Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (73)

Search Parameters:
Keywords = CRISPR spacer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 265 KiB  
Review
TIGR-Tas and the Expanding Universe of RNA-Guided Genome Editing Systems: A New Era Beyond CRISPR-Cas
by Douglas M. Ruden
Genes 2025, 16(8), 896; https://doi.org/10.3390/genes16080896 - 28 Jul 2025
Viewed by 277
Abstract
The recent discovery of TIGR-Tas (Tandem Interspaced Guide RNA-Targeting Systems) marks a major advance in the field of genome editing, introducing a new class of compact, programmable DNA-targeting systems that function independently of traditional CRISPR-Cas pathways. TIGR-Tas effectors use a novel dual-spacer guide [...] Read more.
The recent discovery of TIGR-Tas (Tandem Interspaced Guide RNA-Targeting Systems) marks a major advance in the field of genome editing, introducing a new class of compact, programmable DNA-targeting systems that function independently of traditional CRISPR-Cas pathways. TIGR-Tas effectors use a novel dual-spacer guide RNA (tigRNA) to recognize both strands of target DNA without requiring a protospacer adjacent motif (PAM). These Tas proteins introduce double-stranded DNA cuts with characteristic 8-nucleotide 3′ overhangs and are significantly smaller than Cas9, offering delivery advantages for in vivo editing. Structural analyses reveal homology to box C/D snoRNP proteins, suggesting a previously unrecognized evolutionary lineage of RNA-guided nucleases. This review positions TIGR-Tas at the forefront of a new wave of RNA-programmable genome-editing technologies. In parallel, I provide comparative insight into the diverse and increasingly modular CRISPR-Cas systems, including Cas9, Cas12, Cas13, and emerging effectors like Cas3, Cas10, CasΦ, and Cas14. While the CRISPR-Cas universe has revolutionized molecular biology, TIGR-Tas systems open a complementary and potentially more versatile path for programmable genome manipulation. I discuss mechanistic distinctions, evolutionary implications, and potential applications in human cells, synthetic biology, and therapeutic genome engineering. Full article
(This article belongs to the Special Issue Advances in Developing Genomics and Computational Approaches)
Show Figures

Graphical abstract

17 pages, 2101 KiB  
Article
CRISPR-Cas Dynamics in Carbapenem-Resistant and Carbapenem-Susceptible Klebsiella pneumoniae Clinical Isolates from a Croatian Tertiary Hospital
by Ivana Jurić, Marko Jelić, Manda Markanović, Lucija Kanižaj, Zrinka Bošnjak, Ana Budimir, Tomislav Kuliš, Arjana Tambić-Andrašević, Ivana Ivančić-Baće and Ivana Mareković
Pathogens 2025, 14(6), 604; https://doi.org/10.3390/pathogens14060604 - 19 Jun 2025
Viewed by 542
Abstract
(1) Background: CRISPR-Cas systems provide adaptive immunity against mobile genetic elements (MGEs) carrying antimicrobial resistance (AMR) genes. Carbapenem-resistant (CR) Klebsiella pneumoniae is a major public health concern, and the role of CRISPR-Cas in its resistance is understudied. This study explored CRISPR-Cas associations with [...] Read more.
(1) Background: CRISPR-Cas systems provide adaptive immunity against mobile genetic elements (MGEs) carrying antimicrobial resistance (AMR) genes. Carbapenem-resistant (CR) Klebsiella pneumoniae is a major public health concern, and the role of CRISPR-Cas in its resistance is understudied. This study explored CRISPR-Cas associations with multidrug resistance in clinical K. pneumoniae. (2) Methods: 400 K. pneumoniae isolates (200 CR and 200 carbapenem susceptible (CS)) were analyzed. Carbapenemase genes (blaOXA-48, blaNDM-1, blaKPC-2), cas1, rpoB, and CRISPR1-3 loci were identified by PCR, while only CRISPR loci were sequenced. Genetic relatedness was assessed via PFGE, MLST, and spacer analysis. Statistical analysis utilized chi-squared and Fisher’s exact tests. (3) Results: CRISPR-Cas was present in 15.8% of isolates, mainly subtypes I-E and I-E* (93.3%), with CRISPR3 loci showing the greatest spacer diversity. Clonal complexes ST14/15/101 (CR) and ST35 (CS) were identified. blaOXA-48 was linked to CRISPR-Cas-negative strains, while blaNDM-1 and blaKPC-2 were more frequent in CRISPR-Cas-positive strains (p < 0.0001). Imipenem/relebactam resistance was higher in CRISPR-Cas-negative isolates. (4) Conclusions: K. pneumoniae CRISPR-Cas systems correlate with specific carbapenemase profiles, suggesting pressure against blaOXA-48 acquisition. The coexistence of I-E and I-E* subtypes highlight synergies in targeting MGEs. CRISPR loci could be tools for subtyping organisms following MLST. Full article
Show Figures

