanodrop® 2000 equipment (Thermo Fischer
Scientific, Waltham, MA, USA), and by fluorimetry using a Qubit® dsDNA HS fluorometer
(Life Technologies, Angelholm, Sweden).
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The enzymatic digestion was carried out using the cutting enzyme Apek1, which was
standardized for the common bean as part of previous studies [24,27]. DNA libraries were
prepared using the NEBNext® Ultra™ II DNA Library Prep Kit for Illumina®. The DNA
libraries were quantified using the Qubit® dsDNA HS fluorometer. The concentration and
fragment sizes of the DNA libraries were evaluated using the TapeStation 4200 (Agilent
Technologies, Santa Clara, CA, USA) and the High Sensitivity D1000 kits.

2.6. Sequence Processing, Alignment and SNP Calling

The DNA sequences were obtained using the Illumina 2500 Hiseq sequencer (Macro-
gen, Seoul, Republic of Korea) in a single direction (single-end) and were preliminarily
analyzed by the FastQC program [46] using the Illumina 1.9 coding. In order to clean the
DNA sequencing data, the algorithm Trimmomatic [47] was run with the main parameters
ILLUMINACLIP:TruSeq3-SE:2:30:10, SLIDINGWINDOW:4:20 and MINLEN:20. A quality
analysis of the fastq files was also performed using the FastQC program [46] with Illumina
1.9 coding.

With the aim to identify allelic polymorphism, an automatized SNP calling script
was constructed using the function HaplotypeCaller of the protocol GATK4 [48] and the
alignment algorithm BWA [49]. The genome reference used was the second annotated
version of the P. vulgaris assembly, as downloaded from the Phytozome platform, with an
overall extension of ~600 Mb and read depth of ~83.2× (P. vulgaris v2.1, DOE-JGI and
USDA-NIFA, http://phytozome.jgi.doe.gov/, accessed on 15 May 2023). This sequence
data was produced by the US Department of Energy Joint Genome Institute. The mapping
statistics were computed by means of the function flagstat from the Samtools 1.9 software [50]
in the platform of the Galaxy project 2.0.3 [51].

The resultant SNP matrix was then filtered for allelic variant in the software Tassel
5.2.78 [52] using a minimum depth of 3X, a maximum percentage of missing data of 20% by
loci and by sample, and a minimum allele frequency (maf ) of 5%, which are the standard pa-
rameters for GWAS-type analyses. The pipeline is available in GitHub (https://github.com/
FelipeLopez2019/SNP-calling-of-KOLFACI-project/blob/main/Kolfaci_Colombia_v4.sh,
accessed on 15 May 2023).

2.7. Analysis of Kinship and Population Structure

Using the filtered SNP markers, the random and fixed effects were estimated in order
to reduce the rate of false positives of each GWAS model. Random effects considered
kinship relationships, while fixed effects account for population stratification. A kinship
matrix was built by means of the VanRaden algorithm available in the GAPIT [41] package
of R v.4.1.2 (R Core Team). Unsupervised population stratification was explored using the
molecular principal component analysis (hereinafter referred to as PC) carried out in the
GAPIT and optCluster R-packages [53], and the non-negative matrix factorization algorithm
(snmf function) as implemented in the LEA R-package with 10,000 repetitions. The latter
is an improvement to traditional admixture analysis [54] optimized by cross-entropy. In
addition, we computed overall pairwise linkage disequilibrium (LD) in Tassel [52] to
verify the association mapping power from natural and breed-driven recombination, and
mapping resolution in terms of marker coverage.

2.8. Identification of Loci Associated with Yield Traits

GWAS algorithms FarmCPU and BLINK were implemented in a multi-locality manner
for all five yield traits. These models are reported to increase the statistical power while
better controlling the false-positive rate [55,56]. The population stratification and kinship
were respectively considered as fixed and random effects, for a total of 40 models (ten
per locality, spanning four localities; within each locality, five FarmCPU and five BLINK
models were created, one for each trait).

http://phytozome.jgi.doe.gov/
https://github.com/FelipeLopez2019/SNP-calling-of-KOLFACI-project/blob/main/Kolfaci_Colombia_v4.sh
https://github.com/FelipeLopez2019/SNP-calling-of-KOLFACI-project/blob/main/Kolfaci_Colombia_v4.sh
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Highly significant associations were determined using a strict Bonferroni correction of
the p-value at an α = 0.05, which led to a significance threshold of−log10 (3.196× 10−6) = 5.495
for all the GWAS models. Therefore, we used the Bonferroni threshold in order to evaluate
the rate of false positives by visual interpretation of the Q–Q plots. In addition, since
it is documented that the Bonferroni may be restrictive [57], we also considered a more
relaxed threshold of −log10 (3.196 × 10−4) = 3.495, as previously suggested for common
bean [27,58,59]. Circular manhattan plots and their respective Q–Q plots were generated in
the R-package RIdeogram [60].

2.9. Identification of Candidate Genes and Pathways Enriched Analysis

Putative candidate genes were identified by inspecting the conservative flanking
sections of 1-kb around each associated locus, following [61]. The flanking sections
were captured using the common bean reference genome v2.1 [62] and the PhytoMine
tool from the Phytozome v.13 platform (https://phytozome-next.jgi.doe.gov/, accessed
on 15 May 2023). The identified genes were further annotated with the databases GO
(http://geneontology.org/, accessed on 15 May 2023), PFAM (https://pfam.xfam.org/,
accessed on 15 May 2023), PANTHER (http://www.pantherdb.org/, accessed on 15 May
2023), KEGG (https://www.genome.jp/kegg/, accessed on 15 May 2023), and Uniprot
(https://www.uniprot.org/, accessed on 15 May 2023).

A pathway enrichment analysis identifies biological pathways that are enriched in a gene
list more than would be expected by chance [63]. This analysis was carried out using the mapped
output of the GWAS step for each yield trait index, which was inputted into the PhytoMine
tool from the Phytozome v.13 platform employing the MetaCyc database (https://metacyc.org/,
accessed on 15 May 2023) of metabolic pathways and enzymes [64]. The p-values to test
the significance of the enrichment were computed using the hypergeometric distribution
from the number of genes retrieved by the GWAS analyses, the number of genes in the
reference population (Arabidopsis thaliana), the number of genes annotated with the specific
item, and the number of genes annotated with alternative items in the reference population
(A. thaliana). The use of alternative well-annotated reference genomes in terms of pathway
ontology is mandatory for alignments where this tagging is still preliminary, as happens to
be the case of common bean’s genome sequence.

