Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = COSMIC and ionosonde

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 9897 KiB  
Article
Combination of High-Rate Ionosonde Measurements with COSMIC-2 Radio Occultation Observations for Reference Ionosphere Applications
by Iurii Cherniak, David Altadill, Irina Zakharenkova, Víctor de Paula, Víctor Navas-Portella, Douglas Hunt, Antoni Segarra and Ivan Galkin
Atmosphere 2025, 16(7), 804; https://doi.org/10.3390/atmos16070804 - 1 Jul 2025
Viewed by 288
Abstract
Knowledge of ionospheric plasma altitudinal distribution is crucial for the effective operation of radio wave propagation, communication, and navigation systems. High-frequency sounding radars—ionosondes—provide unbiased benchmark measurements of ionospheric plasma density due to a direct relationship between the frequency of sound waves and ionospheric [...] Read more.
Knowledge of ionospheric plasma altitudinal distribution is crucial for the effective operation of radio wave propagation, communication, and navigation systems. High-frequency sounding radars—ionosondes—provide unbiased benchmark measurements of ionospheric plasma density due to a direct relationship between the frequency of sound waves and ionospheric electron density. But ground-based ionosonde observations are limited by the F2 layer peak height and cannot probe the topside ionosphere. GNSS Radio Occultation (RO) onboard Low-Earth-Orbiting satellites can provide measurements of plasma distribution from the lower ionosphere up to satellite orbit altitudes (~500–600 km). The main goal of this study is to investigate opportunities to obtain full observation-based ionospheric electron density profiles (EDPs) by combining advantages of ground-based ionosondes and GNSS RO. We utilized the high-rate Ebre and El Arenosillo ionosonde observations and COSMIC-2 RO EDPs colocated over the ionosonde’s area of operation. Using two types of ionospheric remote sensing techniques, we demonstrated how to create the combined ionospheric EDPs based solely on real high-quality observations from both the bottomside and topside parts of the ionosphere. Such combined EDPs can serve as an analogy for incoherent scatter radar-derived “full profiles”, providing a reference for the altitudinal distribution of ionospheric plasma density. Using the combined reference EDPs, we analyzed the performance of the International Reference Ionosphere model to evaluate model–data discrepancies. Hence, these new profiles can play a significant role in validating empirical models of the ionosphere towards their further improvements. Full article
Show Figures

Figure 1

14 pages, 2190 KiB  
Article
Evaluation of GNSS-TEC Data-Driven IRI-2016 Model for Electron Density
by Jing Peng, Yunbin Yuan, Yanwen Liu, Hongxing Zhang, Ting Zhang, Yifan Wang and Zelin Dai
Atmosphere 2024, 15(8), 958; https://doi.org/10.3390/atmos15080958 - 12 Aug 2024
Cited by 4 | Viewed by 1417
Abstract
The ionosphere is one of the important error sources that affect the communication of radio signals. The international reference ionosphere (IRI) model is a commonly used model to describe ionospheric parameters. The driving parameter IG12 of the IRI-2016 model was optimally updated based [...] Read more.
The ionosphere is one of the important error sources that affect the communication of radio signals. The international reference ionosphere (IRI) model is a commonly used model to describe ionospheric parameters. The driving parameter IG12 of the IRI-2016 model was optimally updated based on GNSS-TEC data from 2015 and 2019. The electron density profiles and NmF2 calculated by the IRI-2016 model (upda-IRI-2016) driven by the updated IG12 value (IG-up) were evaluated for their accuracy using ionosonde observations and COSMIC inversion data. The experiments show that both the electron density profiles and NmF2 calculated by upda-IRI-2016 driven by IG-up show significant optimization effects, compared to the IRI-2016 model driven by IG12. For electron density, the precision improvement (PI) for both MAE and RMSE at the Beijing station exceed 31.2% in January 2015 and 16.0% in January 2019. While the PI of MAE and RMSE at the Wuhan station, which is located at a lower latitude, both exceed 32.5% in January 2015, both exceed 42.1% in January 2019, which is significantly higher than that of the Beijing station. In 2015, the PI of MAE and RMSE compared with COSMIC are both higher than 20%. For NmF2, the PI is greater for low solar activity years and low latitude stations, with the Wuhan station showing a PI of more than 11.7% in January 2019 compared to January 2015. The PI compared to COSMIC was higher than 17.2% in 2015. Full article
Show Figures