Figure 1

16 pages, 4919 KiB  
Article
Comparative Genomics of Bifidobacterium animalis subsp. lactis Reveals Strain-Level Hyperdiversity, Carbohydrate Metabolism Adaptations, and CRISPR-Mediated Phage Immunity
by Ozge Can, Ismail Gumustop, Ibrahim Genel, Hulya Unver, Enes Dertli, Ibrahim Cagri Kurt and Fatih Ortakci
Fermentation 2025, 11(4), 179; https://doi.org/10.3390/fermentation11040179 - 31 Mar 2025
Viewed by 1618
Abstract
Several strains of Bifidobacterium animalis subsp. lactis are blockbusters of commercial dietary supplement cocktails, widely recognized for their probiotic properties and found in various ecological niches. The present study aimed to perform an in-depth comparative genomic analysis on 71 B. animalis subsp. lactis [...] Read more.
Several strains of Bifidobacterium animalis subsp. lactis are blockbusters of commercial dietary supplement cocktails, widely recognized for their probiotic properties and found in various ecological niches. The present study aimed to perform an in-depth comparative genomic analysis on 71 B. animalis subsp. lactis strains isolated from diverse sources, including human and animal feces, breast milk, fermented foods, and commercial dietary supplements, to better elucidate the strain level diversity and biotechnological potential of this species. The average genome size was found to be 1.93 ± 0.05 Mb, with a GC content of 60.45% ± 0.2, an average of 1562 ± 41.3 coding sequences (CDS), and 53.4 ± 1.6 tRNA genes. A comparative genomic analysis revealed significant genetic diversity among the strains, with a core genome analysis showing that 34.7% of the total genes were conserved, while the pan-genome remained open, indicating ongoing gene acquisition. Functional annotation through EggNOG-Mapper and CAZYme clustering highlighted diverse metabolic capabilities, particularly in carbohydrate metabolism. Nearly all (70 of 71) Bifidobacterium animalis subsp. lactis strains were found to harbor CRISPR-Cas adaptive immune systems (predominantly of the Type I-E subtype), underscoring the ubiquity of this phage defense mechanism in the species. A comparative analysis of spacer sequences revealed distinct strain-specific CRISPR profiles, with certain strains sharing identical spacers that correlate with common phylogenetic clades or similar isolation sources—an indication of exposure to the same phage populations and shared selective pressures. These findings highlight a dynamic co-evolution between B. lactis and its bacteriophages across diverse ecological niches and point to the potential of leveraging its native CRISPR-Cas systems for future biotechnological applications. Our findings enhance our understanding of the genetic and functional diversity of B. animalis subsp. lactis, providing valuable insights for its use in probiotics and functional foods. Full article
(This article belongs to the Special Issue Lactic Acid Bacteria Metabolism)
Show Figures