3. Results

The genomic architecture of adaptation as inferred by modern GWAS algorithms
suggested pervasive environmental-dependent genetic bases across localities. Several
analyses redounded in this main result. First, in order to weigh multi-environment intra-
genotype variability, we implemented an index that ponders the variability in each of the
five yield traits, expressed as the ratio between the trait mean of each genotype and its
variance (i.e., mean–variance analysis). All traits indices were normalized using automatic
transformations as in Tukey’s Ladder of Powers [39], obtaining Gaussian distributions for
each variable, which were contrasted with BLUP estimates enabling genotype ranking and
line pre-selection. Meanwhile, GBS raw data was aligned against the reference genome of
P. vulgaris v2.1 (Phaseolus vulgaris v2.1, DOE-JGI and USDA-NIFA, http://phytozome.jgi.
doe.gov/, accessed on 15 May 2023) with the standard GATK protocol, retrieving a filtered
matrix of allelic variants with a total 15,645 SNP markers.

Genetic clustering and kinship indicated five demographic clusters, with further
subpopulations recovering family strata. A total of 47 unique loci were associated with
any of the five yield trait indices across individual localities. Of these, 43 QTNs flanked a
total of 90 genes across all 11 chromosomes. Associated genes with the number of pods per
plant (NP), average number of seeds per pod (NS), 100-seed weight (SB), and vegetative
biomass (VB) indices enriched pathways for Palmitate Biosynthesis II, Stearate Biosynthesis II,
and Superpathway of Fatty Acid Biosynthesis II.

https://phytozome-next.jgi.doe.gov/
http://geneontology.org/
https://pfam.xfam.org/
http://www.pantherdb.org/
https://www.genome.jp/kegg/
https://www.uniprot.org/
https://metacyc.org/
http://phytozome.jgi.doe.gov/
http://phytozome.jgi.doe.gov/
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3.1. Phenotypic Segregation across Localities

The phenotypic descriptive analyses suggested among-locality trait segregation for
the majority of the studied interspecific genotypes (Figures S2–S6) for the yield traits used
as agronomical fitness proxies. In order to summarize the intra-genotype variability, the
phenotypic mean-variance index was computed as described above. All the traits indices
were then normalized using the automatic transformations of Tukey’s Ladder of Powers [39]
to obtain Gaussian distributions for each indexed variable as follows: number of pods
per plant–NP (Figure 1A), average number of seeds per pod–NS (Figure 1B), yield per
plant–YLP (g/plant, Figure 1C), 100-seed weight index–SB (g, Figure 1D), and vegetative
biomass index–VB (g, Figure 1E). A Shapiro–Wilk test corroborated the normality (Table S3),
fulfilling the GWAS assumption.

The ranking of the BLUP values for each trait per environment is depicted in Table S7.
The Bonferroni-adjusted Pearson test showed high (>0.7) to moderate correlation (>0.40)
between the BLUPs and mean-variance of all the traits (Table S8). The set analysis suggested
that in the Carmen de Bolivar station, four materials (G21, G84, G67, and G7) were found
in the top 25% of the best genotypes for each trait. In the Caribia station, 12 materials (G87,
G2, G85, G5, G84, G22, G28, G42, G18, G49, G82, and G11) were found in the top 25% of
the best genotypes for each trait. Likewise, in the Motilonia station, 11 genotypes (G87,
G82, G17, G3, G27, G85, G23, G13, G42, G8, and G44) were found in the top 25% of the
best materials for each trait. However, in the Turipaná station, there was not any genotype
found to be the best across the five traits. Overall, there were only five elite genotypes for
all the traits for the Caribia and Motilonia stations (G87, G82, G85, and G42), and only one
for Caribia and Carmen de Bolivar localities (G84).

3.2. A Total of 15,645 SNP Markers Were Recovered from the Interspecific Panel Using GBS

DNA extraction from all 87 accessions (Table S4) reported a mean DNA concentration
(ug/uL) of 3968.80 (IC: 388.02) using Nanodrop®, a Qubit® mean concentration (ug/uL)
of 95, 20 (CI: 8.14), a mean A260/280 ratio of 2.13 (CI: 0.01), and a mean A260/230 ratio
of 2.15 (CI: 0.01). Subsequently, the 87 genetic libraries built for sequencing presented
a mean Qubit® concentration (ug/uL) of 16.70 (CI: 2.70), a mean fragment size (bp) of
323.00 (CI: 2.59), and a mean TapeStation® quantification of 78.74 nM (CI: 13.00) (Table S5).
The electropherograms for each genotype suggested a distribution of the fragments with
defined peaks, and without the presence of contaminants. Only genotype 85 did not have
sufficient quality parameters to integrate it within the alignment and SNP calling pipeline.
Following the GATK4 protocol [65] and using the second version of the reference genome of
P. vulgaris [62], a raw matrix of allelic variants was obtained with 1,919,875 sites. Retaining
loci with a minimum depth of 3X, less than 20% of missing data, and a minimum allelic
frequency (maf ) of 5%, and keeping genotypes with less than 20% of missing data led to
15,645 SNPs and 84 genotypes, including the tepary bean reference (G87).
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Figure 1. Analysis of variance between locations using Welch’s one-way ANOVA, as implemented
in the ggbetweenstats function of the R-Package ggstatsplot. A Games–Howell test was also carried
out using Holm’s p-value fitting method via the ggbetweenstats function of the R-Package ggstatsplot
(Patil, 2021). Normal distributions of the studied variables are summarized using violin plots in the
Turipaná, Motilonia, Carmen de Bolivar, and Caribia research stations. Traits are depicted as follows:
(A) NP: number of pods per plant; (B) NS: average number of seeds per pods; (C) YLP: yield per
plant (g/plant); (D) SB: 100-seed weight (g); (E) VB: vegetative biomass (g).
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3.3. Genetic Structure and Kinship Relationships Suggested Five Demographic Clusters

The population stratification, carried out with clustering methodologies and an
ancestry-model approach, suggested that all 84 accessions comprised five demographic
groups (Figure 2B,C). A kinship reconstruction using the VanRaden algorithm also sug-
gested 5 groups (Figure S7). Within the population substructure, it was revealed that
closely related genotypes grouped in clusters that matched interspecific families’ genealo-
gies (Figure S8), as expected from the deep divergence among the parental linages (i.e., two
well-differentiated species and a profound genepool division within the common bean).
Because of this, the genetic structure used in the GWAS analysis as a covariate comprised a
total of 12 groups, so that all the genetic clusters had at least one genotype with a purity
threshold greater than 90 percent (Figure 2A).

Utilizing detailed population substructure embracing genepools, family, and more
subtle clusters enables an efficient control of the false positive rate by lowering the p-values
of associated SNPs that covariate with both the demographic and the genealogical strat-
ification. An overall linkage disequilibrium (LD) decay revealed that the studied panel
harbors sufficient inter- and intraspecific recombination events for association mapping,
while the GBS-based SNP genotyping conveys enough marker coverage of the resulting
haplotype blocks (Figure S10).