Figure 1

18 pages, 22240 KiB  
Article
Multi-Instrument Observations of the Ionospheric Response Caused by the 8 April 2024 Total Solar Eclipse
by Hui Zhang, Ting Zhang, Xinyu Zhang, Yunbin Yuan, Yifan Wang and Yutang Ma
Remote Sens. 2024, 16(13), 2451; https://doi.org/10.3390/rs16132451 - 3 Jul 2024
Cited by 4 | Viewed by 2389
Abstract
This paper investigates ionospheric response characteristics from multiple perspectives based on globally distributed GNSS data and products, ionosonde data, FORMOSAT-7/COSMIC-2 occultation data, and Swarm satellite observations caused by the total solar eclipse of 8 April 2024 across North and Central America. The results [...] Read more.
This paper investigates ionospheric response characteristics from multiple perspectives based on globally distributed GNSS data and products, ionosonde data, FORMOSAT-7/COSMIC-2 occultation data, and Swarm satellite observations caused by the total solar eclipse of 8 April 2024 across North and Central America. The results show that both GNSS-derived TEC products have detected the ionospheric TEC degradation triggered by the total solar eclipse, with the maximum degradation exceeding 10 TECU. The TEC data from nine GNSS stations in the path of the maximum eclipse reveal that the intensity of ionospheric TEC degradation is related to the spatial location, with the maximum degradation value of the ionospheric TEC being about 14~23 min behind the moment of the maximum eclipse. Additionally, a negative anomaly of foF2 with a maximum of more than 2.7 MHz is detected by ionosonde. In the eclipse region, NmF2 and hmF2 show trends of decrease and increase, with percentages of variation of 40~70% and 4~16%, respectively. The Ne profile of the Swarm-A satellite is significantly lower than the reference value during the eclipse period, with the maximum negative anomaly value reaching 11.2 × 105 el/cm3, and it failed to show the equatorial ionization anomaly. Full article
(This article belongs to the Special Issue Ionosphere Monitoring with Remote Sensing (3rd Edition))
Show Figures

Figure 1

30 pages, 11754 KiB  
Article
Optimal Estimation Inversion of Ionospheric Electron Density from GNSS-POD Limb Measurements: Part I-Algorithm and Morphology
by Dong L. Wu, Nimalan Swarnalingam, Cornelius Csar Jude H. Salinas, Daniel J. Emmons, Tyler C. Summers and Robert Gardiner-Garden
Remote Sens. 2023, 15(13), 3245; https://doi.org/10.3390/rs15133245 - 23 Jun 2023
Cited by 5 | Viewed by 2915
Abstract
GNSS-LEO radio links from Precise Orbital Determination (POD) and Radio Occultation (RO) antennas have been used increasingly in characterizing the global 3D distribution and variability of ionospheric electron density (Ne). In this study, we developed an optimal estimation (OE) method [...] Read more.
GNSS-LEO radio links from Precise Orbital Determination (POD) and Radio Occultation (RO) antennas have been used increasingly in characterizing the global 3D distribution and variability of ionospheric electron density (Ne). In this study, we developed an optimal estimation (OE) method to retrieve Ne profiles from the slant total electron content (hTEC) measurements acquired by the GNSS-POD links at negative elevation angles (ε < 0°). Although both OE and onion-peeling (OP) methods use the Abel weighting function in the Ne inversion, they are significantly different in terms of performance in the lower ionosphere. The new OE results can overcome the large Ne oscillations, sometimes negative values, seen in the OP retrievals in the E-region ionosphere. In the companion paper in this Special Issue, the HmF2 and NmF2 from the OE retrieval are validated against ground-based ionosondes and radar observations, showing generally good agreements in NmF2 from all sites. Nighttime hmF2 measurements tend to agree better than the daytime when the ionosonde heights tend to be slightly lower. The OE algorithm has been applied to all GNSS-POD data acquired from the COSMIC-1 (2006–2019), COSMIC-2 (2019–present), and Spire (2019–present) constellations, showing a consistent ionospheric Ne morphology. The unprecedented spatiotemporal sampling of the ionosphere from these constellations now allows a detailed analysis of the frequency–wavenumber spectra for the Ne variability at different heights. In the lower ionosphere (~150 km), we found significant spectral power in DE1, DW6, DW4, SW5, and SE4 wave components, in addition to well-known DW1, SW2, and DE3 waves. In the upper ionosphere (~450 km), additional wave components are still present, including DE4, DW4, DW6, SE4, and SW4. The co-existence of eastward- and westward-propagating wave4 components implies the presence of a stationary wave4 (SPW4), as suggested by other earlier studies. Further improvements to the OE method are proposed, including a tomographic inversion technique that leverages the asymmetric sampling about the tangent point associated with GNSS-LEO links. Full article
Show Figures