Figure 1

17 pages, 2871 KiB  
Article
Characterization of Five CRISPR Systems in Microcystis aeruginosa FACHB-524 with Focus on the In Vitro Antiviral Activity of One CRISPR System
by Mengjing Zeng, Qi-Ya Zhang and Fei Ke
Int. J. Mol. Sci. 2025, 26(4), 1554; https://doi.org/10.3390/ijms26041554 - 12 Feb 2025
Viewed by 977
Abstract
Microcystis aeruginosa is an important species causing cyanobacterial blooms, which can be effectively infected and lysed by cyanophages. Several strategies have been developed by M. aeruginosa to resist cyanophage infections, including the CRISPR-Cas systems. However, detailed information on the CRISPR-Cas systems in M. [...] Read more.
Microcystis aeruginosa is an important species causing cyanobacterial blooms, which can be effectively infected and lysed by cyanophages. Several strategies have been developed by M. aeruginosa to resist cyanophage infections, including the CRISPR-Cas systems. However, detailed information on the CRISPR-Cas systems in M. aeruginosa is rare. In the present study, the CRISPR-Cas systems of M. aeruginosa FACHB-524 were analyzed by genome re-sequencing, which showed that there are two type I (Cluster 1, I-B1; Cluster 2, I-D) and three type III-B (Cluster 3/4/5) CRISPR-Cas systems in the cyanobacteria. Further comparison revealed that spacer sequences of two type III-B systems targeted several genes of the cyanophage MaMV (M. aeruginosa myovirus) strains. One of the type III systems (Cluster 4) was then cloned and expressed in Escherichia coli BL21 (DE3). Protein purification and mass spectrometry identification revealed that a Cmr-crRNA effector complex formed in the E. coli. Subsequently, T4 phage (T4) was used to infect the E. coli, expressing the Cmr-crRNA complex with or without accessory proteins. The results showed that the Cmr-crRNA effector complex exhibited anti-phage activity and the accessory protein Csx1 enhanced the immune activity of the complex. Collectively, our results comprehensively demonstrate the CRISPR systems encoded by a strain of M. aeruginosa, and for the first time, one of the CRISPR systems was constructed into E. coli, providing a foundation for further in-depth analysis of cyanobacterial CRISPR systems. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

21 pages, 3320 KiB  
Article
Relationship Between CRISPR–Cas Systems and Acquisition of Tetracycline Resistance in Non-Clinical Enterococcus Populations in Bulgaria
by Maria Pandova, Yoana Kizheva and Petya Hristova
Antibiotics 2025, 14(2), 145; https://doi.org/10.3390/antibiotics14020145 - 2 Feb 2025
Cited by 1 | Viewed by 1496
Abstract
Non-clinical enterococci are relatively poorly studied by means of acquired antibiotic resistance to tetracycline and by the distribution, functionality and role of their CRISPR systems. Background: In our study, 72 enterococcal strains, isolated from various non-clinical origins, were investigated for their phenotypic and [...] Read more.
Non-clinical enterococci are relatively poorly studied by means of acquired antibiotic resistance to tetracycline and by the distribution, functionality and role of their CRISPR systems. Background: In our study, 72 enterococcal strains, isolated from various non-clinical origins, were investigated for their phenotypic and genotypic (tet(M), tet(O), tet(S), tet(L), tet(K), tet(T) and tet(W)) tetracycline resistance. Methods: The genetic determinants for HGT (MGEs (Int-Tn and prgW), inducible pheromones (cpd, cop and cff), aggregation substances (agg, asa1, prgB and asa373) and CRISPR–Cas systems were characterized by PCR and whole-genome sequencing. Results: Four tet genes (tetM, tetO, tetS and tetT) were detected in 39% (n = 28) of our enterococcal population, with tetM (31%) being dominant. The gene location was linked to the Tn6009 transposon. All strains that contained tet genes also had genes for HGT. No tet genes were found in E. casseliflavus and E. gilvus. In our study, 79% of all tet-positive strains correlated with non-functional CRISPR systems. The strain E. faecalis BM15 was the only one containing a combination of a functional CRISPR system (cas1, cas2, csn2 and csn1/cas9) and tet genes. The CRISPR subtype repeats II-A, III-B, IV-A2 and VI-B1 were identified among E. faecalis strains (CM4-II-A, III-B and VI-B1; BM5-IV-A2, II-A and III-B; BM12 and BM15-II-A). The subtype II-A was the most present. These repeats enclosed a great number of spacers (1–10 spacers) with lengths of 31 to 36 bp. One CRISPR locus was identified in plasmid (p.Firmicutes1 in strain E. faecalis BM5). We described the presence of CRISPR loci in the species E. pseudoavium, E. pallens and E. devriesei and their lack in E. gilvus, E. malodoratus and E. mundtii. Conclusions: Our findings generally describe the acquisition of foreign DNA as a consequence of CRISPR inactivation, and self-targeting spacers as the main cause. Full article
(This article belongs to the Special Issue Antimicrobial Resistance Genes: Spread and Evolution)
Show Figures