A B

C

Figure 2. Unsupervised population stratification inference. (A) Non-negative matrix factorization
algorithm (snmf function) in the LEA R-package, an improvement from the classical admixture
inference (Frichot and François, 2015). (B) Cross-entropy optimization with 10,000 repetitions of
snmf function. (C) Molecular principal component analysis (PC) carried out by optCluster R-package
(Sekula et al. 2017).
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3.4. A Total of 47 Loci and 90 Genes Led to Environmentally Dependent Polygenic Adaptation

The GWAS methods BLINK and FarmCPU recovered similar counts of the associated
molecular markers, 128 SNPs with BLINK and 122 SNPs with FarmCPU, conveying an over-
lap of 60.05% (Table S6, arranged graphically in the circular Manhattan plots of Figures 3–7
with the associated QQ-plots, summarized for all traits and localities in Figure 8, and syn-
thetized for their genetic functionality in Table 1). These trends suggest that the genomic
architecture of tepary × common bean adaptation to the Caribbean coast of Colombia
was polygenic, involving a total of 47 QTNs for the five recorded yield traits across all the
chromosomes. This polygenic genomic basis applies to all the traits. Specifically, 11 QTNs
were found number of pods–NP (Figure 3), 11 QTNs for average number of seeds per pod–
NS (Figure 4), 21 QTNs for overall yield per plant–YLP (Figure 5), 13 QTNs for 100-seed
weight–SB (Figure 6), and 14 QTNs for pod vegetative biomass–VB (Figure 7). Reinforcing
the complex genomic architectures, chromosomes 11, 9, 8, 7, and 4 contained the majority
of the associated molecular markers with 28, 51, 39, 52, and 35 SNPs, respectively. Chromo-
somes 6, 5, and 2 displayed 16, 12, and 8 QTNs, respectively. Finally, chromosomes 10, 3,
and 1 had the simplest genomic architectures with 2, 3, and 4 QTNs, respectively (Table S6).

Interestingly, the polygenic architecture of adaptation was environmentally dependent.
Specifically, the Caribia locality, which is located in the wet Caribbean subregion, was the
one with the most associated markers (16 QTNs, Figures 3–7, Table S6), followed by the
humid Turipaná locality and the drier Motilonia locality (13 and 12 QTNs, respectively,
Figures 3–7, Table S6). Carmen de Bolivar, also located in the dry Caribbean subregion, had
fewer associated molecular markers (2 QTNs, Figures 3–8, Table S6). Neither algorithm
detected overlap of the associated markers across the localities (Figure S9A).

Concerning gene hitchhiking, from the 47 associated QTNs, 43 were flanked by 90 an-
notated genes given a 1-kb window in the common bean reference genome. From the
90 flanking genes, 19 were associated with NP, 20 with NS, 38 with YLP, 22 with SB, and
27 with VB. Also congruent with the environmental dependency trend, 33 and 29 flanking
genes were recovered in the localities of Motilonia and Caribia, respectively, and 26 and
2 genes were captured in the localities of Turipaná and Carmen de Bolivar, respectively
(Figure 8). An overlap of the associated genes across localities was rare, involving no genes
(Figure S9B).

3.5. Associated Genes Enriched Drought Tolerance Response Pathways

The 90 genes that flanked all 43 associated loci (QTNs) suggested multiple response
mechanisms as part of the drought tolerance pathways, making water scarcity a likely target
of selection for beans planted in the northern coast of Colombia. In the dry Caribbean sub-
regions, the preponderant response mechanisms to drought stress were signal transduction
(i.e., ethylene response factor—ERF), photosynthesis (i.e., LHCA3, chloroplast stem–loop
binding protein, and chloroplastic mate efflux family protein 3), and drought-induced
proteins (i.e., late embryogenesis abundant). On the other hand, in the humid Caribbean
subregions, the genetic basis of adaptation recalled drought tolerance pathways via regula-
tors of the morphological, physiological (i.e., wax inducer1/shine1), and photosynthetic
functions (i.e., plastocyanin-like domain), as well as drought-induced proteins (i.e., MYB),
reactive oxygen metabolism (i.e., peroxidase proteins), and fatty acid and phospholipid
metabolism (Table S6). An overall pathway enrichment analysis suggested a total of 28 key
metabolic pathways enriched for the linked genes (Table 1), as detailed below.
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Figure 3. Concentric circular Manhattan plots of multi-environment genome-wide association studies and QQ-plot for number of pods per plant using an integrated
advanced panel comprising common bean (P. vulgaris L.) × tepary bean (P. acutifolius A. Gray) interspecific lines in the humid and dry subregions of the Colombian
Caribbean. Each ring represents the GWAS results per locality, from the outer to the inner ring, respectively: Turipaná, Motilonia, Carmen de Bolívar, and Caribia
research stations. The density of genetic markers is depicted in gray. Also within the Manhattan circular plots, red dots indicate SNPs that exceeded the Bonferroni
threshold (red dotted line, p-value = 3.196 × 10−6), while blue dots indicate SNPs that exceeded the less stringent threshold (blue dotted line, p-value = 3.196 × 10−4).
Implemented GWAS algorithms were (A) BLINK and (B) FarmCPU.
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Figure 4. Concentric circular Manhattan plots of multi-environment genome-wide association studies and QQ-plot for average number of seeds per pod using
an integrated advanced panel comprising common bean (P. vulgaris L.) × tepary bean (P. acutifolius A. Gray) interspecific lines in the humid and dry subregions
of the Colombian Caribbean. Each ring represents the GWAS results per locality, from the outer to the inner ring, respectively: Turipaná, Motilonia, Carmen de
Bolívar, and Caribia research stations. The density of genetic markers is depicted in gray. Also within the Manhattan circular plots, red dots indicate SNPs that
exceeded the Bonferroni threshold (red dotted line, p-value = 3.196 × 10−6), while blue dots indicate SNPs that exceeded the less stringent threshold (blue dotted
line, p-value = 3.196 × 10−4). Implemented GWAS algorithms were (A) BLINK and (B) FarmCPU.
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Figure 5. Concentric circular Manhattan plots of multi-environment genome-wide association studies and QQ-plot for yield per plant (g/plant) using an integrated
advanced panel comprising common bean (P. vulgaris L.) × tepary bean (P. acutifolius A. Gray) interspecific lines in the humid and dry subregions of the Colombian
Caribbean. Each ring represents the GWAS results per locality, from the outer to the inner ring, respectively: Turipaná, Motilonia, Carmen de Bolívar, and Caribia
research stations. The density of genetic markers is depicted in gray. Also within the Manhattan circular plots, red dots indicate SNPs that exceeded the Bonferroni
threshold (red dotted line, p-value = 3.196 × 10−6), while blue dots indicate SNPs that exceeded the less stringent threshold (blue dotted line, p-value = 3.196 × 10−4).
Implemented GWAS algorithms were (A) BLINK and (B) FarmCPU.
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Figure 6. Concentric circular Manhattan plots of multi-environment genome-wide association studies and QQ-plot for 100-seed weight (g) using an integrated
advanced panel comprising common bean (P. vulgaris L.) × tepary bean (P. acutifolius A. Gray) interspecific lines in the humid and dry subregions of the Colombian
Caribbean. Each ring represents the GWAS results per locality, from the outer to the inner ring, respectively: Turipaná, Motilonia, Carmen de Bolívar, and Caribia
research stations. The density of genetic markers is depicted in gray. Also within the Manhattan circular plots, red dots indicate SNPs that exceeded the Bonferroni
threshold (red dotted line, p-value = 3.196 × 10−6), while blue dots indicate SNPs that exceeded the less stringent threshold (blue dotted line, p-value = 3.196 × 10−4).
Implemented GWAS algorithms were (A) BLINK and (B) FarmCPU.
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Figure 7. Concentric circular Manhattan plots of multi-environment genome-wide association studies and QQ-plot for pod vegetative biomass (g) using an
integrated advanced panel comprising common bean (P. vulgaris L.) × tepary bean (P. acutifolius A. Gray) interspecific lines in the humid and dry subregions of
the Colombian Caribbean. Each ring represents the GWAS results per locality, from the outer to the inner ring, respectively: Turipaná, Motilonia, Carmen de
Bolívar, and Caribia research stations. The density of genetic markers is depicted in gray. Also within the Manhattan circular plots, red dots indicate SNPs that
exceeded the Bonferroni threshold (red dotted line, p-value = 3.196 × 10−6), while blue dots indicate SNPs that exceeded the less stringent threshold (blue dotted
line, p-value = 3.196 × 10−4). Implemented GWAS algorithms were (A) BLINK and (B) FarmCPU.
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Figure 8. Summarized genomic architecture of adaptation via multi-environment GWAS of yield
traits as agronomic fitness proxy in advanced genotypes of common bean (P. vulgaris L.) × tepary
bean (P. acutifolius A. Gray) interspecific lines at four localities in the Caribbean. (A) Idiogram across
the five yield traits (NP: number of pods per plant, NS: average number of seeds per pods, YLP: yield
per plant, SB: 100-seed weight as seed biomass, VB: vegetative biomass). (B) Idiogram across all four
localities (Turipaná, Motilonia, Carmen de Bolívar, and Caribia).
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Table 1. Pathways-enriched analysis for each yield trait index across four localities in the Caribbean
coast of Colombia. The software used was the PhytoMine tool in the Phytozome v.13 plat- form. The
p-value was calculated using the hypergeometric distribution. Abbreviations under the “variable” col-
umn are as follows: NP: number of pods per plant, NS: average number of seeds per pods, YLP: yield
per plant (g/plant), SB: 100-seed weight (g) as measure of seed biomass, and VB: vegetative biomass.