Figure 1

11 pages, 1598 KiB  
Article
The Validation of FORMOSAT-3/COSMIC Measurements in the Middle Latitude Region of China with Ionosonde Observations during 2015–2018
by Liangchen Hu, Fanfan Su, Fuying Zhu and Xinxing Li
Universe 2022, 8(10), 528; https://doi.org/10.3390/universe8100528 - 11 Oct 2022
Viewed by 1341
Abstract
We used ground-based ionosonde observations at Ganzi (31.2° N, 100.4° E) to validate the COSMIC measurement in the middle latitude region of China during low solar activity. First, eligible data pairs from two kinds of techniques were selected for the validation. Then, we [...] Read more.
We used ground-based ionosonde observations at Ganzi (31.2° N, 100.4° E) to validate the COSMIC measurement in the middle latitude region of China during low solar activity. First, eligible data pairs from two kinds of techniques were selected for the validation. Then, we investigated the consistency of the ionospheric parameters’ F layer peak density (NmF2) from selected data pairs at different local times in different seasons, and we also investigated the F layer peak height (hmF2). The correlation of the parameters (including NmF2 and hmF2) were good in general. The correlation coefficients of the NmF2 and hmF2 from all selected data pairs were 0.94 and 0.77, respectively. The correlation coefficients were higher in the daytime than those at night for both the NmF2 and hmF2. The correlation coefficients in different seasons were close to each other for both the NmF2 and hmF2. The NmF2 from the COSMIC tends to be overestimated during the whole day except in the morning; the hmF2 from the COSMIC tends to be overestimated in the morning and underestimated in the afternoon. Full article
(This article belongs to the Special Issue Planetary Plasma Environment)
Show Figures