Figure 1

15 pages, 577 KiB  
Review
Are You My Host? An Overview of Methods Used to Link Bacteriophages with Hosts
by Paul Hyman
Viruses 2025, 17(1), 65; https://doi.org/10.3390/v17010065 - 5 Jan 2025
Cited by 2 | Viewed by 2098
Abstract
Until recently, the only methods for finding out if a particular strain or species of bacteria could be a host for a particular bacteriophage was to see if the bacteriophage could infect that bacterium and kill it, releasing progeny phages. Establishing the host [...] Read more.
Until recently, the only methods for finding out if a particular strain or species of bacteria could be a host for a particular bacteriophage was to see if the bacteriophage could infect that bacterium and kill it, releasing progeny phages. Establishing the host range of a bacteriophage thus meant infecting many different bacteria and seeing if the phage could kill each one. Detection of bacterial killing can be achieved on solid media (plaques, spots) or broth (culture clearing). More recently, additional methods to link phages and hosts have been developed. These include methods to show phage genome entry into host cells (e.g., PhageFISH); proximity of phage and host genomes (e.g., proximity ligation, polonies, viral tagging); and analysis of genomes and metagenomes (e.g., CRISPR spacer analysis, metagenomic co-occurrence). These methods have advantages and disadvantages. They also are not measuring the same interactions. Host range can be divided into multiple host ranges, each defined by how far the phage can progress in the infection cycle. For example, the ability to effect genome entry (penetrative host range) is different than the ability to produce progeny (productive host range). These different host ranges reflect bacterial defense mechanisms that block phage growth and development at various stages in the infection cycle. Here, I present a comparison of the various methods used to identify bacteriophage-host relationships with a focus on what type of host range is being measured or predicted. Full article
(This article belongs to the Special Issue Bacteriophage Diversity)
Show Figures

Figure 1

13 pages, 283 KiB  
Article
Determination of Technological Properties and CRISPR Profiles of Streptococcus thermophilus Isolates Obtained from Local Yogurt Samples
by Hatice Sevgi Coban, Dicle Olgun, İnci Temur and Muhammed Zeki Durak
Microorganisms 2024, 12(12), 2428; https://doi.org/10.3390/microorganisms12122428 - 25 Nov 2024
Viewed by 1010
Abstract
The aim of this study was to obtain data on Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) profiles of Streptococcus thermophilus (S. thermophilus) isolates resulting from acquired immune memory in addition to their technological starter properties for the selection of potential [...] Read more.
The aim of this study was to obtain data on Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) profiles of Streptococcus thermophilus (S. thermophilus) isolates resulting from acquired immune memory in addition to their technological starter properties for the selection of potential starter cultures from local yogurt samples. A total of 24 S. thermophilus isolates were collected from six local yogurt samples including Afyon/Dinar, Uşak, Konya/Karapınar, and Tokat provinces of Türkiye. Strain-specific CRISPR I-II-III and IV primers were used to determine the CRISPR profiles of the isolates. The isolates commonly had CRISPR II and IV profiles, while only one isolate had a CRISPR III profile. Polymerase chain reaction (PCR)-based and culture-based analyses were also carried out to obtain data on the technological properties of the isolates. The PCR analyses were performed for the prtS gene for protease activity, the ureC gene for urease enzyme, the gdh gene for glutamate dehydrogenase, the cox gene for competence frequency, the csp gene involved in heat-shock stress resistance of the isolates with specific primers. Culture-based analyses including antimicrobial activity and acid-production ability of the isolates were completed, and proteolytic and lipolytic properties were also screened. Native spacer sequences resulting from acquired immune memory were obtained for CRISPR IV profiles of yogurt samples from the Konya-Karapınar and Tokat provinces and CRISPR III profiles of yogurt samples from the Uşak province. In conclusion, our study results suggest that it is possible to select the isolates with the desired level of technological characteristics, prioritizing the ones with the most diverse CRISPR profiles and with native spacers for potential industrial application as starter cultures. We believe that this study provides data for further biological studies on the impact of centuries of human domestication on evolutionary adaptations and how these microorganisms manage survival and symbiosis. Full article
16 pages, 7723 KiB  
Article
Improving the Genome Editing Efficiency of CRISPR/Cas9 in Melon and Watermelon
by Zhuanrong Wang, Lili Wan, Jian Ren, Na Zhang, Hongxia Zeng, Jiaqi Wei and Mi Tang
Cells 2024, 13(21), 1782; https://doi.org/10.3390/cells13211782 - 28 Oct 2024
Cited by 4 | Viewed by 2532
Abstract
CRISPR/Cas9 is a powerful genome editing tool for trait improvement in various crops; however, enhancing mutation efficiency using CRISPR/Cas9 in watermelon and melon remains challenging. We designed four CRISPR systems with different sgRNA expression cassettes to target the phytoene desaturase (PDS) [...] Read more.
CRISPR/Cas9 is a powerful genome editing tool for trait improvement in various crops; however, enhancing mutation efficiency using CRISPR/Cas9 in watermelon and melon remains challenging. We designed four CRISPR systems with different sgRNA expression cassettes to target the phytoene desaturase (PDS) gene in melon. The constructed vectors were delivered to host plants using Agrobacterium-mediated transformation. Phenotypic and genotypic analyses of the edited melon seedlings revealed that the CRISPR systems with tRNA and Csy4 spacers driven by the Pol II-type promoter significantly improved mutation efficiency, reaching 25.20% and 42.82%, respectively. Notably, 78.95% of the mutations generated by the Csy4 system involved large-fragment deletions (LDs) between the two target sites. In watermelon, the Csy4 system achieved a PDS editing efficiency of 41.48%, with 71.43% of the edited seedlings showing LD between the two target sites. Sequencing analysis indicated that the edited melon seedlings exhibited heterozygous, three-allele mutation and chimeric events; the edited watermelon seedlings included 2/14 homozygous mutations. Compared to the commonly used Pol III promoter, using the Pol II promoter to drive sgRNA expression cassettes containing Csy4 showed the best improvement in CRISPR/Cas9 editing efficiency in melon; this system was also effective in watermelon. Full article
Show Figures