Variable Gene ID p-Value Pathway ID Pathway Name

NP PAC:37165399 1.6578 × e−5 FASYN-ELONG-PWY fatty acid elongation—saturated

NP PAC:37165399 2.3272 × e−4 PWY-5156 superpathway of fatty acid biosynthesis II (plant)

NP PAC:37165399 1.1329 × e−4 PWY-5971 palmitate biosynthesis II (bacteria and plants)

NP PAC:37165399 2.7244 × e−5 PWY-5973 cis-vaccenate biosynthesis

NP PAC:37165399 1.1324× e−4 PWY-5989 stearate biosynthesis II (bacteria and plants)

NP PAC:37165399 3.1750 × e−5 PWY-6282 palmitoleate biosynthesis I (from (5Z)-dodec-5-enoate)

NP PAC:37165399 3.2671 × e−5 PWY-7388 octanoyl-[acyl-carrier protein] synthesis (mitochondria)

NP PAC:37165399 1.5583 × e−5 PWY-7663 gondoate biosynthesis (anaerobic)

NP PAC:37167444 1.6578 × e−5 FASYN-ELONG-PWY fatty acid elongation—saturated

NP PAC:37167444 2.3272 × e−4 PWY-5156 superpathway of fatty acid biosynthesis II (plant)

NP PAC:37167444 1.1329 × e−4 PWY-5971 palmitate biosynthesis II (bacteria and plants)

NP PAC:37167444 2.7244 × e−5 PWY-5973 cis-vaccenate biosynthesis

NP PAC:37167444 1.1324 × e−4 PWY-5989 stearate biosynthesis II (bacteria and plants)

NP PAC:37167444 3.1750 × e−5 PWY-6282 palmitoleate biosynthesis I (from (5Z)-dodec-5-enoate)

NP PAC:37167444 3.2671 × e−5 PWY-7388 octanoyl-[acyl-carrier protein] synthesis (mitochondria,)

NP PAC:37167444 1.5583 × e−5 PWY-7663 gondoate biosynthesis (anaerobic)

NS PAC:37156716 0.0297 PWY-7219 adenosine ribonucleotides de novo biosynthesis

NS PAC:37156716 0.0297 PWY-7229 adenosine nucleotides de novo biosynthesis I

NS PAC:37165399 4.9600 × e−5 FASYN-ELONG-PWY fatty acid elongation—saturated

NS PAC:37165399 6.9107 × e−4 PWY-5156 superpathway of fatty acid biosynthesis II (plant)

NS PAC:37165399 3.3746 × e−4 PWY-5971 palmitate biosynthesis II (bacteria and plants)

NS PAC:37165399 8.1448 × e−5 PWY-5973 cis-vaccenate biosynthesis

NS PAC:37165399 3.3732 × e−4 PWY-5989 stearate biosynthesis II (bacteria and plants)

NS PAC:37165399 9.4892 × e−5 PWY-6282 palmitoleate biosynthesis I (from (5Z)-dodec-5-enoate)

NS PAC:37165399 9.7640 × e−5 PWY-7388 octanoyl-[acyl-carrier protein] synthesis (mitochondria)

NS PAC:37165399 4.6627 × e−5 PWY-7663 gondoate biosynthesis (anaerobic)

NS PAC:37167444 4.9600 × e−5 FASYN-ELONG-PWY fatty acid elongation—saturated

NS PAC:37167444 6.9107 × e−4 PWY-5156 superpathway of fatty acid biosynthesis II (plant)

NS PAC:37167444 3.3746 × e−4 PWY-5971 palmitate biosynthesis II (bacteria and plants)

NS PAC:37167444 8.1448 × e−5 PWY-5973 cis-vaccenate biosynthesis

NS PAC:37167444 3.3731 × e−4 PWY-5989 stearate biosynthesis II (bacteria and plants)

NS PAC:37167444 9.4892 × e−5 PWY-6282 palmitoleate biosynthesis I (from (5Z)-dodec-5-enoate)

NS PAC:37167444 9.7640 × e−5 PWY-7388 octanoyl-[acyl-carrier protein] synthesis (mitochondria)