Figure 1

26 pages, 6900 KiB  
Article
Validation of COSMIC-2-Derived Ionospheric Peak Parameters Using Measurements of Ionosondes
by Shuangshuang Shi, Wang Li, Kefei Zhang, Suqin Wu, Jiaqi Shi, Fucheng Song and Peng Sun
Remote Sens. 2021, 13(21), 4238; https://doi.org/10.3390/rs13214238 - 21 Oct 2021
Cited by 2 | Viewed by 2617
Abstract
Although numerous validations for the ionospheric peak parameters values (IPPVs) obtained from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) have been conducted using ionosonde measurements as a reference, comprehensive evaluations of the quality of the COSMIC-2 data are still undesirable, [...] Read more.
Although numerous validations for the ionospheric peak parameters values (IPPVs) obtained from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) have been conducted using ionosonde measurements as a reference, comprehensive evaluations of the quality of the COSMIC-2 data are still undesirable, especially under geomagnetic storm conditions. In this study, the IPPVs measured by ionosondes (Ramey, Boa Vista, Sao Luis, Jicamarca, Cachoeira Paulista, and Santa Maria) during the period 1 October 2019 to 31 August 2021, are used to evaluate the quality of COSMIC-2 data over low-latitude regions of the Americas. The results show that the NmF2 (hmF2) from COSMIC-2 agrees well with the ionosonde measurements, and the correlation coefficients for the two sets of data at the above six stations are 0.93 (0.84), 0.91 (0.85), 0.91 (0.88), 0.88 (0.79), 0.96 (0.83), and 0.96 (0.87), respectively. The data quality of COSMIC-2 derived NmF2 is largely dependent on geomagnetic latitude. It was also found that NmF2 derived from COSMIC-2 tends to be underestimated over the stations in Boa Vista and Cachoeira Paulista, which are close to the crests of the equatorial ionization anomaly (EIA), whilst that of the other stations is slightly overestimated. A comparison between COSMIC-measured and ionosonde-derived hmF2 indicates that the former is systematically higher than the latter. In addition, the differences in the two NmF2 datasets derived from COSMIC-2 and ionosonde measurements at night are generally smaller than those of daytime, when the EIA is well developed, and vice versa for hmF2, whose RMSE is slightly smaller during daytime (with the exception of Ramey). Furthermore, NmF2 obtained from COSMIC-2 is shown to perform best in summer at Ramey, Boa Vista, Sao Luis, and Santa Maria, best in winter at Jicamarca and Cachoeira Paulista. Finally, the COSMIC-2 electron densities capture the ionospheric dynamic enhancements under a moderate geomagnetic storm condition very well. Full article
Show Figures

Graphical abstract

73 pages, 46205 KiB  
Article
Towards a Real-Time Description of the Ionosphere: A Comparison between International Reference Ionosphere (IRI) and IRI Real-Time Assimilative Mapping (IRTAM) Models
by Alessio Pignalberi, Marco Pietrella and Michael Pezzopane
Atmosphere 2021, 12(8), 1003; https://doi.org/10.3390/atmos12081003 - 4 Aug 2021
Cited by 15 | Viewed by 4369
Abstract
This paper focuses on a detailed comparison, based on the F2-layer peak characteristics foF2 and hmF2, between the International Reference Ionosphere (IRI), which is a climatological empirical model of the terrestrial ionosphere, and the IRI Real-Time Assimilative Mapping (IRTAM) procedure, which [...] Read more.
This paper focuses on a detailed comparison, based on the F2-layer peak characteristics foF2 and hmF2, between the International Reference Ionosphere (IRI), which is a climatological empirical model of the terrestrial ionosphere, and the IRI Real-Time Assimilative Mapping (IRTAM) procedure, which is a real-time version of IRI based on data assimilation from a global network of ionosondes. To perform such a comparison, two different kinds of datasets have been considered: (1) foF2 and hmF2 as recorded by 40 ground-based ionosondes spread all over the world from 2000 to 2019; (2) foF2 and hmF2 from space-based COSMIC/FORMOSAT-3 radio occultation measurements recorded from 2006 to 2018. The aim of the paper is to understand whether and how much IRTAM improves IRI foF2 and hmF2 outputs for different locations and under different diurnal, seasonal, solar and magnetic activity conditions. The main outcomes of the study are: (1) when ionosonde observations are considered for validation, IRTAM significantly improves the IRI foF2 modeling both in accuracy and precision, while a slight improvement in the IRI hmF2 modeling is observed for specific locations and conditions; (2) when COSMIC observations are considered for validation, no noticeable improvement is observed from the IRTAM side for both foF2 and hmF2. Indeed, IRTAM can improve the IRI foF2 description only nearby the assimilated ionosonde locations, while the IRI hmF2 description is always more accurate and precise than IRTAM one. Full article
(This article belongs to the Special Issue Ionospheric Monitoring and Modelling for Space Weather)
Show Figures