Figure 1

13 pages, 2371 KiB  
Article
Rapid and Ultrasensitive Detection of H. aduncum via the RPA-CRISPR/Cas12a Platform
by Xiaoming Wang, Xiang Chen, Ting Xu, Xingsheng Jin, Junfang Jiang and Feng Guan
Molecules 2024, 29(20), 4789; https://doi.org/10.3390/molecules29204789 - 10 Oct 2024
Cited by 1 | Viewed by 1359
Abstract
Hysterothylacium aduncum is one of six pathogens responsible for human anisakiasis. Infection with H. aduncum can cause acute abdominal symptoms and allergic reactions and is prone to misdiagnosis in clinical practice. This study aims to enhance the efficiency and accuracy of detecting H. [...] Read more.
Hysterothylacium aduncum is one of six pathogens responsible for human anisakiasis. Infection with H. aduncum can cause acute abdominal symptoms and allergic reactions and is prone to misdiagnosis in clinical practice. This study aims to enhance the efficiency and accuracy of detecting H. aduncum in food ingredients. We targeted the internal transcribed spacer 1 (ITS 1) regions of Anisakis to develop a visual screening method for detecting H. aduncum using recombinase polymerase amplification (RPA) combined with the CRISPR/Cas12a system. By comparing the ITS 1 region sequences of eight nematode species, we designed specific primers and CRISPR RNA (crRNA). The specificity of RPA primers was screened and evaluated, and the CRISPR system was optimized. We assessed its specificity and sensitivity and performed testing on commercial samples. The results indicated that the alternative primer ADU 1 was the most effective. The final optimized concentrations were 250 nM for Cas12a, 500 nM for crRNA, and 500 nM for ssDNA. The complete test procedure was achievable within 45 min at 37 °C, with a limit of detection (LOD) of 1.27 pg/μL. The amplified product could be directly observed using a fluorescence microscope or ultraviolet lamp. Detection results for 15 Anisakis samples were entirely consistent with those obtained via Sanger sequencing, demonstrating the higher efficacy of this method for detecting and identifying H. aduncum. This visual detection method, characterized by simple operation, visual results, high sensitivity, and specificity, meets the requirements for food safety testing and enhances monitoring efficiency. Full article
(This article belongs to the Section Food Chemistry)
Show Figures