NS PAC:37167444 4.6627 × e−5 PWY-7663 gondoate biosynthesis (anaerobic)

YLP PAC:37160270 0.0132 PWY1F-467 phenylpropanoid biosynthesis, initial reactions

YLP PAC:37160270 0.0288 PWY-7186 superpathway of scopolin and esculin biosynthesis

YLP PAC:37160685 0.0434 PWY-5690 TCA cycle II (plants and fungi)

YLP PAC:37160685 0.0432 PWY-6549 L-glutamine biosynthesis III

YLP PAC:37172239 0.0167 PWY-5466 matairesinol biosynthesis

YLP PAC:37172239 0.0045 PWY-6824 justicidin B biosynthesis

YLP PAC:37172239 0.0103 PWY-7214 baicalein degradation (hydrogen peroxide detoxification)

YLP PAC:37172239 0.0097 PWY-7445 luteolin triglucuronide degradation

YLP PAC:37173372 0.0167 PWY-5466 matairesinol biosynthesis

YLP PAC:37173372 0.0045 PWY-6824 justicidin B biosynthesis

YLP PAC:37173372 0.0103 PWY-7214 baicalein degradation (hydrogen peroxide detoxification)

YLP PAC:37173372 0.0097 PWY-7445 luteolin triglucuronide degradation
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Table 1. Cont.

Variable Gene ID p-Value Pathway ID Pathway Name

SB PAC:37165106 0.0151 PWY-1121 suberin monomers biosynthesis

SB PAC:37165106 0.0098 PWY-321 cutin biosynthesis

SB PAC:37165106 0.0095 PWY-5136 fatty acid and beta oxidation II (peroxisome)

SB PAC:37165106 0.0049 PWY-5143 long-chain fatty acid activation

SB PAC:37165106 0.0086 PWY-5147 oleate biosynthesis I (plants)

SB PAC:37165106 0.0153 PWY-5156 superpathway of fatty acid biosynthesis II (plant)

SB PAC:37165106 0.0180 PWY-561 glyoxylate cycle and fatty acid degradation

SB PAC:37165106 0.0083 PWY-5885 wax esters biosynthesis II

SB PAC:37165106 0.0106 PWY-5971 palmitate biosynthesis II (bacteria and plants)

SB PAC:37165106 0.0106 PWY-5989 stearate biosynthesis II (bacteria and plants)

SB PAC:37165106 0.0111 PWY66-389 phytol degradation

SB PAC:37165106 0.0095 PWY-6733 sporopollenin precursors biosynthesis

SB PAC:37165106 0.0126 PWY-6803 phosphatidylcholine acyl editing

VB PAC:37165106 0.0447 PWY-1121 suberin monomers biosynthesis

VB PAC:37165106 0.0292 PWY-321 cutin biosynthesis

VB PAC:37165106 0.0281 PWY-5136 fatty acid and beta oxidation II (peroxisome)

VB PAC:37165106 0.0145 PWY-5143 long-chain fatty acid activation

VB PAC:37165106 0.0255 PWY-5147 oleate biosynthesis I (plants)

VB PAC:37165106 0.0451 PWY-5156 superpathway of fatty acid biosynthesis II (plant)

VB PAC:37165106 0.0247 PWY-5885 wax esters biosynthesis II

VB PAC:37165106 0.0316 PWY-5971 palmitate biosynthesis II (bacteria and plants)

VB PAC:37165106 0.0316 PWY-5989 stearate biosynthesis II (bacteria and plants)

VB PAC:37165106 0.0330 PWY66-389 phytol degradation

VB PAC:37165106 0.0283 PWY-6733 sporopollenin precursors biosynthesis

VB PAC:37165106 0.0374 PWY-6803 phosphatidylcholine acyl editing

Three enriched pathways were linked to the fatty acid and phospholipid metabolism
for all the traits: palmitate biosynthesis II, stearate biosynthesis II, and superpathway of
fatty acid biosynthesis II. The NP index captured the same eight metabolic pathways, which
were cis-vaccenate biosynthesis, fatty acid elongation, gondoate biosynthesis (anaerobic),
octanoyl-[acyl-carrier protein] biosynthesis, palmitate biosynthesis II, palmitoleate biosyn-
thesis I, stearate biosynthesis II, and the fatty acid biosynthesis II. Interestingly, the NS index
captured two additional pathways compared to the NP index: adenosine ribonucleotides
de novo biosynthesis and adenosine nucleotides de novo biosynthesis I.

Meanwhile, the SB and VB indices captured the same twelve metabolic pathways:
cutin biosynthesis, fatty acid & beta-oxidation II (peroxisome), long-chain fatty acid acti-
vation, oleate biosynthesis I, palmitate biosynthesis II, phosphatidylcholine acyl editing,
phytol degradation, sporopollenin precursors biosynthesis, stearate biosynthesis II, suberin
monomers biosynthesis, the superpathway of fatty acid biosynthesis II, and the wax esters
biosynthesis II. The only metabolic pathway that the SB index captured over the VB index
was the superpathway of glyoxylate cycle and fatty acid degradation. These high levels
of overlap between NP and NS, and SB and VB, are indicative of moderate pleiotropy, at
least at the pathway scale. Finally, the overall YLP index captured a total of eight path-
ways: baicalein degradation (hydrogen peroxide detoxification), justicidin B biosynthesis,
L-glutamine biosynthesis III, luteolin triglucuronide degradation, matairesinol biosynthesis,
phenylpropanoid biosynthesis, initial reactions, the superpathway of scopolin and esculin
biosynthesis, and the TCA cycle II.
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4. Discussion

The understanding of adaptive genetic variation to drought and high temperatures
in the arid and semi-arid ecosystems of the Caribbean coast of northwest South America
conveys great interest in the development of promising breeding lines to power food
security in the region. However, multi-locality field trials of advanced interspecific panels
have seldom been coupled with modern GWAS approaches to pinpoint target SNP markers
for indirect selection schemes. This study tested for the first time the common × tepary
bean inter-crosses for five yield components (NP, NS, YLP, SB, and VB) across four localities
in the dry and wet Colombian Caribbean region. Furthermore, it utilized last-generation
GWAS models (i.e., BLINK and FarmCPU) to capture complementary components of the
genetic architecture of adaptation.

We found a total of 43 QTNs flanked by 90 genes related to the biological processes of
the drought tolerance response in plants under humid and dry regions of the Caribbean
region. Additionally, from the 90 genes, we captured several enrichment pathways for
genes centered in the fatty acid biosynthesis, a relationship that has been associated with
the abiotic stress response, such as drought and heat stress [66]. The loci captured in
this work could be potential candidates to power downstream breeding pipelines using
molecular marker-guided, genomic-enabled selection, and, eventually, gene editing.