Figure 1

21 pages, 3967 KiB  
Article
Alternative Approach for Tsunami Early Warning Indicated by Gravity Wave Effects on Ionosphere
by Zahra Foroodi, Mahdi Alizadeh, Harald Schuh and Lung-Chih Tsai
Remote Sens. 2021, 13(11), 2150; https://doi.org/10.3390/rs13112150 - 30 May 2021
Cited by 4 | Viewed by 3602
Abstract
The rapid displacement of the ocean floor during large ocean earthquakes or volcanic eruptions causes the propagation of tsunami waves on the surface of the ocean, and consequently internal gravity waves (IGWs) in the atmosphere. IGWs pierce through the troposphere and into the [...] Read more.
The rapid displacement of the ocean floor during large ocean earthquakes or volcanic eruptions causes the propagation of tsunami waves on the surface of the ocean, and consequently internal gravity waves (IGWs) in the atmosphere. IGWs pierce through the troposphere and into the ionospheric layer. In addition to transferring energy to the ionosphere, they cause significant variations in ionospheric parameters, so they have considerable effects on the propagation of radio waves through this dispersive medium. In this study, double-frequency measurements of the Global Positioning System (GPS) and ionosonde data were used to determine the ionospheric disturbances and irregularities in response to the tsunami induced by the 2011 Tohoku earthquake. The critical frequency of the F2 layer (foF2) data obtained from the ionosonde data also showed clear disturbances that were consistent with the GPS observations. IGWs and tsunami waves have similar propagation properties, and IGWs were detected about 25 min faster than tsunami waves in GPS ground stations at the United States west coast, located about 7900 km away from the tsunami’s epicenter. As IGWs have a high vertical propagation velocity, and propagate obliquely into the atmosphere, IGWs can also be used for tsunami early warning. To further investigate the spatial variation in ionospheric electron density (IED), ionospheric profiles from FORMOSAT-3/COSMIC (F3/C) satellites were investigated for both reference and observation periods. During the tsunami, the reduction in IED started from 200 km and continued up to 272 km altitude. The minimum observed reduction was 2.68 × 105 el/cm3, which has happened at 222 km altitude. The IED increased up to 767 km altitude continuously, such that the maximum increase was 3.77 × 105 el/cm3 at 355 km altitude. Full article
Show Figures

Figure 1

21 pages, 3958 KiB  
Article
Topside Ionosphere and Plasmasphere Modelling Using GNSS Radio Occultation and POD Data
by Fabricio S. Prol and M. Mainul Hoque
Remote Sens. 2021, 13(8), 1559; https://doi.org/10.3390/rs13081559 - 17 Apr 2021
Cited by 10 | Viewed by 3067
Abstract
A 3D-model approach has been developed to describe the electron density of the topside ionosphere and plasmasphere based on Global Navigation Satellite System (GNSS) measurements onboard low Earth orbit satellites. Electron density profiles derived from ionospheric Radio Occultation (RO) data are extrapolated to [...] Read more.
A 3D-model approach has been developed to describe the electron density of the topside ionosphere and plasmasphere based on Global Navigation Satellite System (GNSS) measurements onboard low Earth orbit satellites. Electron density profiles derived from ionospheric Radio Occultation (RO) data are extrapolated to the upper ionosphere and plasmasphere based on a linear Vary-Chap function and Total Electron Content (TEC) measurements. A final update is then obtained by applying tomographic algorithms to the slant TEC measurements. Since the background specification is created with RO data, the proposed approach does not require using any external ionospheric/plasmaspheric model to adapt to the most recent data distributions. We assessed the model accuracy in 2013 and 2018 using independent TEC data, in situ electron density measurements, and ionosondes. A systematic better specification was obtained in comparison to NeQuick, with improvements around 15% in terms of electron density at 800 km, 26% at the top-most region (above 10,000 km) and 26% to 55% in terms of TEC, depending on the solar activity level. Our investigation shows that the developed model follows a known variation of electron density with respect to geographic/geomagnetic latitude, altitude, solar activity level, season, and local time, revealing the approach as a practical and useful tool for describing topside ionosphere and plasmasphere using satellite-based GNSS data. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