Figure 1

15 pages, 3851 KiB  
Article
New Viruses Infecting Hyperthermophilic Bacterium Thermus thermophilus
by Matvey Kolesnik, Constantine Pavlov, Alina Demkina, Aleksei Samolygo, Karyna Karneyeva, Anna Trofimova, Olga S. Sokolova, Andrei V. Moiseenko, Maria Kirsanova and Konstantin Severinov
Viruses 2024, 16(9), 1410; https://doi.org/10.3390/v16091410 - 3 Sep 2024
Viewed by 1834
Abstract
Highly diverse phages infecting thermophilic bacteria of the Thermus genus have been isolated over the years from hot springs around the world. Many of these phages are unique, rely on highly unusual developmental strategies, and encode novel enzymes. The variety of Thermus phages [...] Read more.
Highly diverse phages infecting thermophilic bacteria of the Thermus genus have been isolated over the years from hot springs around the world. Many of these phages are unique, rely on highly unusual developmental strategies, and encode novel enzymes. The variety of Thermus phages is clearly undersampled, as evidenced, for example, by a paucity of phage-matching spacers in Thermus CRISPR arrays. Using water samples collected from hot springs in the Kunashir Island from the Kuril archipelago and from the Tsaishi and Nokalakevi districts in the Republic of Georgia, we isolated several distinct phages infecting laboratory strains of Thermus thermophilus. Genomic sequence analysis of 11 phages revealed both close relatives of previously described Thermus phages isolated from geographically distant sites, as well as phages with very limited similarity to earlier isolates. Comparative analysis allowed us to predict several accessory phage genes whose products may be involved in host defense/interviral warfare, including a putative Type V CRISPR-cas system. Full article
(This article belongs to the Special Issue Bacteriophage Diversity)
Show Figures

Figure 1

12 pages, 2363 KiB  
Article
A Haloarchaeal Transcriptional Regulator That Represses the Expression of CRISPR-Associated Genes
by Israela Turgeman-Grott, Yarden Shalev, Netta Shemesh, Rachel Levy, Inbar Eini, Metsada Pasmanik-Chor and Uri Gophna
Microorganisms 2024, 12(9), 1772; https://doi.org/10.3390/microorganisms12091772 - 27 Aug 2024
Viewed by 1412
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated proteins) systems provide acquired heritable protection to bacteria and archaea against selfish DNA elements, such as viruses. These systems must be tightly regulated because they can capture DNA fragments from foreign selfish elements, and also [...] Read more.
Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated proteins) systems provide acquired heritable protection to bacteria and archaea against selfish DNA elements, such as viruses. These systems must be tightly regulated because they can capture DNA fragments from foreign selfish elements, and also occasionally from self-chromosomes, resulting in autoimmunity. Most known species from the halophilic archaeal genus Haloferax contain type I-B CRISPR-Cas systems, and the strongest hotspot for self-spacer acquisition by H. mediterranei was a locus that contained a putative transposable element, as well as the gene HFX_2341, which was a very frequent target for self-targeting spacers. To test whether this gene is CRISPR-associated, we investigated it using bioinformatics, deletion, over-expression, and comparative transcriptomics. We show that HFX_2341 is a global transcriptional regulator that can repress diverse genes, since its deletion results in significantly higher expression of multiple genes, especially those involved in nutrient transport. When over-expressed, HFX_2341 strongly repressed the transcript production of all cas genes tested, both those involved in spacer acquisition (cas1, 2 and 4) and those required for destroying selfish genetic elements (cas3 and 5–8). Considering that HFX_2341 is highly conserved in haloarchaea, with homologs that are present in species that do not encode the CRISPR-Cas system, we conclude that it is a global regulator that is also involved in cas gene regulation, either directly or indirectly. Full article
(This article belongs to the Special Issue Advances in Halophilic Microorganisms)
Show Figures