The studied genotype panel comprises advanced interspecific multi-parental and
backcrossed populations from a diverse founding population (common and tepary bean).
Therefore, within-species natural recombination and the one induced after interspecific
crossing both have diminished linkage disequilibrium (LD) and broken-down haplotype
blocks without jeopardizing marker coverage [67], as shown by the overall LD profiles. Un-
der this scenario, association mapping offers a more desirable framework than traditional
QTL mapping. After all, the latter heavily relies on advancing bi-parental populations for
sufficient generations as for recombination to narrow the LOD scores [68], which is not a
guarantee of optimum mapping resolution, especially for autogamous species, such as the
common and tepary beans.

4.1. Pervasive Environmentally Dependent Polygenic Adaptation Boosted by Hybrid Breeding

One of the main accomplishments of our study was to find that the genetic associations
for yield in advanced interspecific lines of tepary × common beans simultaneously vary
at many loci across localities in coastal Colombia. This trend speaks for environmentally
dependent polygenic adaptation [69]. A heterotic component coupled with the polygenic
nature is not unfeasible, despite the autogamous nature of the species, because adapted
variants are expected to segregate at higher frequencies in the exotic tepary donor species
than in the elite common bean genomic background [14]. Adapted alleles decoupled in their
intra-specific fixation are likely to convey hybrid dominance, and over-dominance without
implying a rescue from inbreeding depression [70]. Hybrid dominance corresponds to the
sudden masking of maladapted alleles in the elite common bean genomic background due
to the hybrids’ increased heterozygosity [71]. Instead, over-dominance refers to the additive
heterosis as the result of novel allelic combinations that have thus far been maintained and
separated by between-species balancing selection—i.e., tepary and common beans adapted
to different agro-ecologies [72].

Polygenic, or even omnigenic [73], adaptation is also not rare because many standing
genetic variants with modest effect sizes are expected to underlie early stages of selection
favoring complex abiotic tolerance [35] in interspecific genomic backgrounds. Numerous
examples have reported polygenic architectures as part of hybrid breeding schemes, as
follows: phytochemical, morphological, and growth traits in hybrid Populus genotypes [74],
biotic resistance in hybrid grapes [75], morphological and yield-related traits in hybrid oil
palm [76], agronomic traits in hybrid cotton [77], the flowering time in Amaranthus [78],
phenology-related traits in blueberries [79], and the grain yield and other yield-related
traits in hybrid wheat under drought stress [80].
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However, in legumes such as beans, there has been insufficient progress in terms of
hybrid and introgression breeding approaches, partly due to the novelty of interspecific
panels and the difficulty in isolating individual marker effects within a polygenic context,
in which many loci with low effects overrule. Hence, we recommend modern GWAS
algorithms [41] as a robust alternative to unlock historically elusive, adapted variations in
advanced common bean × tepary bean targeting hot and dry regions in the Caribbean.

What is indeed striking is that beans’ genomic architecture of interspecific polygenic
adaption is context-dependent as a function of the environments found in coastal Colombia.
An environmentally dependent genetic basis implies that the populations tested across
the localities exhibit contrasting realizations of polygenic adaptation [81] despite selection
pressures that may otherwise be similar (i.e., concerted drought and heat events across
most part of the Caribbean coast of northwest South America). This may indicate that
narrow habitat-based adaptation is conferred by species-specific genetic variants, boosting
habitat-dependent architectures in interspecific lines.

The fact that discordant, as opposed to conflicting genomic architectures were re-
covered across localities when using yield as an agronomical fitness proxy could also
speak for a predominant role of adaptive conditional neutrality, as opposed to antagonistic
pleiotropy [82]. In other words, the associated loci in some localities were absent in others
(i.e., near-zero effects) instead of reappearing with a different directionality (i.e., opposing
allelic effect). While the absence of allelic effects in some localities conveys evidence for
conditional neutrality in a wide spectrum of plant species, antagonistic pleiotropy seldom
appears in the literature of plant field trials [83]. After all, natural settings preclude uniform
selective forces and erode statistical power [84]. Several eco-physiological mechanisms
could account for the conditional neutrality trend. For example, tropical lowland beans
may suffer higher mortality before harvest due to drought [8] and heat waves [27], natural
intermediate variation may occur between the dry and wet Caribbean subregions, and
microhabitat effects could be preponderant, like in terms of soil water retention ability.
Therefore, phenotypic targets of selection may vary across localities [84], thereby neutraliz-
ing the effect sizes for adaptation in certain environments, as expected under a conditional
neutrality paradigm (vs. antagonist pleiotropy scenarios that would penalize selection
targets in one of the conditions).

The underlying causes of environmentally dependent genomic architectures are not
necessarily limited to contrasting selection targets across the localities in coastal Colombia.
Alternatively, a deleterious load in sub-optimal climates may also account for the habitat-
dependent trend [85]. Such potential deleterious loads may as well be due to alleles
exhibiting opposing negative effects in extreme conditions or to conditionally deleterious
variants [86]. Future studies exploring the interspecific tepary × common bean lines
in novel climates should aim at disentangling the basal mechanisms, mostly because
the outcome of hybrid and introgression [32] breeding would depend on the ultimate
causes of the environmentally dependent genomic basis of adaptation [87]. For instance,
conditionally deleterious variants may limit introgression breeding in localities where
negative selection is rampant, which would make it difficult to consistently select against
those alleles in recurrent or congruity backcross schemes.

More advanced hybrid generations with narrower haplotype blocks from each species
could favor purging genomic regions with deleterious effects [88], while retaining those
that only contain positive-effect alleles derived from the exotic donor species, the tepary
bean. In this way, backcrossing could disfavor regions with negative-effect variants [89]
likely derived from the maladapted common bean elite genomic background [90]. Standing
genetic variation with environmentally dependent effects may thus act as a bottleneck for
introgression breeding unless intraspecific linkage disequilibrium is sufficiently broken in
advanced generation backcrosses [91]. An expanded repertoire of bridge genotypes beyond
the VAP lines [36] could assist in this endeavor.
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Finally, the correlated traits did not exhibit shared genetic architecture in terms of
QTNs, although partially for commonly enriched pathways. A reason for this may be
that the drivers of pleiotropy comprise other genes within the responsible metabolic path-
ways, which were not necessarily captured by our genetic mapping effort due to a lack
of polymorphism within and nearby the candidate genes for pleiotropy, as well as to
weak hitchhiking marker–gene linkage disequilibrium in those regions. Alternatively, trait
variance similarity may be environmentally reinforced, as compared to having a common
ubiquitous underlying genetic basis.