13 pages, 4232 KiB  
Article
Middle-Scale Ionospheric Disturbances Observed by the Oblique-Incidence Ionosonde Detection Network in North China after the 2011 Tohoku Tsunamigenic Earthquake
by Jin Wang, Gang Chen, Tao Yu, Zhongxin Deng, Xiangxiang Yan and Na Yang
Sensors 2021, 21(3), 1000; https://doi.org/10.3390/s21031000 - 2 Feb 2021
Cited by 6 | Viewed by 2828
Abstract
The 2011 Tohoku earthquake and the following enormous tsunami caused great disturbances in the ionosphere that were observed in various regions along the Pacific Ocean. In this study, the oblique-incidence ionosonde detection network located in North China was applied to investigate the inland [...] Read more.
The 2011 Tohoku earthquake and the following enormous tsunami caused great disturbances in the ionosphere that were observed in various regions along the Pacific Ocean. In this study, the oblique-incidence ionosonde detection network located in North China was applied to investigate the inland ionospheric disturbances related to the 2011 tsunamigenic earthquake. The ionosonde network consists of five transmitters and 20 receivers and can monitor regional ionosphere disturbances continuously and effectively. Based on the recorded electron density variations along the horizontal plane, the planar middle-scale ionospheric disturbances (MSTIDs) associated with the 2011 Tohoku tsunamigenic earthquake were detected more than 2000 km west of the epicenter about six hours later. The MSTIDs captured by the Digisonde, high-frequency (HF) Doppler measurement, and Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellite provided more information about the far-field inland propagation characteristics of the westward propagating gravity waves. The results imply that the ionosonde network has the potential for remote sensing of ionospheric disturbances induced by tsunamigenic earthquakes and provide a perspective for investigating the propagation process of associated gravity waves. Full article
(This article belongs to the Special Issue New Technologies and Data Analysis Methods for Seismic Monitoring)
Show Figures

Figure 1

17 pages, 6809 KiB  
Article
Advanced Machine Learning Optimized by The Genetic Algorithm in Ionospheric Models Using Long-Term Multi-Instrument Observations
by Wang Li, Dongsheng Zhao, Changyong He, Andong Hu and Kefei Zhang
Remote Sens. 2020, 12(5), 866; https://doi.org/10.3390/rs12050866 - 7 Mar 2020
Cited by 29 | Viewed by 5421
Abstract
The ionospheric delay is of paramount importance to radio communication, satellite navigation and positioning. It is necessary to predict high-accuracy ionospheric peak parameters for single frequency receivers. In this study, the state-of-the-art artificial neural network (ANN) technique optimized by the genetic algorithm is [...] Read more.
The ionospheric delay is of paramount importance to radio communication, satellite navigation and positioning. It is necessary to predict high-accuracy ionospheric peak parameters for single frequency receivers. In this study, the state-of-the-art artificial neural network (ANN) technique optimized by the genetic algorithm is used to develop global ionospheric models for predicting foF2 and hmF2. The models are based on long-term multiple measurements including ionospheric peak frequency model (GIPFM) and global ionospheric peak height model (GIPHM). Predictions of the GIPFM and GIPHM are compared with the International Reference Ionosphere (IRI) model in 2009 and 2013 respectively. This comparison shows that the root-mean-square errors (RMSEs) of GIPFM are 0.82 MHz and 0.71 MHz in 2013 and 2009, respectively. This result is about 20%–35% lower than that of IRI. Additionally, the corresponding hmF2 median errors of GIPHM are 20% to 30% smaller than that of IRI. Furthermore, the ANN models present a good capability to capture the global or regional ionospheric spatial-temporal characteristics, e.g., the equatorial ionization anomaly and Weddell Sea anomaly. The study shows that the ANN-based model has a better agreement to reference value than the IRI model, not only along the Greenwich meridian, but also on a global scale. The approach proposed in this study has the potential to be a new three-dimensional electron density model combined with the inclusion of the upcoming Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC-2) data. Full article
Show Figures