Figure 1

20 pages, 4621 KiB  
Article
Global Distribution and Diversity of Haloarchaeal pL6-Family Plasmids
by Mike Dyall-Smith and Friedhelm Pfeiffer
Genes 2024, 15(9), 1123; https://doi.org/10.3390/genes15091123 - 26 Aug 2024
Viewed by 1399
Abstract
Australian isolates of Haloquadratum walsbyi, a square-shaped haloarchaeon, often harbor small cryptic plasmids of the pL6-family, approximately 6 kb in size, and five examples have been previously described. These plasmids exhibit a highly conserved gene arrangement and encode replicases similar to those [...] Read more.
Australian isolates of Haloquadratum walsbyi, a square-shaped haloarchaeon, often harbor small cryptic plasmids of the pL6-family, approximately 6 kb in size, and five examples have been previously described. These plasmids exhibit a highly conserved gene arrangement and encode replicases similar to those of betapleolipoviruses. To assess their global distribution and recover more examples for analysis, fifteen additional plasmids were reconstructed from the metagenomes of seven hypersaline sites across four countries: Argentina, Australia, Puerto Rico, and Spain. Including the five previously described plasmids, the average plasmid size is 6002 bp, with an average G+C content of 52.5%. The tetramers GGCC and CTAG are either absent or significantly under-represented, except in the two plasmids with the highest %G+C. All plasmids share a similar arrangement of genes organized as outwardly facing replication and ATPase modules, but variations were observed in some core genes, such as F2, and some plasmids had acquired accessory genes. Two plasmids, pCOLO-c1 and pISLA-c6, shared 92.7% nt identity despite originating from Argentina and Spain, respectively. Numerous metagenomic CRISPR spacers matched sequences in the fifteen reconstructed plasmids, indicating frequent invasion of haloarchaea. Spacers could be assigned to haloarchaeal genera by mapping their associated direct repeats (DR), with half of these matching Haloquadratum. Finally, strand-specific metatranscriptome (RNA-seq) data could be used to demonstrate the active transcription of two pL6-family plasmids, including antisense transcripts. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

14 pages, 4813 KiB  
Article
FokI-RYdCas9 Mediates Nearly PAM-Less and High-Precise Gene Editing in Human Cells
by Di Li, Yaqi Cao, Long Xie, Chenfei He, Danrong Jiao, Mengxue Ma, Zhenrui Zuo, Erwei Zuo and Xiaogan Yang
Curr. Issues Mol. Biol. 2024, 46(5), 4021-4034; https://doi.org/10.3390/cimb46050248 - 27 Apr 2024
Viewed by 1965
Abstract
The demand for high-precision CRISPR/Cas9 systems in biomedicine is experiencing a notable upsurge. The editing system fdCas9 employs a dual-sgRNA strategy to enhance editing accuracy. However, the application of fdCas9 is constrained by the stringent requirement for two protospacer adjacent motifs (PAMs) of [...] Read more.
The demand for high-precision CRISPR/Cas9 systems in biomedicine is experiencing a notable upsurge. The editing system fdCas9 employs a dual-sgRNA strategy to enhance editing accuracy. However, the application of fdCas9 is constrained by the stringent requirement for two protospacer adjacent motifs (PAMs) of Cas9. Here, we devised an optimized editor, fRYdCas9, by merging FokI with the nearly PAM-less RYdCas9 variant, and two fRYdCas9 systems formed a dimer in a proper spacer length to accomplish DNA cleavage. In comparison to fdCas9, fRYdCas9 demonstrates a substantial increase in the number of editable genomic sites, approximately 330-fold, while maintaining a comparable level of editing efficiency. Through meticulous experimental validation, we determined that the optimal spacer length between two FokI guided by RYdCas9 is 16 base pairs. Moreover, fRYdCas9 exhibits a near PAM-less feature, along with no on-target motif preference via the library screening. Meanwhile, fRYdCas9 effectively addresses the potential risks of off-targets, as analyzed through whole genome sequencing (WGS). Mouse embryonic editing shows fRYdCas9 has robust editing capabilities. This study introduces a potentially beneficial alternative for accurate gene editing in therapeutic applications and fundamental research. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