4.2. Morphological, Physiological, and Metabolic Mechanisms of Adaptation to Drought & Heat

The response mechanisms of plants to drought stress has been extensively studied
on morphological and physiological targets of selection [92]. Under drought stress, plants’
internal structures and physical properties continuously change and adapt. This is consis-
tent with the fact that we detected an enrichment of the suberin monomers biosynthesis
pathway for vegetative traits (SB and VB). Specifically, the lipid cuticle membrane, which
can reduce the loss of water to the atmosphere, acts as a barrier for plant water evaporation.
The cuticle is composed of several biomolecules, such as cutin and soluble waxes. Altered
cutin and suberin confers increased sensitivity to abiotic stresses, regulates development
and growth, and alters morphology, permeability and seed dormancy [93]. We also cap-
tured an enrichment of the wax esters biosynthesis II pathway, not unexpected because
leaves improve drought resistance through increasing wax coverage, cuticle thickness,
and osmiophilicity [94,95]. Additionally, we found that the SNP markers S04_3848215,
S04_3848227, and S04_3848215 were associated with the gene Phvul.004G031900, a tran-
scription factor (wax inducer1/shine1) of the ethylene response factor (ERF) family, which
has recently been shown to induce the production of epidermal waxes when overexpressed
in Arabidopsis [96] and Brassica napus [97], as well as drought tolerance in common bean via
Dreb2 genes [98]. The observation that chitinase genes are involved in both leaf development
and senescence [99] may point to a specific gene in this cluster as a strong candidate for the
whole plant response under heat stress.

We were also able to acknowledge other key metabolic pathways associated with
drought and high temperature adaptation in the Caribbean coast of Colombia. The drought
and high temperature stress is known to affect a wide spectrum of physiological and
biochemical characteristics, as well, such as the photosynthetic capacity, drought-induced
proteins, and reactive oxygen metabolism [92].

Photosynthesis is one of the main processes affected by water stress. In this re-
gard, we found, across all the research stations, associated genes related to the photo-
synthesis metabolism, such as the plastocyanin-like domain (Phvul.007G055000) in Turi-
paná; and the LHCA3 gene (Phvul.008G289700), chloroplast stem–loop binding protein
(Phvul.007G172100), and chloroplastic mate efflux family protein 3 (Phvul.008G291400) in
the drier Motilonia and Carmen de Bolivar localities. Additionally, we observed pathway
enrichment for phytol degradation genes. These drought-induced proteins play a protec-
tive role in plant adaptation to stress and can improve plant drought tolerance. They are
divided into functional and regulatory proteins. We found a relevant functional protective
protein named late embryogenesis abundant (LEA) [100] (Phvul.011G001700) only in the
Motilonia station, hitchhiking with the SNP marker S11_140976. Up-regulation of some
LEA have been reported in other legume species, such as Vigna spp. [101]. Similarly, we
detected the regulatory protein MYB in the field trials at the humid localities of Turipaná
(Phvul.008G205000) and Caribia (Phvul.002G088900), particularly a transcription factor in
the enriched biosynthesis of phenylpropanoids pathway [92,102]. Concerning the reactive
oxygen metabolism, we found at Turipaná a peroxidase protein (Phvul.006G130000) related
to the removal of H2O2 [103] within the enriched baicalein degradation (hydrogen peroxide
detoxification) pathway.
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Facing drought and high temperature adaptation, plants also implement a wide
spectrum of signal transduction mechanisms [66]. Specifically, we found the ERF regulatory
gene (Phvul.005G180700) in the Motilonia trial. ERFs play an important role in plant stress
resistance, as reported in previous studies [96,104], even for the common bean [98]. They
regulate the biosynthesis of plant hormones, such as jasmonic acid and ethylene [92]. These
hormones also participate in the signaling processes to other types of stresses considered to
be of major importance under climate change, such as biotic stresses [105].

Last but not least, fatty acid and phospholipid metabolism are other well-known
response mechanisms to drought and high temperature stresses. For decades, the alteration
in fatty acid and phospholipid metabolism have reappeared under drought stress trials
in legumes [106]. A recent report validated the regulation of fatty acid and phospholipid
metabolism in tomato fruit under drought stress using transcriptomic and metabolomic
analyses [66]. These authors reported that fatty acid and phospholipid metabolism are key
components in several metabolic pathways of drought tolerance, such as the biosynthesis
of cell walls, ethylene, and jasmonate [107]. We found several enriched pathways at the
humid Turipaná and Caribia localities that matched those obtained by Asakura et al. [66],
specifically the superpathway of fatty acid biosynthesis II, palmitate biosynthesis II, and
stearate biosynthesis II (captured simultaneously by the yield traits indices NP, NS, YLP,
SB, and VB). These pathway networks could be useful bioindicators across advanced
recombinant tepary × common beans interspecific lines.

Our results confirm the utility of some of the associated markers and genes to further
investigate and select for the genetic factors controlling important agronomic traits under
the conditions of the Colombian Caribbean coast. These QTNs datasets will also allow
researchers to determine whether yield traits are controlled by genetic factors shared
by both species genepools—i.e., convergent adaptation [108], or whether species- and
genepool-specific factors are regulating those traits [59].

4.3. Perspectives and Recommendations for Future Studies

Although the number of genotypes may seem low at first glance, they correspond to
advanced interspecific hybrids between common and tepary beans, two species that do
not easily recombine in nature. Therefore, having 87 interspecific genotypes is already a
major achievement because they managed to overcome a traditionally difficult interspecific
barrier to break. Future studies should aim at gathering additional interspecific genotypes
via modern techniques, such as embryo rescue and the identification of additional bridge
genotypes (beyond VAP lines [36]). To compensate for the moderate sample size, we did
not utilize conventional MLM-based GWAS modeling, but better calibrated approaches,
such as FarmCPU and BLINK [53].

Nonetheless, the trait variation shows substantial variance across the modest panel,
partly due to the interspecific nature of the genotypes and the fact that the parental pop-
ulations are widely contrasting. That is, the founder population could be understood
as a bulk segregant design more than a homogeneous panel, boosting the power of the
current sampling. In order to make sense of this variation, the BLUP scores confirmed
that mean–variance index works well as a first proxy to rank genotypes across traits at
each locality. We are planning to extend these inferences into a predictive framework to
assist the computation of alternative indirect selection indices, that is genomic-estimated
breeding values (GEBVs) as an alternative to mean–variance and BLUP scores.

At a more detailed resolution, the number of pods (NP) and average number of seeds
per pod (NS) in the Carmen de Bolivar locality did not exhibit a much-expected correlation,
as was the case in the other three locations. This trend is likely a consequence of incomplete
pod filling, leading to many pods with few seeds. Such a pattern could be expected under
very particular abiotic stressors, perhaps only limited to the Carmen de Bolivar locality
during the evaluation period. We will examine this tradeoff as part of future trials in order
to be more conclusive in that regard.
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Another latent caveat of modern genetic mapping is inflation of the false positive
rate due to complex demography. The common bean is not the exception because it is
characterized by a complex dual genepool and racial substructure [83], which extends
to the interspecific hybrids with the tepary bean. This is why we have incorporated
12 demographic clusters as covariates. In this way, we can guarantee, judging by the QQ-
plot diagrams (Figures 3–7), sufficient contention of spurious demographic associations (i.e.,
type I error). This may convey a reduction in the statistical power of the overall analysis
(i.e., type II error), yet our pipeline still manages to find significantly associated QTNs.