Graphical abstract

21 pages, 8495 KiB  
Article
Comparison and Validation of the Ionospheric Climatological Morphology of FY3C/GNOS with COSMIC during the Recent Low Solar Activity Period
by Weihua Bai, Guangyuan Tan, Yueqiang Sun, Junming Xia, Cheng Cheng, Qifei Du, Xianyi Wang, Guanglin Yang, Mi Liao, Yan Liu, Xiangguang Meng, Danyang Zhao, Congliang Liu, Yuerong Cai, Dongwei Wang, Yingqiang Wang, Cong Yin, Peng Hu and Ziyan Liu
Remote Sens. 2019, 11(22), 2686; https://doi.org/10.3390/rs11222686 - 17 Nov 2019
Cited by 8 | Viewed by 3218
Abstract
With the accumulation of the ionospheric radio occultation (IRO) data observed by Global Navigation Satellite System (GNSS) occultation sounder (GNOS) onboard FengYun-3C (FY3C) satellite, it is possible to use GNOS IRO data for ionospheric climatology research. Therefore, this work aims to validate the [...] Read more.
With the accumulation of the ionospheric radio occultation (IRO) data observed by Global Navigation Satellite System (GNSS) occultation sounder (GNOS) onboard FengYun-3C (FY3C) satellite, it is possible to use GNOS IRO data for ionospheric climatology research. Therefore, this work aims to validate the feasibility of FY3C/GNOS IRO products in climatology research by comparison with that of Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC), laying the foundation for its application in climatology study. Since previous verification works of FY3C/GNOS were done by comparison with ionosondes, this work matched NmF2/hmF2 of FY3C/GNOS and COSMIC into data pairs to verify the profile-level accuracy of FY3C/GNOS IRO data. The statistical results show that the overall correlation coefficients of both NmF2 and hmF2 are above 0.9, the overall bias and std of NmF2 differences between FY3C/GNOS and COSMIC are −2.19% and 17.48%, respectively, and the bias and std of hmF2 differences are −3.29 and 18.01 km, respectively, indicating a high profile-level precision consistency between FY3C/GNOS and COSMIC. In ionospheric climatology comparison, we divided NmF2/hmF2 of FY3C/GNOS into four seasons, then presented the season median NmF2/hmF2 in 5° × 10° grids and compared them with that of COSMIC. The results show that the ionospheric climatological characteristics of FY3C/GNOS and COSMIC are highly matched, both showing the typical climatological features such as equatorial ionosphere anomaly (EIA), winter anomaly, semiannual anomaly, Weddell Sea anomaly (WSA) and so on, though minor discrepancies do exist like the differences in magnitude of longitude peak structures and WSA, which verifies the reliability of FY3C/GNOS IRO products in ionospheric climatology research. Full article
Show Figures