11 pages, 2018 KiB  
Article
Exploring the Interplay of the CRISPR-CAS System with Antibiotic Resistance in Staphylococcus aureus: A Poultry Meat Study from Lahore, Pakistan
by Muhammad Abu Bakr Shabbir, Aziz Ul-Rahman, Muhammad Rizwan Iftikhar, Majeeda Rasheed, Muhammad Kashif Maan, Adeel Sattar, Mehmood Ahmad, Farid Ahmed Khan, Waqas Ahmad, Muhammad Ilyas Riaz and Hassaan Bin Aslam
Medicina 2024, 60(1), 130; https://doi.org/10.3390/medicina60010130 - 10 Jan 2024
Cited by 2 | Viewed by 2949
Abstract
Staphylococcus aureus is one of the major pathogens responsible for causing food poisoning worldwide. The emergence of antibiotic resistance in this bacterium is influenced by various factors. Among them, bacterial acquired defense systems described as clustered regularly interspaced short palindromic repeats (CRISPR)-cas system [...] Read more.
Staphylococcus aureus is one of the major pathogens responsible for causing food poisoning worldwide. The emergence of antibiotic resistance in this bacterium is influenced by various factors. Among them, bacterial acquired defense systems described as clustered regularly interspaced short palindromic repeats (CRISPR)-cas system might be involved in antibiotic resistance development in bacteria. The current study was designed to assess the prevalence of S. aureus and its antibiotic resistance profile and identify the relationship of the CRISPR-cas system with antimicrobial resistance, followed by phylogenetic analysis. Total samples (n = 188) of poultry meat were collected from the poultry bird market of Lahore, Punjab, Pakistan. We used both phenotypic (antibiotic disc diffusion) and genotypic methods (PCR) to identify multi-drug resistant (MDR) strains of S. aureus. Additionally, the role of the CRISPR-Cas system in the isolated MDR S. aureus was also assessed. In addition, real-time quantitative PCR (qRT-PCR) was used to evaluate the association of the CRISPR-cas system with antimicrobial resistance. All of the S. aureus isolates showed 100% resistance against erythromycin, 97.5% were resistant to tetracycline, and 75% were resistant to methicillin. Eleven isolates were MDR in the current study. The CRISPR system was found in all MDR isolates, and fifteen spacers were identified within the CRISPR locus. Furthermore, MDR S. aureus isolates and the standard strain showed higher expression levels of CRISPR-associated genes. The correlation of said system with MDR isolates points to foreign gene acquisition by horizontal transfer. Current knowledge could be utilized to tackle antibiotic-resistant bacteria, mainly S. aureus. Full article
(This article belongs to the Section Epidemiology & Public Health)
Show Figures

Figure 1

15 pages, 5861 KiB  
Article
The Development of a CRISPR-FnCpf1 System for Large-Fragment Deletion and Multiplex Gene Editing in Acinetobacter baumannii
by Shuai Wang, Yue Ding, Hua Rong and Yu Wang
Curr. Issues Mol. Biol. 2024, 46(1), 570-584; https://doi.org/10.3390/cimb46010037 - 5 Jan 2024
Viewed by 2457
Abstract
Acinetobacter baumannii is a low-GC-content Gram-negative opportunistic pathogen that poses a serious global public health threat. Convenient and rapid genetic manipulation is beneficial for elucidating its pathogenic mechanisms and developing novel therapeutic methods. In this study, we report a new CRISPR-FnCpf1-based two-plasmid system [...] Read more.
Acinetobacter baumannii is a low-GC-content Gram-negative opportunistic pathogen that poses a serious global public health threat. Convenient and rapid genetic manipulation is beneficial for elucidating its pathogenic mechanisms and developing novel therapeutic methods. In this study, we report a new CRISPR-FnCpf1-based two-plasmid system for versatile and precise genome editing in A. baumannii. After identification, this new system prefers to recognize the 5′-TTN-3′ (N = A, T, C or G) and the 5′-CTV-3′ (V = A, C or G) protospacer-adjacent motif (PAM) sequence and utilize the spacer with lengths ranging from 19 to 25 nt. In direct comparison with the existing CRISPR-Cas9 system, it exhibits approximately four times the targetable range in A. baumannii. Moreover, by employing a tandem dual crRNA expression cassette, the new system can perform large-fragment deletion and simultaneous multiple gene editing, which is difficult to achieve via CRISPR-Cas9. Therefore, the new system is valuable and can greatly expand the genome editing toolbox of A. baumannii. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

Back to TopTop