Finally, the associated loci require further validation for QTNs to be considered within
marker-assisted and genomic selection applications, which could effectively unlock and
utilize the bean’s neo-tropical lowland adaptation. Therefore, future studies should aim
at filling this gap by embracing the ad hoc hypotheses of marker-enabled prediction.
Furthermore, we recommend testing genomic-enabled selection in irrigated vs. non-
irrigated controlled field treatments. In doing so, we may buffer introduced variability
from running phenotypic screenings across different locations with contrasting weather
patterns and levels of precipitation. Therefore, we envision extending the field trials
throughout treatments and time, while broadening traits, recalibrating genetic mapping,
and recruiting local expertise from plant breeders and physiologists.

5. Conclusions

We detected that the genetic basis of adaptation differs across the studied Caribbean
localities. For example, in dry subregions, the preponderant response mechanisms to
drought stress were signal transduction, photosynthesis, and drought-induced proteins.
On the other hand, in the humid subregion, morphological and physiological responses,
photosynthetic capacity, drought-induced proteins, reactive oxygen metabolism, and fatty
acid and phospholipid metabolism mostly shaped the genetic basis of adaptation. The
only common response across all the studied locations was linked with the photosynthetic
pathway, yet it involved different associated genes. These trends allowed us to conclude
environmentally dependent polygenic adaptation.

Continuing to leverage common bean introgression breeding in the Caribbean coast of
Colombia requires coupling advanced panels of recombinant interspecific ancestries with
modern GWAS approaches in order to unlock and harness the habitat-dependent polygenic
adaptive genetic variation to drought and high temperatures. The use of enrichment
pathway analysis will further help scrutinizing wide interspecific panels for associated
QTNs, and thereby indirectly select for positive effects or against deleterious load, both
from the tepary exotic genepool and the elite common bean background. Anyhow, this
study demonstrates that coupling advanced panels of interspecific genotypes with modern
GWAS models under multi-locality setups enables retrieving the polygenic genetic basis of
adaptation to complex abiotic stresses, despite environmental dependency. Further studies
across new interspecific ancestries subjected to different climates will benefit by using
GWAS models within a well-thought multi-environment design in order to capture novel
sources of genetic adaptation. We are looking forward to seeing more studies that follow
these recommendations within the oncoming years.

Meanwhile, the genes identified in this study as candidates for drought tolerance
have the potential to be used in plant breeding programs after validation by means of
strategies such as gene expression studies and whole genome re-sequencing (WGS) [109].
With these methods, the validated candidate genes could be integrated into molecular
editing strategies, such as CRISPR/Cas9 [110–112] and genomic selection [113].

As part of a larger project, the promissory accessions identified in this work will be in-
tegrated in the oncoming stages of the KoLFACI (Korea–Latin America Food & Agriculture
Cooperation Initiative) breeding initiative for food security on the Colombian Caribbean
coast. Specifically, the associated SNPs will source genomic hybrid prediction modeling via
machine learning approaches to better merge genomic-informed pre-breeding genotype
selection with seed uniformity testing in downstream steps [114].
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Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/agronomy13051396/s1, Figure S1: Global daily (30 arcsec, ≈1 km) land
surface precipitation based on cloud cover-informed downscaling (Karger et al. 2021), and time
series of daily precipitation (kg/(m2 day)) extracted for the months from cultivation to harvest in the
historical data from 2003 to 2016. Localities are sorted as follows: (A) Motilonia, (B) Caribia, (C) Car-
men de Bolivar, and (D) Turipaná; Figure S2: Phenotypic variation for number of pods per plant, as
depicted with boxplots through genotypes across the four locations of the Colombian Caribbean coast:
(A) Turipaná, (B) Motilonia, (C) Carmen de Bolívar, and (D) Caribia; Figure S3: Phenotypic variation
for number of seeds per pod, as depicted with boxplots through genotypes across the four locations of
the Colombian Caribbean coast: (A) Turipaná, (B) Motilonia, (C) Carmen de Bolívar, and (D) Caribia;
Figure S4: Phenotypic variation for yield per plant (g/plant), as depicted with boxplots through
genotypes across the four locations of the Colombian Caribbean coast: (A) Turipaná, (B) Motilonia,
(C) Carmen de Bolívar, and (D) Caribia; Figure S5: Phenotypic variation for 100-seed weight (g), as
depicted with boxplots through the four genotypes across locations of the Colombian Caribbean
coast: (A) Turipaná, (B) Motilonia, (C) Carmen de Bolívar, and (D) Caribia; Figure S6: Phenotypic
variation for vegetative biomass (g), as depicted with boxplots through the genotypes across four
locations of the Colombian Caribbean coast: (A) Turipaná, (B) Motilonia, (C) Carmen de Bolívar,
and (D) Caribia; Figure S7: Heat map of kinship matrix estimated with the VanRaden algorithm [41]
across the 15,645 SNP markers; Figure S8: Unsupervised population stratification inference (K3) with
genotypes grouped in clusters matching families’ genealogies pulled in Table S1; Figure S9: Venn
diagram of associated SNPs between localities (A); Venn diagram of genes between localities (B);
Figure S10: Linkage disequilibrium (LD) decay in each chromosome by means of the Tassel software
using a window size of 10, the black line is the mean LD in each chromosome; Table S1: Genealogy of
87 genotypes composed of 67 interspecific lines between the common bean (P. vulgaris) and tepary
bean (P. acutifolius), and 19 advanced genotypes bred to high temperature and drought conditions
by the bean program of the Alliance Bioversity–CIAT. The genotype G40001 (P. acutifolius) was used
as a control. The panel of genotypes was evaluated for the first time at four localities in the humid
and dry Colombian Caribbean subregions (Burbano-Erazo et al. 2021); Table S2: Research stations’
environmental and soil fertility scores in coastal Colombia; Table S3: Shapiro–Wilk test to corroborate
the normality of the five trait indices across all four localities using the R-package nortest (Gross
& Ligges, 2015); Table S4: DNA quality extraction for all 87 lines reported in Table S1; Table S5:
Genetic library indices and statistics built for the 87 lines reported in Table S1; Table S6: Summary
results of the multi-environment GWAS of yield trait indices in advanced common bean (Phaseolus
vulgaris L.) × tepary bean (P. acutifolius A. Gray) interspecific lines in the humid and dry Colombian
Caribbean subregions; Table S7: Best linear unbiased predictors (BLUPs) in all traits across the all
environments using the function lmer in the R-package lmerTest; Table S8: Parametric regression by
Pearson approach adjusted by Bonferroni method between the best linear unbiased predictors and
mean-variance index for all traits across all environments using the function grouped_ggcorrmat in the
R-package ggstatsplot.
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