Graphical abstract

21 pages, 4383 KiB  
Article
A New Empirical Model of NmF2 Based on CHAMP, GRACE, and COSMIC Radio Occultation
by Zhendi Liu, Hanxian Fang, M. M. Hoque, Libin Weng, Shenggao Yang and Ze Gao
Remote Sens. 2019, 11(11), 1386; https://doi.org/10.3390/rs11111386 - 11 Jun 2019
Cited by 9 | Viewed by 5278
Abstract
To facilitate F2-layer peak density (NmF2) modeling, a nonlinear polynomial model approach based on global NmF2 observational data from ionospheric radio occultation (IRO) measurements onboard the CHAMP, GRACE, and COSMIC satellites, is presented in this paper. We divided the globe into 63 slices [...] Read more.
To facilitate F2-layer peak density (NmF2) modeling, a nonlinear polynomial model approach based on global NmF2 observational data from ionospheric radio occultation (IRO) measurements onboard the CHAMP, GRACE, and COSMIC satellites, is presented in this paper. We divided the globe into 63 slices from 80°S to 80°N according to geomagnetic latitude. A Nonlinear Polynomial Peak Density Model (NPPDM) was constructed by a multivariable least squares fitting to NmF2 measurements in each latitude slice and the dependencies of NmF2 on solar activity, geographical longitude, universal time, and day of year were described. The model was designed for quiet and moderate geomagnetic conditions (Ap ≤ 32). Using independent radio occultation data, quantitative analysis was made. The correlation coefficients between NPPDM predictions and IRO data were 0.91 in 2002 and 0.82 in 2005. The results show that NPPDM performs better than IRI2016 and Neustrelitz Peak Density Model (NPDM) under low solar activity, while it undergoes performance degradation under high solar activity. Using data from twelve ionosonde stations, the accuracy of NPPDM was found to be better than that of NPDM and comparable to that of IRI2016. Additionally, NPPDM can well simulate the variations and distributions of NmF2 and describe some ionospheric features, including the equatorial ionization anomaly, the mid-latitude trough, and the wavenumber-four longitudinal structure. Full article
Show Figures

Figure 1

26 pages, 3417 KiB  
Article
The Two-Parts Step-by-Step Ionospheric Assimilation Based on Ground-Based/Spaceborne Observations and Its Verification
by Naifeng Fu, Peng Guo, Mengjie Wu, Yong Huang, Xiaogong Hu and Zhenjie Hong
Remote Sens. 2019, 11(10), 1172; https://doi.org/10.3390/rs11101172 - 16 May 2019
Cited by 8 | Viewed by 4214 | Correction
Abstract
This study introduced a Kalman filtering assimilation model that considers the DCB errors of GPS/LEO satellites and GNSS stations. The assimilation results and reliability were verified by various types of data, such as ionMap, ionosonde, ISR, and the EDP of ionPrf from COSMIC. [...] Read more.
This study introduced a Kalman filtering assimilation model that considers the DCB errors of GPS/LEO satellites and GNSS stations. The assimilation results and reliability were verified by various types of data, such as ionMap, ionosonde, ISR, and the EDP of ionPrf from COSMIC. The following analyses were carried out. Assimilating the measured ground-based/spaceborne ionospheric observation data from DOY 010, 2008 and DOY 089, 2012 revealed that the introduction of GPS/LEO satellite and GPS station DCB errors can effectively suppress the STEC observation errors caused by the single-layer hypothesis. Furthermore, the top of the ionosphere contributes 2.8 TECU (approximately 10–20% of the STEC) of electrons during the ionospheric quiet period, greatly influencing the ionospheric assimilation at altitudes of 100–800 km. The assimilation results also show that, after subtracting the influence of the top of the ionosphere, the ionospheric deviation during the quiet period improved from 1.645 TECU to 1.464 TECU; when the ionosphere was active, the standard deviation was improved from 4.408 TECU to 3.536 TECU. The IRI-Imp model introduced by Wu et al. and the IRI (2007) model were used as background fields to compare the effects of COSMIC occultation observation data on the ionospheric assimilation process. Upon comparison, the occultation data introduced by the improved model showed the greatest improvement in the vertical structure of the ionosphere; additionally, the assimilation process reused the horizontal structure information of the occultation data, and the assimilation result (IRI-Imp-Assi) was the most ideal. Due to the lack of an occultation data correction, the IRI2007 model was relatively more prone to errors. With the strategy of the IRI-Imp-Assi model, the introduction of occultation data caused a more significant reduction in the error between the assimilation model with the IRI model as the background field and the ionMap. Full article
Show Figures

Graphical abstract

Back to TopTop